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Abstract Motivated by optimal control of affine systems stemming from mechanics, metrics
on the two-sphere of revolution are considered; these metrics are Riemannian on each open
hemisphere, whereas one term of the corresponding tensor becomes infinite on the equa-
tor. Length-minimizing curves are computed, and structure results on the cut and conjugate
loci are given, extending those in Bonnard et al. (Ann Inst H Poincaré Anal Non Linéaire
26(4):1081–1098, 2009). These results rely on monotonicity and convexity properties of
the quasi-period of the geodesics; such properties are studied on an example with elliptic
transcendency. A suitable deformation of the round sphere allows to reinterpretate the equa-
torial singularity in terms of concentration of curvature and collapsing of the sphere onto a
two-dimensional billiard.
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1 Introduction

In the papers [12,36] the authors investigate the cut and conjugate loci of a Riemannian metric
on the two-sphere of revolution that can be written in the normal form m(ϕ)dθ2 + dϕ2—
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1354 B. Bonnard, J.-B. Caillau

where ϕ is the angle along the meridian and θ the angle of revolution—under the assumption
that m(π − ϕ) = m(ϕ) (symmetry with respect to the equator). Motivated by examples in
optimal control, our aim is to extend these results to metrics of the form

X R(X)dθ2 + dϕ2, X = sin2 ϕ, (1)

where R is a rational fraction with a single pole at X = 1. The metric is Riemannian on both
open hemispheres but has a singularity on the equator. Such metrics arise when one considers
the time minimum control of a system

ẋ(t) = u1(t)F1(x(t)) + u2(t)F2(x(t)), u2
1(t) + u2

2(t) ≤ 1,

with fixed boundary conditions, x(0) = x0, x(t f ) = x f , and it is well known that minimizing
the time amounts to minimizing the length of the curve t #→ x(t) provided the metric is
defined by assuming F1 and F2 orthonormal. For such problems, singularities occur when
the two vector fields become collinear. This leads to the concept of almost-Riemannian
metrics [3,4,13,16], and the analysis of such metrics is related to sub-Riemannian geometry
[6,27]. If the distribution {F1, F2} is bracket generating, every pair of points can be joined by
a length-minimizing curve. Moreover, if there exists no abnormal trajectory, each minimizing
curve is a geodesic, projection on the x-space of the Hamiltonian flow exp t

−→
h where

h(z) = 1
2

(
H2

1 (z) + H2
2 (z)

)
, z = (x, p),

and where Hi (z) = ⟨p, Fi (x)⟩ are the Hamiltonian lifts of the Fi ’s. Denoting expx0
, the

exponential mapping

expx0
(t, p0) = $

(
exp t

−→
h (x0, p0)

)

where $ is the projection (x, p) #→ x ; the cut and conjugate loci are defined as in the Rie-
mannian setting; the cut locus is the set of points where geodesic curves fail to be minimizing,
while the conjugate locus is the set of first critical values of the exponential mapping.

In this paper, we generalize to the singular case (1) the results in [12] relating the structure
of the cut and conjugate loci to the convexity of the quasi-period of the θ -coordinate: under
appropriate assumptions, the cut locus of a point is reduced to a single segment, and the
conjugate locus has at most four cusps. Although similar to the Riemannian case, the singu-
larity of the metric on the equator has two consequences; the injectivity radius is zero, and
the singularities of the conjugate locus of an equatorial point differ. In Sect. 3, two examples
motivating this study are presented. One stems from quantum mechanics, the other from
space mechanics. Both are limit cases of optimal control problems, not linear, but affine in
the control. Section 4 is devoted to the integrability properties of the geodesics of (1), and
preliminary computations of the period and quasi-period of coordinates ϕ and θ are made.
The optimality status of the geodesics is studied in Sect. 5 where the main results on the
structure of cut and conjugate loci are established. The second example of Sect. 3 is given a
full treatment in Sect. 6. In order to be able to apply Sect. 5 results, a detailed analysis using
a parameterization of geodesics by elliptic curves is presented. The last section accounts for
concentration of curvature and collapsing phenomena that allow us to reinterpretate the effect
of the equatorial singularity on the metric.
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Metrics with equatorial singularities on the sphere 1355

2 Preliminaries

We consider the metric (1) on S2 where (θ, ϕ) are the coordinates induced by the covering
of the sphere minus poles

R × (0,π) ∋ (θ, ϕ) #→ (sin ϕ cos θ, sin ϕ sin θ, cos ϕ).

The function R is a rational fraction with a single pole of order p at X = 1,

R(X) =
p∑

k=0

ak

(1 − X)k , a0, . . . , ap−1 ≥ 0, ap > 0 (p ≥ 1). (2)

We assume that the normalization condition a0+· · ·+ap = 1 holds. The metric is Riemannian
on hemispheres with a singularity on the equator when ϕ = π/2 since R(X) → ∞ when
X → 1. It is a standard fact that Riemannian geometry can be recast in the Hamiltonian setting
of optimal control: on each open hemisphere, finding a length-minimizing curve connecting
two points x0, x f is equivalent to finding a measurable control function u : [0, t f ] → R2

such that almost everywhere

ẋ(t) = u1(t)F1(x(t)) + u2(t)F2(x(t)), u2
1(t) + u2

2(t) ≤ 1,

x(0) = x0, x(t f ) = x f , (3)

and such that the final time t f is minimized. In the previous coordinates, the vector fields are
(because of the topology of the 2-sphere, one cannot provide an orthonormal frame of vector
fields globally defined on S2)

F1(θ, ϕ) := 1
sin ϕ

√
1/R(X)

∂

∂θ
, F2(θ, ϕ) := ∂

∂ϕ
(4)

as

Lemma 1 1/R(X) has a smooth square root.

Proof One has

1
R(X)

= cos2p ϕ

ap + · · · + a0 cos2p ϕ

and ap + · · · + a0 cos2p ϕ ≥ ap > 0 by virtue of (2). ⊓,
This optimal control formulation makes sense on the whole sphere: this is how (1) will
be understood as a metric defined on all S2 in this paper. Geometrically, the singularity
R(1) = ∞ forces length-minimizing curves to be vertical (directed along meridians) when
crossing the equator.

Remark 1 The singularity here is not a degeneracy of the Riemannian tensor on the tangent
space as in, e.g., [31] but a degeneracy of a positive tensor on the cotangent space.

An appropriate algebraic setting for such a metric is the notion of generalized
sub-Riemannian metrics (see [6,25]) or almost-Riemannian metrics (see [1,3,4,13]). Let
g0 be the round metric on the sphere; (1) is associated with the following morphism of fibre
bundle:1

f : (T S2, g0) → T S2

1 That is id-morphism, according to [17] terminology: Base points are unchanged by the morphism, and fibres
are linearly sent to fibres.
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1356 B. Bonnard, J.-B. Caillau

such that f is the identity on the fibres above the poles and

f(θ,ϕ) : ∂

∂θ
#→

√
1/R(X)

∂

∂θ
,

∂

∂ϕ
#→ ∂

∂ϕ

otherwise. This morphism induces an application between vector fields on the sphere, f∗ :
&(T S2) → &(T S2); if F ∈ &(T S2),

f∗(F)(x) := fx (F(x)), x ∈ S2.

Although the direct image f (T S2) is not a fibre bundle,

' := f∗(&(T S2)) ⊂ &(T S2)

is a well-defined submodule over smooth functions. For x ∈S2 and v∈'x :={F(x), F ∈ '},
define

gx (v) := inf{g0x (u) | fx (u) = v}.
Outside poles,

gx (v) = inf{u2
1 + u2

2 | u1 F1(x) + u2 F2(x) = v}.
Then, given two points x0, x f on the sphere, set

d(x0, x f ) := inf

t f∫

0

√
gx(t)(ẋ(t)) dt

where the infimum is taken over all Lipschitz trajectories x such that

ẋ(t) ∈ 'x(t), t ∈ [0, t f ] (a.e.)

x(0) = x0, x(t f ) = x f .

The set of such horizontal trajectories is not empty as is clear from the proof of

Proposition 1 d defines a complete distance on S2 that induces the usual topology on the
sphere.

To prove this fact, one defines recursively the flag associated with ' by means of the Lie
bracket of vector fields,

'1 := ', 'k+1 := 'k + [', 'k]
with [', 'k] := {[F, G] | F ∈ ', G ∈ 'k}, k ≥ 1.

Lemma 2 For all x ∈ S2, '
p+1
x = Tx S2.

Proof Outside the equator, F1 and F2 have rank two, so the verification is restricted to
ϕ = π/2 where F1 vanishes. Since R has an order p pole,

(adp F2)F1(θ, ϕ) = dp

dϕ p [(1/ sin ϕ)
√

1/R(X)]
︸ ︷︷ ︸

̸=0 at ϕ=π/2

∂

∂θ

so brackets of length at most p + 1 span everywhere the whole tangent space. ⊓,
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Metrics with equatorial singularities on the sphere 1357

Proof of Proposition 1 According to Lemma 2, ' is bracket generating so there exist, for
any pair of points on the sphere, Lipschitz curves almost everywhere tangent to ' connecting
them by Chow–Rashevsky theorem. On the compact manifold S2, Filippov theorem [5] then
asserts existence of time-minimizing curves. That the metric induces the canonical manifold
topology is another consequence of Chow–Rashevsky [25]. ⊓,
Remark 2 As explained in [3], generic (in the sense of Whitney) almost-Riemannian metrics
on the sphere are such that, for all x ∈ S2, either 'x (regular point), '2

x (Grušin point) or '3
x

(tangency point) spans the tangent space. According to Lemma 2, the situation we consider
is not generic for p ≥ 3.

3 Motivating examples

The following Hamiltonian on S2 is considered in [9]:

H(θ, ϕ, pθ , pϕ) = −δ cos ϕ sin ϕ pϕ + 1
2

(
p2
θ

tan2 ϕ
+ p2

ϕ

)

. (5)

It originates in quantum mechanics and partly describes the energy minimum control of a spin
1/2 particle in a magnetic field. When the parameter δ is zero, this Hamiltonian corresponds
exactly to the metric (1) obtained for R(X) = 1/(1 − X) (geodesics are integral curves of
an appropriate quadratic Hamiltonian—see the beginning of Sect. 4). As explained in Sect.
5, a local model near the singularity ϕ = π/2 is the so-called Grušin metric on R2 [15,23]

dx2 + dy2

x2 ·

For this reason, the metric defined by (5) when δ = 0 is called Grušin metric on the sphere.
In contrast to the analogous metric on the plane, it has peculiarities (e.g.meridional cusps of
conjugate loci, see Sect. 5) due to the topology of the sphere. Like the second example, it is
also connected with space mechanics (see [12]).

Consider a controlled dynamical system of the form

dx
dl

(l) =
m∑

i=1

ui (l)Fi (l, x(l)) (6)

on a smooth n-dimensional manifold X where the Fi : R × X → X are vector fields
parameterized by l and periodic, F(l, x) = F(l + 2π, x) for all l ∈ R and x ∈ X . This
dynamics is actually a particular case of an (autonomous) affine in the control system, as we
may define the vector fields

F̂0(x̂) := ω(x̂)
∂

∂l
, F̂i (x̂) := ω(x̂)

n∑

j=1

⟨dx j , Fi ⟩
∂

∂x j
, i = 1, . . . , m,

with x̂ := (l, x) ∈ X̂ := R × X and write

dx̂
dt

(t) = F̂0(x̂(t)) +
m∑

i=1

ui (t)F̂i (x̂(t)).

The pulsation ω is any 2π -periodic in l positive function on X̂ relating the two times of the
system, t and l (the latter being understood as an angular length). The periodic vector fields
Fi induce vector fields on S1 × X , and it is appealing to use averaging [28] to define
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1358 B. Bonnard, J.-B. Caillau

Fi (x) := 1
2π

2π∫

0

Fi (l, x) dl.

We consider instead the Hamiltonian associated with the L2dt-minimization of the control,

H(l, x, p) = ω(l, x)

2

m∑

i=1

⟨p, Fi (l, x)⟩2.

Then,

H(x, p) := 1
2π

2π∫

0

H(l, x, p) dl

remains a positive quadratic form in the adjoint variable, p. Under the standard assumption
that the F̂i , i = 0, . . . , m, are bracket generating, one expects the rank of this quadratic form
to be maximum and equal to n. The case being, one can find n independent vector fields Fi
such that

H(x, p) = 1
2

n∑

i=1

⟨p, Fi (x)⟩2.

Singularities of two types may exist though. First, such implicitly defined vector fields need
not be smooth on X , even in the analytic situation.2 In addition, the rank of the form may
not be constant on X and drop at some points. This phenomenon accounts for the existence
of an equatorial singularity in the following case.

On X = R∗
+ × D, D being the open unit Poincaré disc, set

F1 := − 3(1 − e2)w

n1/3(1 + e cos v)2

∂

∂n

+ 2(1 − e2)2

n4/3(1 + e cos v)2w

[
(e + cos v)

∂

∂e
+ sin v

e
∂

∂θ

]

with

v := l − θ, w :=
√

1 + 2e cos(l − θ) + e2 ,

and

ω(l, x) := n(1 + e cos(l − θ))2

(1 − e2)3/2 ·

Here, x = (n, e, θ) ∈ R∗
+ × R∗

+ × R are coordinates on the positive line times the pointed
disc. They are used in space mechanics to represent the geometry of plane elliptic trajectories
in the controlled two-body problem [10]: n is the mean motion (that is n = a−3/2 where
a is the semi-major axis), e is the eccentricity, and θ is the argument of the pericenter. The
averaging procedure just described leads to [10]

H(n, e, θ, pn, pe, pθ ) = 9n1/3

2
p2

n + 1
n5/3 h(e, θ, pe, pθ )

2 See, e.g., Sect.3.2 in [11].
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Metrics with equatorial singularities on the sphere 1359

with

h(e, θ, pe, pθ ) = 1
2

[
4(1 − e2)3/2

1 +
√

1 − e2
p2

e + 4(1 − e2)

(1 +
√

1 − e2)

p2
θ

e2

]

.

Proposition 2 H, h and pθ are independent first integrals in involution; in particular, H is
Liouville integrable.

Proof The Poisson bracket of H and h is

{
H , h

}
= ∂ H

∂pn

∂h
∂n

− ∂ H
∂n

∂h
∂pn

+ 1
n5/3 {h, h} = 0,

the rest being obvious. ⊓,
The integration of H may also be performed by integrating h. This two-dimensional Hamil-
tonian (which retains the linear first integral pθ ) is lifted from the Poincaré disc to S2 using
the following compactification: in the covering (θ, ϕ) ∈ R×(0,π) of the sphere minus poles
where

e = sin ϕ
√

1 + cos2 ϕ ,

one has

h(θ, ϕ, pθ , pϕ) = 1
2

[
4 cos4 ϕ

sin2 ϕ(2 − sin2 ϕ)2
p2
θ + p2

ϕ

]
.

The rank of this quadratic form in (pθ , pϕ) drops from 2 to 1 when ϕ = π/2. Actually, h is
exactly associated with the metric (1) with

R(X) =
(

1 − X/2
1 − X

)2

= 1
4

[
1 + 2

1 − X
+ 1

(1 − X)2

]
·

This metric with an order two equatorial singularity will be referred to as the (1, 2, 1) case
(according to coefficients involved in the series) and studied in Sect. 6.

Remark 3 The Hamiltonian (5) in the first example can either be interpretated as stemming
from an affine controlled system or as defining a pseudo-Riemannian metric (see [9]). In
contrast to the sub-Riemannian case that is characterized by linearity in the control, time
minimization (with a bounded control) and minimization of the L2-norm (with a prescribed
final time) of affine systems cease to be equivalent.

4 Integrability properties

As time-minimizing curves of the control system (3), geodesics satisfy Pontrjagin max-
imum principle [5,14]: if x is a shortest time trajectory generated by the optimal con-
trol u : [0, t f ] → R2, there exist a nonpositive constant p0 ≤ 0 and a Lipschitzian lift
(x, p) : [0, t f ] → T ∗S2 of the trajectory to the cotangent bundle such that (p0, p) ̸= (0, 0)

and

ẋ(t) = ∂ H
∂p

(x(t), p(t), u(t)), ṗ(t) = −∂ H
∂x

(x(t), p(t), u(t)), t ∈ [0, t f ] (a.e.),

where

H : T ∗S2 × R2 → R, H(x, p, u) := p0 + u1 H1(x, p) + u2 H2(x, p).
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1360 B. Bonnard, J.-B. Caillau

The Hi : T ∗S2 → R are the Hamiltonian lifts of the two vector fields (4),

Hi (x, p) := ⟨p, Fi (x)⟩, i = 1, 2.

Besides, the following maximization condition holds,

H(x(t), p(t), u(t)) = max
|v|≤1

H(x(t), p(t), v), t ∈ [0, t f ] (a.e.)

As a result, the Hamiltonian evaluated along the extremal (x, p, u) is almost everywhere
equal to a constant; since the final time is free, this constant is zero. The previous relations
are homogeneous in (p0, p), and there are two cases: either p0 = 0 (abnormal case), or
p0 < 0 (normal case).

Lemma 3 Abnormal trajectories are stationary equatorial curves.

Proof Assume p0 = 0. Then H = u1 H1 + u2 H2 has to be zero and maximized along
the extremal; necessarily, the two Lipschitz functions H1 and H2 must vanish identically
on [0, t f ] (the maximum would otherwise be positive). As a result, for any time t , p(t) is
orthogonal to the span at x(t) of F1 and F2. If there exists t ∈ [0, t f ] such that ϕ(t) ̸= π/2,
the span at such an x(t) is the whole tangent space, so p(t) = 0. As p is solution of the linear
differential equation

ṗ(t) = −∂ H
∂x

(x(t), p(t), u(t)) = −p(t)
[
F ′

1(x(t)) + F ′
2(x(t))

]
,

p is identically zero, which contradicts (p0, p) ̸= (0, 0). So ϕ ≡ π/2; then

θ̇(t) = u1(t)
√

1/R(X) |X=1 = 0

so θ is also constant. ⊓,

We disregard these trivial curves and normalize p0 to −1.

Scholium Geodesics of (1) are integral curves of the quadratic Hamiltonian

h(θ, ϕ, pθ , pϕ) := 1
2

(
p2
θ

X R(X)
+ p2

ϕ

)

(7)

restricted to the level set {h = 1/2}.

Proof Let u be a minimum time control, and let (x, p, u) be the associated extremal. The
normal Hamiltonian −1 + u1 H1 + u2 H2 is zero along the extremal, so (H1, H2) does not
vanish. Because of the maximization condition,

u(t) = (H1, H2)√
H2

1 + H2
2

(x(t), p(t)) a.e.

Then,

ẋ(t) = u1(t)F1(x(t)) + u2(t)F2(x(t)) (8)

= H1(x(t), p(t))F1(x(t)) + H2(x(t), p(t))F2(x(t))

since H2
1 + H2

2 = 1 on {H = 0} (that is {h = 1/2}), so

ẋ(t) = ∂h
∂p

(x(t), p(t)) a.e.

123

Author's personal copy



Metrics with equatorial singularities on the sphere 1361

One similarly verifies that

ṗ(t) = −∂h
∂x

(x(t), p(t)) a.e.

⊓,

Remark 4 Such geodesics are arc length parameterized as (8) implies that

gx(t)(ẋ(t)) = u2
1(t) + u2

2(t) = 1 a.e.

As θ is a cyclic variable (symmetry of revolution—see [7] for a general reference) of h,
pθ is a linear first integral and

Proposition 3 h is Liouville integrable. The coordinate ϕ is parameterized by a hyperelliptic
curve of genus at most p.

Proof X = sin2 ϕ, so Ẋ2 = 4X (1 − X)ϕ̇2. On {h = 1/2},

Ẋ2 = 4X (1 − X)

(

1 − p2
θ

X R(X)

)

,

so

Y 2 = 4(1 − X)(ap + · · · + a0(1 − X)p)[X (ap + · · · + a0(1 − X)p) − p2
θ (1 − X)p] (9)

with Y = (ap +· · ·+a0(1− X)p)Ẋ . The right-hand side of (9) has degree at most 2(p +1),
so the genus of the complex curve is at most p. ⊓,

Set

&(ϕ) := 1
X R(X)

, ϕ ∈ (0,π).

Consider the extremal departing from ϕ0 ̸= 0 (π) (not a pole), θ0 being normalized to 0 and
defined by a positive pθ (the degenerate case pθ = 0 corresponding to meridians—which

are the only extremals passing through the poles) and nonnegative pϕ0 =
√

1 − &(ϕ0)p2
θ .

Along the extremal, ϕ̇ first vanishes when ϕ is equal to ϕ1 := π − &−1(p−2
θ ) since

Lemma 4 & is a strictly decreasing one-to-one mapping between (0,π/2] and R+ such that
&(π − ϕ) = &(ϕ).

Proof One has

d&

dX
= − R(X) + X R′(X)

(X R(X))2

with

R′(X) =
p∑

k=1

kak

(1 − X)k+1 ·

Since dX/dϕ = 2 sin ϕ cos ϕ is positive on (0,π/2), the conclusion follows. ⊓,

As &′ does not vanish on (0,π/2),

1 − &(ϕ)p2
θ = O(ϕ1 − ϕ)
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1362 B. Bonnard, J.-B. Caillau

in the neighbourhood of π − &−1(p−2
θ ), and the following integral (depending on pθ and

ϕ0) is well defined,

t1 :=
π−&−1(p−2

θ )∫

ϕ0

dϕ
√

1 − &(ϕ)p2
θ

·

Lemma 5 The axial symmetry σ1 with respect to θ(t1) is an inner symmetry of the extremal.

Proof Set

θ̂(t) := 2θ(t1) − θ(2t1 − t), p̂θ (t) := pθ (t),

ϕ̂(t) := ϕ(2t1 − t), p̂ϕ(t) := −pϕ(2t1 − t),

and check that new curve is still an extremal, passing through the same point of the cotangent
bundle at t1 since pϕ(t1) = 0. ⊓,

Necessarily, π − &−1(p−2
θ ) ≥ π − ϕ0, so there also exists t ′1 ≤ t1 such that ϕ(t ′1) = π − ϕ0.

Using the previous axial symmetry, we deduce the existence of t2 := 2t1 − t ′1 ≥ t1 such that,
again, ϕ(t2) = π − ϕ0. Using now the equatorial symmetry of &,

&(π − ϕ) = &(ϕ),

the following is clear.

Lemma 6 The central symmetry s2 with respect to (θ(t2)/2,π/2) defines another extremal
with the same initial condition.

Proof Set

θ̂(t) := θ(t2) − θ(t2 − t), p̂θ (t) := pθ (t),

ϕ̂(t) := π − ϕ(t2 − t), p̂ϕ(t) := pϕ(t2 − t).

The new curve is still an extremal since

˙̂
θ(t) = &(π − ϕ̂(t))pθ = &(ϕ̂(t)) p̂θ , ˙̂pϕ(t) = 1

2
&′(π − ϕ̂(t))p2

θ = −1
2
&′(ϕ̂(t)) p̂2

θ ,

and θ̂0 = 0 = θ0, ϕ̂0 = π − (π − ϕ0) = ϕ0. ⊓,
Finally, denote t3 the point such that ϕ(t3) = π/2 ≤ π − ϕ0, and remark that the central
symmetry σ2 with respect to (θ(t3), π/2) leaves the extremal invariant. Since the axial sym-
metry s1 with respect to θ = 0 obviously defines another extremal originating from the same
point, we conclude that the group generated by s1 and s2 acts on the set of extremals with
same initial condition, while the group generated by σ1 and σ2 defines inner symmetries of
each extremal. The composition rules indicate in both cases that the underlying group is the
four-order abelian Klein group,

V = Z/2Z × Z/2Z ≃ {id, s1, s2, s1s2} ≃ {id, σ1, σ2, σ1σ2}.
Proposition 4 Given any initial condition, the Klein group acts on the set of extremals issuing
from the point. It also defines inner symmetries of any extremal.

An extremal is said to be a pseudo-equator whenever ϕ̇(0) = pϕ(0) is equal to zero,
whereas the equator itself cannot be an extremal because of the singularity.

Lemma 7 Every extremal that is not a meridian is a pseudo-equator.
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Proof For pθ positive and pϕ0 nonnegative (the other cases are deduced by symmetry), there
exists ϕ̃0 = &−1(p−2

θ ) such that, up to a time shift, the extremal is the pseudo-equator with
initial condition ϕ̃0. ⊓,

Conversely, any pseudo-equator meets ϕ = π/2 as one understands from the analysis of
symmetries. Taking ϕ̃0 = π/2 as new initial condition and retaining the same value for pθ

provides the same geodesic, up again to a time shift. As a result, rather than parameterizing
extremals using both ϕ0—we set θ0 = 0 thanks to the symmetry of revolution—and pθ ,
one may either parameterize by ϕ0 ∈ (0,π/2) alone using the fact all geodesics (with the
exception of meridians, pθ = 0) are pseudo-equators (then, implicitly, p2

θ = 1/&(ϕ0),
ϕ0 ̸= π/2 since the equator is not a geodesic), or parameterize by their Clairaut constant
pθ ∈ R∗

+, considering only the initial condition at singularity, ϕ0 = π/2. The second point
of view reduces the study of geodesics to those starting at singularity.

Proposition 5 On every extremal, the coordinate ϕ is periodic with period

T (pθ ) = 4

π/2∫

&−1(p−2
θ )

dϕ
√

1 − &(ϕ)p2
θ

,

and θ(t + T ) = θ(t) ± 'θ (sign depending on the sign of pθ ) with quasi-period

'θ(pθ ) = 4

π/2∫

&−1(p−2
θ )

&(ϕ)pθ dϕ
√

1 − &(ϕ)p2
θ

·

Proof According to the previous analysis, it is enough to check the result on pseudo-equators.
But then, t1 = t2 = t3 = 2t4, so setting T := 2t1 and using the axial symmetry with respect
to θ(t1) gives the result since ϕ(T ) = ϕ(0), pϕ(T ) = −pϕ(0) = 0 = pϕ(0). So θ̇ = &(ϕ)pθ

is also periodic, which concludes the proof. ⊓,
As functions of ϕ0,

T (ϕ0) = 4

π/2∫

ϕ0

dϕ√
1 − &(ϕ)/&(ϕ0)

, (10)

and

'θ(ϕ0) = 4

π/2∫

ϕ0

&(ϕ)dϕ√
&(ϕ0) − &(ϕ)

· (11)

These relations actually cover the case of meridians pθ = 0 (i.e. ϕ0 = 0) for which T = 2π

and 'θ = 2π (two instantaneous rotations of angle π when crossing poles at t = π

and t = 2π). We end the section with the following result that will be used for Sect. 6
computations.

Proposition 6 T ′ = pθ'θ ′.

Proof Write as in [12]

T (pθ ) = pθ'θ(pθ ) + 4

π/2∫

&−1(p−2
θ )

√
1 − &(ϕ)p2

θ dϕ,
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so

T ′(pθ ) = 'θ(pθ ) + pθ'θ ′(pθ ) + 4

π/2∫

&−1(p−2
θ )

∂

∂pθ

(√
1 − &(ϕ)p2

θ

)
dϕ

−8(&−1)′(p−2
θ )pθ

√
1 − &(ϕ)p2

θ |ϕ=&−1(p−2
θ )

︸ ︷︷ ︸
0

= pθ'θ ′(pθ ).

⊓,

5 Cut and conjugate loci

The cut time along a geodesic x , that is along an extremal of the minimum time problem (3),
is the supremum of times t such that the curve restricted to [0, t] is a shortest time trajectory
between x(0) and x(t f ):

tcut := sup{t ≥ 0 | x is minimizing on [0, t]}.
When tcut < ∞, x(tcut) is called a cut point. The set of all cut points on geodesics departing
from a given initial point x0 is the cut locus of x0. A separating point along the geodesic is a
point x(tM ), tM > 0, such that there exists a different geodesic, y, reaching the point at the
same time: x(tM ) = y(tM ). The exponential mapping of a fixed point x0 ∈ S2 is

expx0
: R∗

+ × T ∗
x0

S2 ∩ {h = 1/2} → S2

(t, p0) #→ x(t, x0, p0) := $ ◦ exp t
−→
h (x0, p0) (12)

where $ : T ∗S2 → S2 is the canonical projection and exp t
−→
h the one-parameter global

subgroup generated by the symplectic gradient of the quadratic Hamiltonian (7),

−→
h (x, p) = ∂h

∂p
(x, p)

∂

∂x
− ∂h

∂x
(x, p)

∂

∂p
·

The intersection of the fibre T ∗
x0

S2 with {h = 1/2} is a compact oval diffeomorphic to
S1 outside the equator, or the union two lines {pϕ0 = ±1} for an equatorial point. That
the subgroup is globally defined in the second case comes from the analysis of Sect. 4:
for any pθ ∈ R and pϕ0 = ±1, the coordinates ϕ and θ are periodic and quasi-periodic,
respectively. A conjugate point along the geodesic x is a critical value of expx(0); if (tc, p0)

is the corresponding critical point, tc is the conjugate time. When tc > 0 is the first conjugate
time along the geodesic, x(tc) is called a first conjugate point. The set of first conjugate points
on geodesics departing from x0 is the conjugate locus of x0.

Results of optimal control ensure that local optimality is lost after conjugate points
[34]. Besides, extremals of such problems have to be smooth so that broken curves that
are concatenations of minimizing geodesics cannot be minimizing, entailing that optimal-
ity cannot be preserved after separating points, such as those generated by the symmetries
between extremals described in the previous section. Separating and conjugate times are so
upper bounds of cut times. The following standard result remains valid in our setting with
singularities.

Proposition 7 Cut points of the metric (1) are either conjugate or separating points.
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Lemma 8 Both T and 'θ vanish when |pθ | → ∞.

Proof Directly follows from estimates of integrals (10–11) using the fact that & does not
vanish identically at ϕ = π/2. ⊓,
Proof of Proposition 7 Let γ (tcut) be the cut point along the geodesic γ starting from
x0 = (θ0,ϕ0) and generated by the adjoint vector p0. If the cut point is not a conjugate
point, the exponential mapping is a diffeomorphism in a small enough neighbourhood V0
of (tcut, p0). Since the metric is complete, there are minimizing extremals γn joining x0
to γn(tn) = γ (tcut + 1/n), tn < tcut + 1/n, for n ≥ 1. First assume that ϕ0 ̸= π/2.
Then the oval h−1(θ0,ϕ0, ·)({1/2}) is compact, and one can extract a converging sub-
sequence of the (p0n)n generating the extremals γn and thus conclude classically (see,
e.g., [33]): p0n → p̃0 and γn(tn) → γ (tcut); assuming by contradiction that the point
is not a separating one, that is assuming that p̃0 = p0, implies that for n large enough
γn(tn) belongs to expx0

(V0), so that tn = tcut + 1/n, whence the contradiction. Let now
ϕ0 = π/2. Though h−1(θ0,ϕ0, ·)({1/2}) = {pϕ0 = ±1} is not compact anymore, the
associated sequence (pθ n)n still has to be bounded, otherwise there would exist a sub-
sequence such that |pθ n | → ∞. Assume by contradiction that this is the case. Because
of the central symmetry s2, ('θ(pθ n)/2,π/2) is a separating point on γn = (θn,ϕn), so
tn < T (pθ n)/2 and θn(tn) < 'θ(pθ n)/2; as |ϕ̇n | = |pϕn | ≤ 1, |ϕn(tn) − π/2| ≤ T (pθ n)/2
and (θn(tn), ϕn(tn)) → (0,π/2) according to Lemma 8. Since γ (tcut + 1/n) = γn(tn), this
implies γ (tcut) = x0, which is contradictory. The sequence (pθ n)n is hence bounded, and we
can conclude as previously. ⊓,

Cut loci for an analytical Riemannian metric on the sphere are known to be finite trees
whose extremities are conjugate points after the work of Poincaré [29,30,32]. In our case,
cut loci have peculiarities due to the symmetry of revolution and the equatorial singularity
(see also Corollary 3 in Sect. 7; more generally on surface of revolutions, see [35]).

Theorem 1 Under the assumption that 'θ is strictly decreasing for pθ > 0, cut loci of the
metric (1) are antipodal subarcs. The cut locus of a pole is reduced to the opposite pole,
which is equal to the equator minus the point for an equatorial point, and to a proper closed
subarc of the antipodal parallel otherwise.

Proof The case of poles is obvious and does not depend on any assumption on 'θ since the
only extremals through them are meridians. Consider now the situation ϕ0 = π/2, and show
that the exponential mapping is injective on the quadrant

⋃

pθ >0

(0, T (pθ )/2] × {(pθ , 1)},

that is, show that subarcs of extremals defined by t ∈ [0, T (pθ )/2], positive pθ and pϕ = +1
do not intersect. If p′

θ > pθ , the arc associated with p′
θ is strictly below the one associated

with pθ . Indeed, note that on the first half of such an arc t ∈ [0, T (pθ )/4) and ϕ̇ does not
vanish so that the curve can be parameterized by ϕ instead of time. There,

f (ϕ, pθ ) := dθ

dϕ
= &(ϕ)pθ√

1 − &(ϕ)p2
θ

is an increasing function of pθ since

∂ f
∂pθ

(ϕ, pθ ) = &(ϕ)

(1 − &(ϕ)p2
θ )

3/2
> 0.
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As geodesics starting from ϕ0 = π/2 cross again the equator at 'θ(pθ )/2, the assumption
ensures that the aforementioned subarcs do not intersect. We conclude by remarking that the
full set of extremals is obtained by considering the action of the Klein group on geodesics
with same initial condition (see Sect. 4). First, the central symmetry s2 generates intersections
at t = T (pθ )/2, and then the axial symmetry s1 with respect to θ = 0 generates intersections
at θ = π , thus not prior to the previous ones since θ(T (pθ )/2) = 'θ(pθ )/2, and since
'θ(pθ ) < 2π for pθ > 0 (by assumption, 'θ is decreasing, and equal to 2π on meridians,
i.e. when pθ = 0). So extremals are optimal up to t = T (pθ )/2, and the corresponding
point is a separating point. Since the metric is complete, each point of the equator is reached
by such an extremal and the set of separating points, hence the cut locus, is the equator
minus the initial point itself. Consider finally the case when the initial point is neither polar
nor equatorial. Then p2

θ belongs to (0, 1/&(ϕ0)), and extremals are again optimal up to
t = T (pθ )/2. Indeed, there would otherwise exist shorter extremals, which would lead to
the existence of shorter extremals for the initial condition ϕ0 = π/2 too, contradicting the
previous fact. The central symmetry s2 still generates an intersection at t = T (pθ )/2, and
ϕ(T (pθ )/2) = π −ϕ0 so the corresponding separating point belongs to the antipodal parallel
of the starting point. Since 'θ is decreasing, the extremities of the cut are obtained letting
pθ tend to ±(&(ϕ0))

−1/2 (now finite, since ϕ0 ̸= π/2), and the subarc is closed. ⊓,

To study the conjugate loci, we start with some properties of the local model at singularity.
Setting x := π/2 − ϕ and y := θ , since 1 − sin2 ϕ ∼ (π/2 − ϕ)2 when ϕ tends to π/2, a
local model for the metric (1) is

ds2 = dx2 + dy2

x2p (13)

where p is the order of the pole. The equatorial symmetry of & translates into (−x)2p = x2p ,
so the discrete symmetry group is preserved. Such almost-Riemannian metrics are related
to sub-Riemannian distributions. For p = 1, the local model is the Grušin metric ds2 =
dx2 + dy2/x2, which is actually obtained by projecting the Heisenberg sub-Riemannian
distribution [14]. This distribution is indeed defined, up to a renormalization, by the following
two vector fields on R3,

F1(x, y, z) := ∂

∂x
− y

∂

∂z
, F2(x, y, z) := ∂

∂x
+ x

∂

∂z
,

and the corresponding sub-Riemannian Hamiltonian is

H(x, y, z, px , py, pz) := 1
2

[
(p2

x + p2
y) + 2pz(xpy − ypx ) + (x2 + y2)p2

z

]
,

which suggests to use cylindrical coordinates. In these variables

H(r, θ, z, pr , pθ , pz) = 1
2

[
p2

r + (pθ/r + r pz)
2] .

As θ and z are cyclic, the system is integrable in dimension three and projects onto a Hamil-
tonian in the (r, z)-space with the desired singularity,

h(r, z, pr , pz) := 1
2

(
p2

r + r2 p2
z
)
,

when restricting to pθ = 0. For p = 2, the local model is ds2 = dx2 + dy2/x4, which is
connected to the flat Martinet sub-Riemannian distribution. Consider indeed the two vector
fields on R3 (see [2])
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F1(x, y, z) := ∂

∂x
+ y2 ∂

∂z
, F2(x, y, z) := ∂

∂y
,

so the sub-Riemannian Hamiltonian is

H(x, y, z, px , py, pz) := 1
2

[
p2

y +
(

px + y2 pz
)2

]
.

The two coordinates x and z are cyclic, and the Hamiltonian projects onto h(y, z, py, pz) :=
(1/2)(p2

y + y4 p2
z ) in the (y, z)-space when restricting to px = 0, providing the higher-order

singularity. Going back to the general case, we compute geodesics issuing from the origin
on the level set {h = 1/2} of the Hamiltonian

h(x, y, px , py) := 1
2

(
p2

x + x2p p2
y

)

so that the initial adjoint state belongs to the union of the two lines, {px = ±1}. We set
λ := py and restrict to positive λ by symmetry (the trivial geodesics (±t, 0) being obtained
for λ = 0). The coordinate x is then

x(t) = 1
p√
λ

q
(

t p√
λ
)

, (14)

where q is the solution of

q ′2 + q2p = 1, q(0) = 0, q ′(0) = 1. (15)

Equivalently,

q−1(u) =
u∫

0

dv
p√1 − v2p

, u ∈ [−1, 1].

For p = 1, q is harmonic, elliptic for p = 2, hyperelliptic and reciprocal to a hypergeometric
function in general. More precisely,

q−1(u) = 2F1(1/2, 1/(2p); 1 + 1/(2p); u2p) · u (16)

where 2F1(a, b; c; z) is the hypergeometric series

2F1(a, b; c; z) =
∑

n≥0

αn
zn

n! ,

and

α0 := 1,

αn+1/αn := (n + a)(n + b)/(n + c).

The reciprocal of q is hence equal to

q−1(u) =
∑

n≥0

αn
u2np+1

n!

with αn = (a)n(b)n/(c)n for a = 1/2, b = 1/(2p) and c = 1 + 1/(2p), the notation (a)n
standing for the Pochhammer symbol

(a)n := a(a + 1) · · · (a + n − 1).
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1368 B. Bonnard, J.-B. Caillau

Here,

α0 = 1, α1 = 1
2

· 1
2p + 1

, α2 = 3
4

· 2p + 1
8p2 + 6p + 1

· · ·

which gives the usual Taylor series of the reciprocal of the sine function for p = 1, arcsin u =
u + u3/6 + 3u5/40 + 5u7/112... Eventually, ẏ = λx2p , so

y(t) = 1

(
p
√

λ)p+1
r(t p√

λ), (17)

where r is defined by a second quadrature,

r(s) :=
s∫

0

q2p.

Lemma 9

r = 1
p + 1

(s − qq ′).

Proof Differentiating and using (15),

1
p + 1

(s − qq ′)′ = 1
p + 1

(1 − q ′2 − qq ′′)

= q2p,

hence the result since r(0) = 0. ⊓,

For any p ≥ 1, symmetry reasons imply that nontrivial minimizing geodesics emanating
from the origin first intersect on the y-axis (see, e.g., Fig. 1). As a consequence, the cut locus
at the origin of the local model is the axis minus the origin itself (compare with the metric on
the sphere, Theorem 1). The conjugate locus of the origin is obtained from the set of critical
values of the exponential mapping

exp(0,0)(t, λ) = (x(t, λ), y(t, λ)), (t, λ) ∈ (R∗
+)2.

Let t1c(λ) denote the first conjugate time along the geodesic defined by λ > 0.

Lemma 10 t1c(λ) = sp/
p√
λ where sp is the first positive root of the envelope equation

q = sq ′.

Proof Using (14) and (17), a pair (t, λ) is a critical point of the exponential if and only if
t p
√

λ is a solution to

qr ′ − (p + 1)q ′r = 0.

Expressing r according to Lemma 9, one gets the result. ⊓,

Proposition 8 The conjugate locus at the origin of ds2 = dx2 + dy2/x2p is the set y =
±C px p+1 minus the origin where

C p ∼ 2
√

2
p

, p → ∞.
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Fig. 1 Grušin metric, dx2 + dy2/x2 (p = 1); sphere, wavefront and conjugate locus of the origin. The
wavefront (in blue) is the image of the exponential mapping for a fixed time, t ; it is made of endpoints at time
t of geodesics. The subset obtained by ruling out the part after the first self-intersection point of the wavefront
on the y-axis is the sphere; it is made of points at distance (minimum time) t of the origin. The conjugate
locus (in red) is partly drawn (here, it is the set y = ±C1x2 minus the origin); it is made of critical values of
the exponential (it contains so the first singularity of the wavefront portrayed). Compare with the Heisenberg
metric in [22] (color figure online)

Proof According to Lemma 10,

x(t1c(λ)) = 1
p√
λ

q(sp), y(t1c(λ)) = 1

(
p√
λ)p+1

r(sp),

so points in the conjugate locus lie on the curve y = ±C px p+1 where C p = r(sp)/q p+1(sp).
The whole curve minus (0, 0) is obtained because of symmetries, and conjugate points
accumulate towards the origin when |λ| → ∞. It is clear from (15) that, as p → ∞, q
pointwisely converges towards the Lipschitz function equal to s #→ s on [0, 1], s #→ 2 − s
on [1, 3]. In particular, the solution sp to the envelope equation is such that sp → 3−; so
q ′(sp) → −1/3, q2p(sp) = 1 − q ′2(sp) → 8/9, and q p−1(sp) → 2

√
2/3. Now, by virtue

of Lemmas 9 and 10,

C p = 1
p + 1

sp − q(sp)q ′(sp)

q p+1(sp)
= sp

p + 1
q p−1(sp) ∼ 2

√
2

p
, p → ∞.

⊓,

Remark 5 For p = 1, q(s) = sin s, r(s) = (1/2)(s − sin t cos t); t1c(λ) = s1/λ where s1 is
the first positive root of

sin s = s cos s.

For p = 2, one obtains

q(s) =
√

2
2

sn
dn

(s
√

2), r(s) = 1
3

[

s +
√

2
2

cnsn

dn3 (s
√

2)

]

,
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in terms of Jacobi functions of modulus k =
√

2/2; t1c(λ) = s2/
√

λ where τ = s2
√

2 (with
s2 < 3) is the first root of

snτdnτ = τcnτ.

(Compare with the flat Martinet case in [2].)

Before stating the structure result on the conjugate locus, we finally recall the following.

Scholium Along a Jacobi field tangent to the level set of a Hamiltonian quadratic in the
momentum, the Liouville form is constant.

Proof In coordinates z = (x, p) ∈ R2n , let H(x, p) = (1/2)(A(x)p|p) with A(x) symmet-
ric; let γ (t) = (z(t), δz(t)) be a Jacobi field, that is, ż(t) = −→

H (z(t)) and

δż(t) = −→
H ′(z(t))δz(t).

Along γ , the time derivative of the Liouville form p dx is

d
dt

(p|δx) = ( ṗ|δx) + (p|δẋ)

= −(∇x H |δx) + (p|∇2
xp H δx)

︸ ︷︷ ︸
2(∇x H |δx)

+ (p|∇2
pp H δp)

︸ ︷︷ ︸
(∇p H |δp)

= (∇x H |δx) + (∇p H |δp).

Let now z0(σ ) be a local parameterization of the level set {H = c}; for a Hamiltonian curve
z(t, z0(σ )) with initial condition z0(σ ), H(z(t, z0(σ ))) = c, so

H ′(z(t, z0(σ )))
∂z
∂z0

(t, z0(σ ))z′
0(σ )

︸ ︷︷ ︸
=:δz(t)

= 0.

Along the curve (z(t, σ ), δz(t)), the Liouville form is hence constant. ⊓,

Here, the level set {h = 1/2} of the quadratic Hamiltonian (7) on S2 is locally parameter-
ized by pθ , and the exponential (12) writes

expϕ0
(t, pθ ) = (θ(t, pθ ), ϕ(t, pθ )),

so

pθ
∂θ

∂pθ
(t, pθ ) + pϕ(t, pθ )

∂ϕ

∂pθ
(t, pθ ) = 0 (18)

since ∂θ(0, pθ )/∂pθ = ∂ϕ(0, pθ )/∂pθ = 0.

Lemma 11 Critical points (t, pθ ) of the exponential are characterized either by ∂θ(t, pθ )/

∂pθ = 0 when ϕ̇ ̸= 0, or by ∂ϕ(t, pθ )/∂pθ = 0 when pθ ̸= 0.

Proof The point (t, pθ ) is critical if and only if

θ̇(t, pθ )
∂ϕ

∂pθ
(t, pθ ) − ϕ̇(t, pθ )

∂θ

∂pθ
(t, pθ ) = 0.

When pϕ(t, pθ ) = ϕ̇(t, pθ ) ̸= 0, one can multiply both sides by pϕ and use (18) to get
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∂θ

∂pθ
(t, pθ )

(
pθ θ̇(t, pθ ) + pϕ(t, pθ )ϕ̇(t, pθ )

)
︸ ︷︷ ︸

=h=1/2

= 0

whence the result. The computation is similar when pθ ̸= 0. ⊓,

Theorem 2 Under the assumption that 'θ is strictly decreasing and convex for pθ > 0,
conjugate loci of the metric (1) are reduced to the opposite pole for poles, have four cusps
otherwise.

Proof Let ϕ0 = π/2. Consider an extremal defined by a positive pθ and pϕ0 = +1. For t in
(T (pθ )/4, 3T (pθ )/4), ϕ̇ ̸= 0 and the extremal can be parameterized by ϕ according to

θ(ϕ, pθ ) = 'θ(pθ )

2
+

π/2∫

ϕ

f (φ, pθ ) dφ,

where, as before,

f (ϕ, pθ ) = dθ

dϕ
= &(ϕ)pθ√

1 − &(ϕ)p2
θ

·

The conjugacy condition is ∂θ/∂pθ = 0 (Lemma 11) so the coordinate ϕ1c(pθ ) of the first
conjugate point is solution of

π/2∫

ϕ1c(pθ )

∂ f
∂pθ

(ϕ, pθ ) dϕ = −'θ ′(pθ )

2
> 0,

in order that ϕ1c(pθ ) < π/2 (since ∂ f /∂pθ > 0). By differentiating the previous equality,
one gets

ϕ′
1c(pθ ) =

[
∂ f
∂pθ

(ϕ1c(pθ ), pθ )

]−1

⎡

⎢⎣
'θ ′′

2
(pθ ) +

π/2∫

ϕ1c(pθ )

∂2 f

∂p2
θ

(ϕ, pθ ) dϕ

⎤

⎥⎦ ,

which is positive first because ϕ1c(pθ ) < π/2, then because

∂2 f

∂p2
θ

= 3&2(ϕ)pθ

(1 − &(ϕ)p2
θ )

5/2
> 0,

and by virtue of the nonnegativeness of 'θ ′′. In particular, the parameterization pθ #→
(θ(ϕ1c(pθ ), pθ ), ϕ1c(pθ )) of the conjugate locus is regular, and the set has no cusp for
positive pθ . The tangent vector along the conjugate locus is

(
∂θ

∂ϕ
ϕ′

1c + ∂θ

∂pθ︸︷︷︸
0

)
∂

∂θ
+ ϕ′

1c
∂

∂ϕ
,

which is proportional to f (ϕ1c(pθ ), pθ )∂/∂θ + ∂/∂ϕ. On the one hand, as in the regular
case discussed in [12], f (ϕ1c(pθ ), pθ ) tends to 0 when pθ → 0+, and the locus has a
first meridional cusp because of the axial symmetry s1. On the other hand, when pθ goes
to +∞, the analysis on the local model (Proposition 8) shows that, contrary to the regular
case, the conjugate locus has two tangential contacts with the meridian that, combined again
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with symmetry s1, form a second meridional cusp at the initial point where conjugate points
accumulate. The central symmetry s2 gives the symmetric part, whence the result. When
ϕ0 ̸= π/2, the same reasoning shows that there is no cusp for pθ ∈ (0, 1/

√
&(ϕ0)); there

are two meridional cusps due again to symmetry s1, and two cusps tangent to the antipodal
parallel containing the cut locus (see Theorem 3.6 of [12]). ⊓,

6 The (1, 2, 1) case

The results of Sect. 5 are applied to the second example discussed in Sect. 4 (the application
to the first example, the Grušin metric on the sphere, is straightforward; see [19]). Consider
the metric (1) with p = 2 and (a0, a1, a2) = (1/4)(1, 2, 1), that is,

R(X) =
(

1 − X/2
1 − X

)2

= 1
4

[
1 + 2

1 − X
+ 1

(1 − X)2

]
·

Lemma 12 The coordinate ϕ is parameterized by the family of elliptic curves

Cpθ : Y 2 = 4(1 − X)[X (2 − X)2 − 4p2
θ (1 − X)2], pθ ∈ R. (19)

Proof Set Y := (2 − X)Ẋ on the level set 1/2 of the quadratic Hamiltonian (7). ⊓,
In the sequel, ℘ denotes the Weierstraß function with invariants g2, g3 (see [26]).

Proposition 9

sin2 ϕ = ℘ (z) − 4/3
℘ (z) − 1/3

, z ∈ R,

t = z + 1
℘′(a)

[
2ζ(a)z + ln

σ (z − a)

σ (z + a)

]z

0

with a such that ℘ (a) = 1/3 and invariants

g2 = 16
3

+ 16p2
θ , g3 = 64

27
− 16

3
p2
θ . (20)

Proof The rational transform

u = 1
3

+ 1
1 − X

, v = u2Y,

sends to infinity the fixed root X = 1 in the right-hand side of (19) and allows to recast the
equation of Cpθ under the canonical form v2 = 4u3 − g2u − g3 with invariants (20). When
parameterizing the elliptic curve Cpθ by the Weierstraß function, (u, v) = (℘ (z), ℘′(z)),
only the unbounded component of the real cubic has to be used since X = sin2 ϕ ∈ (0, 1]
(that is ℘ (z) > 4/3), so z ∈ R. In this parameterization, the change of time from z to t
verifies

dt
dz

= 1 + 1
℘ (z) − 1/3

> 0. (21)

Introducing Weierstraß functions ζ and σ (℘ = −ζ ′ and ζ = σ ′/σ ), one has (see [24])
∫

℘′(a) dz
℘ (z) − ℘ (a)

= 2ζ(a)z + ln
σ (z − a)

σ (z + a)
·

For a geodesic originating from the singularity, ϕ = π/2 at t = 0 which corresponds to
z = 0. ⊓,
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As a function of z, the coordinate ϕ is a doubly periodic meromorphic function. Its lattice
of periods 2ωZ + 2ω′Z depends on pθ (the Weierstraß half-periods ω, ω′ are functions of
pθ ) and is real rectangular: ω ∈ R, ω′ ∈ iR, and the periods can be chosen so that their ratio
τ := ω′/ω belongs to the Poincaré upper half-plane H = {x + iy ∈ C, y > 0}. Lattices are
classified up to conformal transformations; these transformations are Möbius transforms in
the Fuschian modular subgroup PSL(2, Z) = SL(2, Z)/± id of automorphisms of H, so the
moduli space of congruences of lattices is H/PSL(2, Z). The modular function j establishes
a one-to-one correspondence between these moduli and the complex plane; in terms of the
invariants of the elliptic curve,

j (τ ) = g3
2

'

where ' = g3
2 − 27g2

3 is the discriminant of the elliptic curve with ratio of periods τ . For
the family of elliptic curves Cpθ [see (20)],

j (τ (pθ )) = 16(1 + 3p2
θ )

3

27p2
θ (8 + 13p2

θ + 16p4
θ )

· (22)

Corollary 1 The number of conformal classes associated with Cpθ is

– equal to 1 for pθ ∈ (0, 1/2) ∪ {2/3},
– equal to 2 for pθ ∈ {1/2,

√
2},

– equal to 3 for pθ ∈ (1/2, 2/3) ∪ (2/3,
√

2) ∪ (
√

2,∞).

The only square lattice is obtained for pθ = 2/3.

Proof The rational fraction (22) has exactly one global minimum at pθ = 2/3 and one local
maximum at pθ =

√
2. Moreover,

j (τ (pθ )) = 28
27

− 16(p2
θ − 1/4)(p2

θ − 2)2

27p2
θ (8 + 13p2

θ + 16p4
θ )

showing that the value of the local maximum is also attained when pθ = 1/2. ⊓,

Proposition 10

T (pθ )

4
= (1 + β)ω − bη mod

π

2
where η := ζ(ω), b := Ima and β := Imζ(a).

Lemma 13 For all pθ > 0, (1/3,±2i) belongs to the bounded component of the imaginary
cubic Cpθ .

Proof

4(1/3)3 − (1/3)g2 − g3 = 4
27

− 1
3

(
16
3

+ 16p2
θ

)
−

(
64
27

− 16
3

p2
θ

)
= (±2i)2.

⊓,

Proof of Proposition 10 As X = sin2 ϕ, the period of X is half the period of ϕ so

T (pθ )

2
=

2ω∫

0

dt
dz

= 2ω + 1
℘′(a)

[
2ζ(a)z + ln

σ (z − a)

σ (z + a)

]2ω

0
. (23)
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According to [24, p. 170],

ln
[

σ (2ω − a)

σ (−a)

σ (a)

σ (2ω + a)

]
= ln e−4ηa = −4ηa mod 2iπ.

The term in brackets in (23) has to be positive because of (21), so ℘′(a) = +2i by the
previous lemma [℘ (a) = 1/3] and

T (pθ )

4
= ω + ωζ(a) − ηa

i
mod

π

2
·

The bounded component of the imaginary cubic is parameterized by z ∈ ω+iR so a = ω+ib
and ζ(a) = η + iβ for some real b and β. ⊓,

In order to verify the assumptions of Theorems 1 and 2, one has to differentiate the quasi-
period 'θ with respect to pθ . By means of Proposition 6, it suffices to compute derivatives
of the period T . Define

∂ := 1
δ

d
d pθ

, δ := '

256pθ
= pθ

(
8 + 13p2

θ + 16p4
θ

)
.

Lemma 14

∂ω = −Aω − Bη, ∂b = −Ab − Bβ + D,

∂η = Cω + Aη, ∂β = Cb + Aβ + E,

with A, B, C, D, E in R[pθ ],

A = 1
3

(
4 + 13p2

θ + 24p4
θ

)
, B = −2 + p2

θ , C = 4
9

(
−2 − 5p2

θ + 3p4
θ

)
,

D = 2 + 6p2
θ , E = 1

3

(
−4 + 9p2

θ

)
.

Proof The derivatives of the (half) period and quasi-period ω and η = ζ(ω) of ℘ and ζ ,
respectively, with respect to the invariants g2, g3 are known (see [24, p. 307]), and

∂ = 32
3

(
3

∂

∂g2
− ∂

∂g3

)

according to (20). Moreover,

℘ (a) = ℘ (a(pθ ), pθ ) = 1
3

implies ℘′(a)∂a + ∂℘ (a) = 0,

so ∂a = − 1
2i

∂℘ (a)

[because ℘′(a) = 2i], and one also knows the derivatives of ℘ (and ζ ) with respect to g2, g3
(see [24, p. 298]). Then ∂b = Im∂a. Similarly,

∂[ζ(a(pθ ), pθ )] = −℘ (a)∂a + ∂ζ(a) = −1
3
∂a + ∂ζ(a)

and ∂β is obtained taking the imaginary part. ⊓,

Lemma 15 ∂T is R[pθ ]-linear in (ω, η),

∂T (pθ )

4
= −(A + E)ω − (B + D)η.
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Proof Applying Lemma 14 rules to T , which is bilinear in (ω, η, b,β), one observes that
the coefficients of b and β cancel. ⊓,

Proposition 11

'θ ′(pθ ) = − 4

8 + 13p2
θ + 16p4

θ

[
2
3
(11 + 12p2

θ )ω + 7η

]
,

'θ ′′(pθ ) = 4

pθ (8 + 13p2
θ + 16p4

θ )
2

×
[

2
3
(24 + 181p2

θ + 830p4
θ + 480p6

θ )ω + (−24 + 143p2
θ + 400p4

θ )η

]
.

Proof Lemma 15 combined with Proposition 6 gives the first-order derivative of the quasi-
period; the second-order one is obtained by applying the previous rules anew. ⊓,

The penultimate result of the section ensures that the cut and conjugate loci in the (1, 2, 1)

case have the structure described in Theorems 1 and 2 (see also Fig. 2).

Theorem 3 'θ ′ < 0 ≤ 'θ ′′ in the (1, 2, 1) case.

Proof The first derivative 'θ ′, expressed as linear combination of the nonnegative
(quasi-) periods ω and η, is obviously negative. To obtain nonnegativity of 'θ ′′, one has
to check the sign of

Fig. 2 (1, 2, 1) case; geodesics, cut and conjugate loci on the sphere. Symmetric geodesics (in blue) from
opposite hemispheres intersect on the equator that, deprived of the origin, forms the cut locus (in black;
Theorem 1). The envelope of geodesics generates the conjugate locus (red dots) which has four meridional
cusps (Theorem 2) (color figure online)
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2
3

(
24 + 181p2

θ + 830p4
θ + 480p6

θ

)
ω +

(
−24 + 143p2

θ + 400p4
θ

)
η

= 24
(

2
3
ω − η

)
+

(
2
3

181ω + 143η

)
p2
θ +

(
2
3

830ω + 400η

)
p4
θ + 2

3
480ωp6

θ

= 24
(

2
3
ω − η + p2

θ

)
+

(
2
3

181ω + 143η − 24
)

p2
θ

+
(

2
3

830ω + 400η

)
p4
θ + 2

3
480ωp6

θ .

Let us denote

pθ 1 := 1
20

√
−143 + 7

√
1201

2

the positive root of −24 + 143p2
θ + 400p4

θ , it is enough to verify that

2
3
ω − η + p2

θ ≥ 0 and
2
3

181ω + 143η − 24 ≥ 0

on [0, pθ 1]. Now, as pθ tends to 0, η/ω degenerates to (3/2)g3/g2|pθ=0 = 2/3 (see [24]),
so 2ω/3 − η + p2

θ vanishes when pθ → 0. Moreover, (2ω/3 − η + p2
θ )

′ is equal to

1

pθ (8 + 13p2
θ + 16p4

θ )

[(
16 − 2

3
ω − 5η

)
p2
θ +

(
26 − 20

3
ω − 8η

)
p4
θ + 32p6

θ

]
.

Using the coarse estimates ω ∈ [1, 2] and η ∈ [1/2, 1] on [0, pθ 1], one has

16 − 2
3
ω − 5η ≥ 25

3
and 26 − 20

3
ω − 8η ≥ 14

3
,

so nonnegativity of the derivative and the function (2/3)ω − η + p2
θ follows on this interval.

The same holds for (2/3)181ω + 143η − 24 that is bounded below by 1009/6 on [0, pθ 1],
whence the result. ⊓,

The condition for a geodesic to be closed is 'θ ∈ πQ (rationality of 'θ/π ), so that
asymptotics when pθ → ∞ measure the density of closed curves in the neighbourhood of
the equator. This is also related to optimality conditions through injectivity radius (see [8] in
the Riemannian case). The asymptotics below use quadratures by means of elliptic integrals
detailed in the “appendix”.

Proposition 12 In the neighbourhood of meridians,

T ∼ 2π

(

1 − 3
√

2
8

p2
θ + 105

√
2

512
p4
θ

)

, 'θ ∼ 2π

(

1 − 3
√

2
4

pθ + 35
√

2
128

p3
θ

)

, pθ → 0.

and in the neighbourhood of the equator,

T ∼4
(

2 −
√

2
)

K
(

3 − 2
√

2
)

p−1/2
θ , 'θ ∼ 4

3

(
2−

√
2
)

K
(

3−2
√

2
)

p−3/2
θ , pθ →∞.
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7 Deformation of the round sphere

We consider the following deformation of the metric (1):

X R(λX)dθ2 + dϕ2 (X = sin2 ϕ), λ ∈ [0, 1]. (24)

For λ = 0, one gets the canonical metric on the sphere as R(0) is normalized to one, so we
have an homotopy connecting the round metric to the singular one. For λ < 1, the metric is
Riemannian (no equatorial singularity). In the case R(X) = 1/(1 − X), such a deformation
of the round metric appears in [8,20]. See also [21] for perturbation results of the round
sphere.

Proposition 13 The curvature of the metric (24) is a rational fraction homogeneous in R;
for λ ∈ [0, 1),

Kλ(X) = 1 + λ(4X − 3)
R′(λX)

R(λX)
+ λ2 X (1 − X)

[
R′2(λX)

R2(λX)
− 2R′′(λX)

R(λX)

]
.

Proof The result follows from the fact that, given a metric &(ϕ)dθ2+dϕ2 on S2, the Gaussian
curvature is K = −(

√
&)′′/

√
&. ⊓,

Corollary 2 (Concentration of curvature) The following curvature estimates hold for the
metric (24):

Kλ(X) = 1 + λR′(0)(4X − 3) + O(λ2) when λ → 0,

K1(X) ∼ − p(p + 1)

1 − X
when X → 1, Kλ(1) ∼ p

1 − λ
when λ → 1,

where p is the order of the pole of R.

Corollary 3 Cut loci of the metric (24) are closed antipodal subarcs for λ close enough to
zero.

Proof Since K ′
λ(X) ∼ 4λ(R′/R)(0) + O(λ2) with (R′/R)(0) > 0 by virtue of (2), the

curvature is monotone nondecreasing along half-meridians and the result follows from [36]
main theorem. ⊓,

The existence of conjugate points for metrics with singularities is typical of the
almost-Riemannian setting where conjugate points may exist although curvature remains
negative whenever defined (see, e.g., [4]). In the (1, 2, 1) case of Sect. 6 for instance,

K1(X) = − (1 + X)(4 − X)

(2 − X)(1 − X)
< 0 (X = sin2 ϕ).

Corollary 2 establishes that although curvature is negative in the neighbourhood of the sin-
gularity and even tends to −∞ when ϕ → π/2, there is a concentration of positive curvature
on the singularity itself as Kλ(1) → +∞ when λ → 1−, responsible for the existence of
conjugate points after crossing the singularity (cut and thus conjugate points being located
after the equator by antipodality). An alternative interpretation of the singularity comes from
the following fact.

Proposition 14 For R(X) = 1/(1 − X) and λ ∈ [0, 1), the metric (24) is conformal to
the canonical metric on a oblate ellipsoid of revolution of unit semi-major axis and

√
1 − λ

semi-minor axis.
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Proof A parameterization of such an ellipsoid of semi-minor axis µ is

x = sin ϕ cos θ, y = sin ϕ sin θ, z = µ cos ϕ.

In these coordinates, the restriction of the flat R3 metric reads

sin2 ϕ dθ2 + (1 − (1 − µ2) sin2 ϕ)dϕ2 = (1 − λX)[X R(λX)dθ2 + dϕ2]
with λ = 1 − µ2. ⊓,

When λ tends to 1, µ = √
1 − λ tends to zero so the oblate ellipsoid collapses onto a

two-sided Poincaré disc, each face being endowed with the flat metric.

Corollary 4 For R(X) = 1/(1 − X), the metric (1) is conformal to the following constant
curvature metrics on the Poincaré disc: (i) the flat metric dρ2 + ρ2dθ2 (K = 0) and (ii)
the canonical Poincaré metric (dρ2 + ρ2dθ2)/(1 − ρ2)2 (K = −1), where (ρ, θ) are polar
coordinates on D.

Proof Setting ρ = sin ϕ, one retrieves the standard polar coordinates on the disc. In these
coordinates, dρ2 = (1 − X)dϕ2, so

X
1 − X

dθ2 + dϕ2 = dρ2 + ρ2dθ2

1 − ρ2 ·

⊓,

In this case, crossing the equatorial singularity can thus be interpretated as crossing the
boundary of the disc to go from one side of D to the other. This can also be seen, like in
the flat case, as generating reflections of geodesics with the boundary. As for the canonical
Poincaré metric, those reflections turn out to be orthogonal in general.

Proposition 15 For the metric (1), crossing the equatorial singularity is interpretated on the
Poincaré disc as reflecting on the boundary. Reflections on the boundary of the metric (24)
are tangential (except for meridians) when λ < 1, and orthogonal when λ = 1.

Proof In polar coordinates on D, the Hamiltonian (7) reads

h(ρ, θ, pρ , pθ ) = 1
2

[

(1 − X)p2
ρ + p2

θ

X R(X)

]

, X = sin2 ϕ = ρ2.

In particular,

θ̇ ∼ pθ

ap
(1 − X)p and |ρ̇| = (1 − X)|pρ | ∼

√
1 − X

when X → 1 since

p2
ρ = (1 − X)−1

[

1 − p2
θ

X R(X)

]

∼ (1 − X)−1

on {h = 1/2}. Reparameterizing time according to dτ = dt
√

1 − X we get

dθ

dτ
∼ pθ

ap
(1 − X)p−1/2 → 0 and

∣∣∣∣
dρ

dτ

∣∣∣∣ ∼ 1, X → 1,

so contacts with ∂D (i.e. forρ2 = X = 1) are orthogonal reflections. Besides, using homotopy
(24) to replace the singular metric by a Riemannian one when λ < 1 changes the contact for
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Fig. 3 (1, 2, 1) case; geodesics, cut and conjugate loci on the disc. On the left, metric obtained by homotopy
from the round one for λ < 1; the initial condition is on the boundary; tangential contacts of the geodesics (in
blue) with ∂D are observed. On the right, singular metric (λ = 1) for the same initial condition (compare with
Fig. 2); contacts with ∂D are orthogonal. In both cases, the conjugate locus (red dots) is the catacaustic generated
by reflections of geodesics on the boundary [17]. (In the case of the flat metric on the disc, the catacaustic of
geodesics—that is of straight lines—originating from a point on the boundary, i.e. at the singularity, would be
a cardioid.) Since reflections are orthogonal (or specular), the figure can also be interpretated as a billiard on
the disc endowed with a particular Riemannian metric (color figure online)

pθ ̸= 0 (meridians, obtained for pθ = 0, obviously remain perpendicular to the boundary).
Indeed, the deformed Hamiltonian is

hλ(ρ, θ, pρ , pθ ) := 1
2

[

(1 − X)p2
ρ + p2

θ

X R(λX)

]

,

and, when X → 1,

θ̇ ∼ pθ

R(λ)
and ρ̇ = pϕ

√
1 − X

since pϕ = pρ

√
1 − X , which remains finite. So θ̇ ̸= 0 if pθ ̸= 0 while ρ̇ = 0 at X = 1,

and contacts with the boundary are tangential outside meridians (Fig. 3). ⊓,

Appendix A: Asymptotics in the (1, 2, 1) case

Let α, β, γ and δ = 1 be the roots of the degree-four polynomial P(X, pθ ) involved in the
computation [compare with (19)],

P(X, pθ ) := (1 − X)(X (2 − X)2 − 4p2
θ (1 − X)2).

An alternative quadrature for the period is

T (pθ ) = 4√
A2 B1

[
$(ν, k) + 2 − p

p − q
K (k)

]
(25)
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where K and $ are, respectively, complete elliptic integrals of first and third kind,

$(ν, k) :=
1∫

0

dv

(1 − νv2)
√

1 − v2
√

1 − k2v2
, K (k) := $(0, k),

and

':=4(β − α)(β − δ)(γ − α)(γ − δ), σ :=(α + δ)(β + γ ) − 2(αδ + βγ ),

l1:=
σ −

√
'

(β − γ )2 , l2:=
σ +

√
'

(β − γ )2 ,

p:= (α + δ) − l1(β + γ )

2(1 − l1)
, q:= (α + δ) − l2(β + γ )

2(1 − l2)
,

A1:= − l2
1 − l1
l2 − l1

, B1:= − l1
1 − l2
l2 − l1

, A2:=
1 − l1
l2 − l1

, B2:=
1 − l2
l2 − l1

,

a:=
√

A2

B2
, b:=

√
A1

B1
, k := b

a
, ν := b2.

With the same notation as before,

±t = 1
2
√

A2 B1

[
$(v, ν, k) + 2 − p

p − q
sn−1(v, k)

+
√

A2 B1 arctan
(√

A1 A2
√

(1 − v2)(1 − k2v2) −
√

B1 B2(1 − νv2)
)]1

v
,

where the elliptic integral of third kind is now incomplete, and where

v:=b−1 X − q
p − X

∈ [−1, 1] (X = sin2 ϕ).

Similarly,

'θ(pθ ) = 4pθ√
A2 B1

[
2$(κ, k)

pq
− 2$(µ, k)

(2 − p)(2 − q)
+ 4(1 − p)2

p(2 − p)(p − q)
K (k)

]
(26)

with, moreover,

c:= q
p

, d:= 2 − q
2 − p

, κ:= ν

c2 , µ:= ν

d2 ·

In order to compute the asymptotics of Proposition 12, we need expansions of these roots in
the neighbourhood of pθ = 0 and pθ = ∞. Such expansions, which are propagated to T
using (25), are available in

√
ε-scale as both

Q(X, ε) := X (2 − X)2 − 4ε(1 − X)2 and Q̃(X, ε) := 4(1 − X)2 − εX (2 − X)2

possess either simple or order two roots for ε = 0 and allow us to obtain the asymptotics in
Proposition 12.

Lemma 16 When pθ → 0,

α = p2
θ + o(p2

θ ),

β = 2 − pθ

√
2 + 3

2
p2
θ − 13

√
2

16
p3
θ + 1

2
p4
θ + o(p4

θ ),

γ = 2 + pθ

√
2 + 3

2
p2
θ + 13

√
2

16
p3
θ + 1

2
p4
θ + o(p4

θ ).
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When pθ → ∞,

α = 1 − 1
2

p−1
θ − 1

8
p−2
θ + o(p−2

θ ), β = 1 + 1
2

p−1
θ − 1

8
p−2
θ + o(p−2

θ ),

γ = 4p2
θ + 2 + 1

4
p−2
θ + o(p−2

θ ).
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