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Continuous Optimal Control 
Sensitivity Analysis with AD 
Jean-Baptiste Caillau and Joseph Noailles 

ABSTRACT In order to apply a parametric method to a minimum time 
control problem in celestial mechanics, a sensitivity analysis is performed. 
The analysis is continuous in the sense that it is done in the infinite di-
mensional control setting. The resulting sufficient second order condition is 
evaluated by means of automatic differentiation, while the associated sen-
sitivity derivative is computed by continuous reverse differentiation. The 
numerical results are given for several examples of orbit transfer, also illus-
trating the advantages of automatic differentiation over finite differences 
for the computation of gradients on the discretized problem. 

11.1 Introduction 

This chapter is concerned with the use of automatic differentiation (AD) 
in the context of sensitivity analysis of optimal control problems (here, the 
minimum time transfer of a satellite to a geostationary orbit [107, 404]). 
Whereas AD is commonly employed on approximated optimal control prob-
lems [117], it is seldom used before discretization, in the infinite dimensional 
setting typical of control. The originality of this article is a use of AD not 
only to compute gradients of the discretized problem, but also to perform a 
continuous sensitivity analysis (see also [90] in the case of PDEs). AD then 
turns to be an efficient way to deal with the cumbersome computations 
involved in real-life control problems. 

The minimum time orbit transfer problem is briefly stated in §11.2. Then, 
an outline of the specific parametric technique developed to solve it is pre-
sented in §11.3; its use requires the sensitivity analysis of interest here, 
which essentially amounts to integrating a Riccati equation evaluated by 
AD. The associated sensitivity derivative is computed by reverse differen-
tiation. Some numerical results for the orbit transfer are given in § 11.4, 
especially for very low thrust transfers. Besides, they demonstrate the rel-
evance of AD to evaluate the gradients of the discrete algorithm. 



110 Jean-Baptiste Caillau and Joseph Noailles 

11.2 Low Thrust Orbit Transfer 

The problem motivating this study is the minimum time transfer of a satel-
lite towards a geostationary orbit. The dynamics is expressed using the or-
bital parameters that define the ellipse osculating to the trajectory (since 
these coordinates are first integrals of the unperturbed motion, they are 
slowly varying. On the other hand, the expression of the dynamics becomes 
intricate). We use a more realistic model than in [107], taking into account 
the variation of the mass m, so that, on a suitable open submanifold of IRn 
(n is the dimension of the system; n = 4 for the 2D model, n = 6 for the 
3D one), the dynamics can be written as: 

x = fo(x) + B(x)u/m 

rh = -<5lul , 

where the control u is the thrust of the engine, and 1.1 is the Euclidean 
norm (see [107, 404] for more details). There are also boundary conditions 
defining the initial and the final orbit, 

together with a constraint on the maximum modulus of the thrust: 

with F max small (low thrust transfer). The problem of finding an absolutely 
continuous state (x, m), and an essentially bounded control u that minimize 
the transfer time tf will be referred to as (SP)Fma •. Among other results, it 
is proven in [104] that any optimal control has finitely many switchings so 
that lui = Fmax almost everywhere. As a consequence, m(t) = m O -<5Fmax t 
and (SP)Fma• is reduced to a non-autonomous problem. The technique 
used to solve it is described in the next section. 

11.3 Continuous Sensitivity Analysis 

Rather than using direct methods (e.g., direct transcription) that lead to 
nonlinear programming, we emphasize indirect approaches. They are faster 
and more accurate for our problem (see [103, 105, 347] for comparisons). 
Their main drawback is the loss of robustness: the sensitivity of single 
shooting to the initialization of the adjoint state is well-known [16]. In 
an attempt to deal with these difficulties, a new parametric technique is 
introduced in [107] for minimum time control problems. We here give an 
outline of the method for the problem of §11.2. If we denote by q;(f3) the 
value function of the optimal control problem with fixed final 
time f3 (reformulated for convenience on [0,1] with an obvious change of 
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variables) 

1/2Ih(x(1)W -+ min 
x = (3f«(3t,x,u) 

x(O) = xo 

lui :S Fmax 

(with f(t, x, u) = fo(x) + B(x)u/m(t)) then the original problem is clearly 
equivalent to finding the first zero /3 of ¢ (which gives a measurement of the 
non-controllability of the system with respect to the end-point constraint 
for a prescribed final time (3). The advantages of this approach are of three 
kinds [107]: first, thanks to the separate management of the criterion (that 
would be treated like any other variable by single shooting), the sensitivity 
to the initialization of t f is reduced. Moreover, the ordered search provided 
by a Newton-like search on ¢ prevents the algorithm from finding too coarse 
local minima. Finally, since shooting (that will be used on the auxiliary 
problems, see §11.4) is embedded in this Newton process, the sensitivity to 
the adjoint state is attenuated too. 

Here, though we can prove that ¢ is Lipschitz-and hence almost ev-
erywhere differentiable-we need reI-regularity in order to apply Newton's 
method to the equation ¢«(3) = O. To this end, we use the recent sensitivity 
results for optimal control of [368, 369]. Of course, one could apply a direct 
method to approximate ¢ by the resulting value function, and 
use AD to compute the gradients involved in the verification of the usual 
finite-dimensional sufficient conditions for sensitivity analysis. Again, in 
order to preserve the continuous information, we prefer to postpone the 
discretization process and perform the analysis on the continuous form. As 
in finite dimensions, the idea is to construct an extremal family and to 
ensure local optimality by sufficient second order conditions that will also 
be checked by means of AD. For (3 in ]0,/3[, if (x(.,(3),u(.,(3)) is a solution 
to the Pontryagin maximum principle holds, and there is an 
absolutely continuous adjoint state p(., (3) such that y = (x,p) is a solution 
of the boundary value problem (BV P){3 

x = 8p lf(t,x,p,u(x,p),(3) 
p = -8x lf(t, X,p, u(x,p), (3) 

x(O) = xo, p(l) = th'(x(l))h(x(l)) 

with If(t,x,p,u,(3) = (3(plf«(3t,x,u)) the Hamiltonian and 

u(., (3) = u(x(.,(3),p(.,(3)) 

= -Fmax tB(x(., (3))p(., (3)/ltB(x(., (3))p(., (3)1 

(11.1) 

(11.2) 

(11.3) 

whenever tB(x(.,(3))p(., (3) does not vanish. Actually, we assume that 
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(Il) u(., (3) is continuous 

Then, if Z(t, y, (3) denotes the second member of (11.1-11.2), Z = (Zl' Z2) = 
(opH(t, x, p, u(x,p), (3), -oxH(t, x, p, u(x, p), (3», if cp(t, y, (3) is the smooth 
maximal flow of iJ = Z(t, y, (3), (BV P){3 is equivalent to the shooting equa-
tion: find pO in lRn such that 

S(pO, (3) = ° 
with S(po,(3) = b(cp(l,xO,po,(3» (where b(y) = p-W(x)h(x) is the bound-
ary condition of (11.3». Finally, we need a second regularity condition 

(I2) opS(p(O, (3), (3) belongs to GLn(lR) 

together with a coercivity condition 

(I3) the symmetric Riccati equation below has a bounded solution on 
[0,1]: 

Q = -QA(t,(3) - tA(t,(3)Q + QB(t,(3)Q - C(t,(3) 

«Rf - Q(l»vlv) 0, v E lRn 

A(t,jJ) = OxZ1(t,y(t,jJ),(3), B(t,(3) = OpZ1(t,y(t,(3),(3) 
C(t,jJ) = OxZ2(t,y(t,(3),(3) , 

(11.4) 

(11.5) 

where Rf is a fixed n by n matrix. Then, we are able to prove that ¢ is 
((:1 and to give a very simple closed form of its derivative. Indeed, taking 
advantage of the fact that the constraint on the control is active everywhere 
(assumption (Il», the parametric problem can be rewritten as 
an abstract optimization problem with equality constraints 

J(z, (3) -+ min 

F(z, (3) = ° 
with z = (x, u) and obvious expressions for J and F. Then, if we define the 
Lagrangian L(z, >.., (3) = J(z, (3) + (>.., F(z, (3» (where (.,.) is the duality 
pairing on the codomain of F), since the dependence (3 H- (z«(3), >..«(3» 
is ((:1 under the previous assumptions, and since ozL(z(jJ), >..(jJ) , (3) = 0 
(KKT condition), we can compute ¢'«(3) = d/d(3 J(z«(3),(3) by reverse 
differentiation [176] (here on the continuous problem), and get 

¢' «(3) = O{3L(z«(3) , >"«(3), (3) . (11.6) 

As a result, we have 

Proposition 1 Under assumptions (11)-(13), ¢ is ((:1 on ]O,.B[ and 

¢' «(3) = H (1, (3) / (3 . (11.7) 
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Proof. We just need to check the assumptions of the sensitivity analysis 
result of [3691. For a given (30 in ]0, ,8[, has a solution (xo, uo) 
and an adjoint state Po. The control is smooth by virtue of (11) and, if 
H(t,x,p,u,J.L,(3) = (3(plf((3t,x,u)) + 1/2J.L(luI2 - F;'ax) is the augmented 
Hamiltonian (J.L scalar multiplier associated with the inequality constraint 
1/2(luI2 - F;'ax) :S 0), one has \luH(t,xo,po,uo,J.Lo,(3o) = 0 by taking 
J.Lo = (301 tB(xo)pol/(m(t)Fmax) 2: O. Accordingly, J.Lo is smooth and (11) 
implies that strict complementarity holds (J.Lo > 0 on [0,1]). Moreover, 

= J.Lol (I identity matrix) in order that the strict 
Legendre-Clebsch condition is fulfilled. Then, with (12) and (13), all the 
assumptions of [369] are valid so that, for any (3 in an open neighbourhood 
of (30, 

<p'((3) = 11 a{3H(t, (3)dt 

by virtue of (11.6) (lemma 1 of [107]). Now, along the optimal trajectory, 

d/dt(tH) = H + tiI = H + tatH = (3a{3H , 

so <P' ((3) = H (1, (3) / (3, which concludes the proof. 0 
Both conditions (12) and (13) are only verifiable numerically: (12) is sim-

ply the regularity of the Jacobian of the shooting function (checked when 
solving the auxiliary problem (SP)taz by shooting). The Ricatti equa-
tion (11.4-11.5) requires the computation of 3n2 partial derivatives and is 
assembled using AD as explained in the next section. 

11.4 Numerical Results 

The numerical computation is done in two steps. First, for a given thrust, 
(SP)Fmaz is solved by the parametric approach of §11.3; <p((3) is evaluated 
by shooting on the auxiliary problem (which allows the numer-
ical verification of (12»; and <P' is evaluated using either (11.7), which is 
extremely easy to compute, or a finite differences approximation, depend-
ing on the precision of the shooting resolution. Then, the Riccati equa-
tion (13) is integrated to check coercivity, backwards since it is straightfor-
ward to find a matrix Q(l) matching the boundary condition (11.5), and 
since y(l, (3) is provided by shooting. AD is used to generate the gradi-
ents. Indeed, we deal with a large system, so there are many derivatives 
to determine (3n2 , that is 48 in 2D, and 108 in the 3D case). Moreover, 
computing the required second order derivatives of the dynamics is a cum-
bersome process because of the choice of coordinates (one has to deal with 
trigonometric rational fractions). In the 3D case for instance, even the first 
order derivatives of the dynamics for the adjoint equation are evaluated by 
AD. As the Fortran code for the boundary value problem was available, 
ADIFOR2.0 [79] was a natural choice. AD is also used in a more classical 
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but yet efficient fashion to find the exact Jacobian of the shooting func-
tion, ap S(po,(3), by differentiating the numerical integrator (Runge-Kutta 
of order 4). A comparison with finite differences (FD) is provided Table 
11.1 where the transfer times for various thrusts are detailed in the 2D 
case (compare [347, 208, 404, 103]). The results we obtained using AD are 
systematically more accurate. Two examples of optimal trajectories and 
verification of the coercivity condition are given in Figures 11.1 and 11.2. 

TABLE 11.1. Minimum transfer times 

tf ¢(tf) Execution 
Fmax FD AD FD AD FD AD 

60 14.732 14.732 5e-28 7e-29 12 14 
24 34.133 34.133 2e-22 3e-27 25 25 
12 69.294 69.294 2e-25 2e-21 60 40 
9 93.187 91.930 3e-19 1e-26 54 70 
U 141.64 139.37 3e-13 2e-17 122 86 
3 278.98 278.98 1e-24 1e-27 285 217 
2 420.10 420.10 1e-17 1e-26 257 485 

1.4 597.92 598.12 4e-18 5e-13 485 648 
1 839.97 836.86 5e-12 3e-13 496 504 

0.7 1195.7 1195.7 2e-12 ge-15 1084 1106 
0.5 1685.2 1674.8 3e-12 2e-12 1978 1391 
0.3 2838.4 2797.7 7e-10 4e-13 2128 1938 

Thrusts are in Newtons, transfer times in hours, and execution 
times (on an HP PA-C160) in seconds. 

11.5 Conclusion 

Automatic differentiation has been used in two ways: on the discretized 
problem to evaluate the Jacobian of the shooting function, but also on 
the original control problem to check a continuous sensitivity condition 
(and then to find a continuous exact gradient by reverse differentiation). 
In the first case, AD provides a much more accurate computation than 
finite differences. In the second, it is the most practical way to assemble 
the Riccati equation connected to the coercivity condition. For the real-life 
control problem considered, the large dimension of the dynamics together 
with its complexity make any hand-made computation cumbersome, if not 
impracticable. A similar analysis with respect to the parameter Fmax is 
currently worked out [102]. 
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FIGURE 11.1. Thrust of 12 Newtons (3 day transfer). Left, the optimal trajectory 
(the arrows represent the control). Right, the evaluation of cp and cp'. Points where 
the Riccati equation has been successfully integrated are marked with a *. 
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FIGURE 11.2. Thrust of 0.5 Newton (2 month transfer). The result is typical 
of the low thrust case: the coercivity condition is more difficult to check in the 
neighbourhood of the solution, and jumps are observed on the function, due to 
local minima. 


