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Abstract. The study of living microorganisms using resource allocation models has been key4
in elucidating natural behaviors of bacteria, by allowing allocation of microbial resources to be5
represented through optimal control strategies. The approach can also be applied to research in6
microbial cell factories, to investigate the optimal production of value-added compounds regulated7
by an external control. The latter is the subject of this paper, in which we study batch bioprocessing8
from a resource allocation perspective. Based on previous works, we propose a simple bacterial9
growth model accounting for the dynamics of the bioreactor and intracellular composition, and we10
analyze its asymptotic behavior and stability. Using optimization and optimal control theory, we11
study the production of biomass and metabolites of interest for infinite- and finite-time horizons. The12
resulting optimal control problems are studied using Pontryagin’s Maximum Principle and numerical13
methods, and the solutions found are characterized by the presence of Fuller phenomenon (producing14
an infinite set of switching points occurring in a finite-time window) at the junctions with a second-15
order singular arc. The approach, inspired in biotechnological engineering, aims to shed light upon16
the role of cellular composition and resource allocation during batch processing and, at the same17
time, poses very interesting and challenging mathematical problems.18
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1. Introduction. The study of living microorganisms through resource allo-22

cation models has become increasingly relevant for its capacity to elucidate natural23

behaviors of microbia through very simple dynamical models [7, 9, 12, 13, 21, 25]. The24

core idea is to represent the distribution of cellular resources through optimal con-25

trol strategies, based on the assumption that evolutionary processes have tuned these26

endogenous allocation strategies to attain nearly-optimal levels [14]. Numerous prob-27

lems arise in this context, one of them being the optimal production of metabolites28

regulated by an external control capable of arresting bacterial growth [11]. Growth29

control has proven a key engineering method for several industrial applications, such30

as in food preservation, biofuel production, and in combating antibiotics resistance31

[10]. To this end, a resource allocation approach can help understand how to modify32

the naturally-evolved allocation strategies so as to efficiently produce such chemical33

compounds [6].34

These biosynthetic strategies have been studied in different frameworks. The35

simplest case describes the interactions between intracellular proteins with minimal36

interplay with the environment [27, 5, 22]. The latter can be modelled by omitting37

the dynamics of the substrate in the medium, representing the case where bacterial38

exponential growth can be attained. Another relevant, more complex case is contin-39

uous bioreactors [23, 26], used extensively in industries and in cell biology research40

for its capacity to reach and maintain steady-state growth conditions. The latter is41
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§Université Côte d’Azur, Inria, INRAE, CNRS, Sorbonne Université, Macbes Team, Sophia An-
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accomplished through an inflow of fresh medium rich in substrate and an outflow of42

the culture at the same volumetric flow rate, which produce a constant volume of the43

culture in the device. In that case, optimization studies are mostly oriented to reach44

such steady state in a cost-effective way. In fed-batch fermentation, the process starts45

with an initial volume of bacterial culture inside a bioreactor, which is progressively46

filled up through an inflow of rich medium, increasing the volume of the culture until47

it reaches a maximum level [24]. Once the maximum volume is attained, the culture48

evolves as a closed process, known in the field as batch processing. As no mass comes49

in or out of the device, the remainder of the nutrients in the medium are progressively50

consumed until the mass is entirely transformed into final products.51

The latter is the subject of this paper, which tackles batch processing from a52

resource allocation perspective. The novelty of the approach lies in the nature of the53

model that—in addition to the physical and chemical laws found in classical biore-54

actor models—considers cellular composition, taking into account the intracellular55

components responsible for the main biological functions of bacteria. The problem56

has been first posed in [27], where a simpler mathematical model of resource alloca-57

tion is studied through numerical optimal control. The study does not consider the58

dynamical aspects of the model, neither the theoretical specifics arising from the opti-59

mal control problem and its singular arcs. We extend these results from an analytical60

perspective—both for the dynamical analysis and the optimal control study—and in-61

cluding the case with no metabolite synthesis as a starting point, which has not been62

analyzed in previous works. Based on simpler bacterial growth models [7, 25] that63

do not consider the dynamics of the substrate in the medium, a coarse-grained self-64

replicator model is introduced, including a heterologous pathway for the production of65

a value-added chemical compound [27, 22]. Additionally, the main biological assump-66

tions of the mechanistic bacterial model are revised, based on empirical studies of67

exponentially growing E. coli cultures [16]. Specifically, we consider a class of growth68

rate-independent proteins in the cellular composition that accounts for housekeeping69

proteins and non-active ribosomes, known to take up more than 50% of the cell [17].70

The inclusion of this class of proteins in previous models has shown considerable im-71

provement in the agreement between simulations and experimental data [25]. Using72

mass conservation laws related to the closeness of the bioprocess, it is possible to73

analyze the asymptotic behavior and stability of the dynamical system, showing that,74

for every possible allocation strategy, all component of the system are transformed75

either into proteins or into metabolites, a condition later defined as Full depletion.76

Then, two main studies are performed: the biomass maximization case, representing77

the natural objective of wild-type (i.e not modified) microbial cultures; and the me-78

tabolite maximization case, using the full bacterial model that includes the pathway79

for metabolite synthesis for industrial purposes. Both problems are analyzed in infi-80

nite time and in finite time, the latter stated as OCPs (Optimal Control Problems),81

which are investigated through the application of PMP (Pontryagin’s Maximum Prin-82

ciple) [15]. While the finite-time case is suitable for representing bioprocesses with83

predetermined duration, the analysis of the infinite-time case becomes crucial in un-84

derstanding the nature and asymptotic trend of the process. The solutions of the85

OCPs are characterized by the presence of Fuller’s phenomenon [3], producing arcs86

composed of an infinite set of switching points (i.e. bangs) over a finite-time window.87

These optimal solutions follow a Fuller-singular-Fuller structure, similar to the one88

found in [25], described by a single second-order singular arc which is delimited by89

two Fuller’s arcs at the beginning and at the end of the process. In particular, the90

solution of the biomass maximization case is thoroughly studied from an analytical91
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point of view, resulting in an explicit expression of the singular control in feedback92

form. The results here presented are also con�rmed by simulations obtained with93

Bocop [18], an optimal control solver based on direct methods, and published in the94

ct gallery1 in order to guarantee the reproducibility of the numerical results.95

The paper is organized as follows: in Section 2, the dynamical model is pre-96

sented, and its dynamical behavior is studied in Section 3. The biomass and product97

maximization cases are introduced and investigated in Sections 4 and 5, respectively.98

Finally, the results are discussed in Section 6.99

2. Model de�nition.100

2.1. Self-replicator model. We de�ne a self-replicator model describing the101

dynamics of a microbial population growing inside a closed bioreactor. The bacterial102

culture has constant volumeVe, measured in liters. At the beginning of the experience,103

there is an initial mass of substrate S inside the bioreactor, that is gradually consumed104

by the bacterial population, and transformed into precursor metabolites P. These105

precursors are intermediate metabolites used to produce proteins|such as ribosomes106

and enzymes|responsible for speci�c cellular functions; and metabolites of interest107

X which are excreted from the cell. The proteins forming bacterial cells are divided108

into three classes M, R and Q, associated to the following cellular functions:109

Class M Proteins of the metabolic machinery, responsible for the uptake of nutri-110

ents S from the medium, the production of precursor metabolites P, and the111

synthesis of metabolites of interest X.112

Class R Proteins of the gene expression machinery (such as ribosomes) actively in-113

volved in protein biosynthesis (i.e. in the production of proteins of classes M,114

Q and R).115

Class Q Growth rate-independent proteins, such as housekeeping proteins respon-116

sible for cell maintenance, and ribosomes not involved in protein synthesis117

[17].118

From a biological perspective, the production of proteins M, R and Q is catalyzed by119

ribosomal proteins R, and the absorption of S and synthesis of X are both catalyzed120

by the metabolic proteins M. This catalytic e�ect is represented in Figure 1 through121

dashed arrows. Intracellular proteins are produced at a synthesis rateVR measured122

in grams per hour. The synthesis rates of proteins M, R and Q arer max (1 � u)VR ,123

r max uVR and (1 � r max )VR , respectively; where the parameterr max is a certain em-124

pirical constant imposing a maximum threshold to the rate of production of proteins125

M and R. The proportion of precursors dedicated to the production of growth rate-126

independent proteins Q is �xed, while the balance between proteins M and R is127

decided by the allocation control u. The latter is modelled through a time-varying128

function u(t) 2 [0; 1], whereu = 0 means no production of ribosomal proteins R, and129

u = 1 means no production of metabolic proteins M. Depending on the objective to130

be analyzed, the controlu can represent di�erent mechanisms. First, it can account131

for the natural allocation used by bacteria, as modelled in [7, 25], by assuming that132

the native regulatory mechanisms of bacterial cells have been tuned by the natural133

selection to maximize growth rate. On the other hand, it can represent the arti�-134

cially modi�ed allocation modelled in [27]. In a biotechnological setting, the latter135

is accomplished by engineering a synthetic growth switch that allows to modify the136

natural allocation through external compounds like IPTG2.137

1ct.gitlabpages.inria.fr/gallery/substrate/depletion.html
2 Isopropyl � -D-1-thiogalactopyranoside
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Fig. 1 . Self-replicator model of bacterial growth representing the intracellular micro-chemical
reactions behind nutrient uptake, cell growth and metabolite synthesis. Solid arrows represent ow
of resources resulting from the microchemical reactions, while dashed arrows indicate a catalyzing
e�ect ( i.e. the presence of a protein accelerating the synthesis of another protein).

2.2. Dynamical system. The dynamics of the self-replicator system are de-138

scribed by139
8
>>>>>>>>>>>><

>>>>>>>>>>>>:

_S = � VM ;

_P = VM � VX � VR ;

_R = rmax uVR ;

_M = rmax (1 � u) VR ;

_Q = (1 � r max )VR ;

_X = VX ;

140

141

where the variablesS(t), P(t), R(t), M (t), Q(t) and X (t) represent the masses (in142

grams) of substrate, precursors metabolites, the gene expression machinery, the meta-143

bolic machinery, the growth rate-independent proteins and the metabolites of interest144

at time t measured in hours, respectively.VM (t), VR (t) and VX (t) are the reaction145

rates of the system (in grams per hour), andu(t) is the allocation control previously146

de�ned. We de�ne the volume (in liters) of the bacterial population in the bacterial147

culture V(t) as148

V := � (M + R + Q);(2.1)149150

where � is a constant relating protein density and volume [2]. De�nition (2.1) pur-151

posely neglects the mass of precursor metabolitesP(t), which greatly simpli�es the152

computations. The latter assumption is based on the fact that most of the mass in153

bacterial cells corresponds to proteins of classes M, R and Q, as con�rmed in previous154
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studies [7]. This allows to de�ne time-varying intracellular concentrations (in grams155

per liter) with respect to this volume156

p :=
P
V

; r :=
R
V

; m :=
M
V

; q :=
Q
V

:(2.2)157
158

Likewise, we de�ne the extracellular concentrations related to the external volume159

s =
S
Ve

; x =
X
Ve

:(2.3)160
161

We de�ne the relative synthesis rates involved in the processes as increasing functions162

of the concentrations used in each reaction [17], and taking into account the catalytic163

e�ect previously described164

vM (s; m) :=
VM

V
; vR (p; r) :=

VR

V
; vX (p; m) :=

VX

V
:165

166

From (2.1) and (2.2), we have that167

m + r + q =
1
�

;(2.4)168
169

which implies that the concentrations m, r and q cannot be bigger than 1=� . We170

de�ne the growth rate of the bacterial culture � as171

� :=
_V
V

= �v R (p; r):172
173

Then, the dynamical system can be expressed in terms of the concentrations as174

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

_s = � vM (s; m)
V
Ve

;

_p = vM (s; m) � vX (p; m) � vR (p; r)( �p + 1) ;

_r = ( r max u � �r )vR (p; r);

_m = ( r max (1 � u) � �m )vR (p; r);

_q = ((1 � rmax ) � �q )vR (p; r);

_V = �v R (p; r)V;

_x = vX (p; m)
V
Ve

:

175

176

2.3. Kinetics de�nition. We model the kinetics of the system by supposing177

that both the synthesis rates of precursorsvM and metabolites vX are linear in the178

concentration of metabolic proteins m, and the protein synthesis ratevR is linear in179

the concentration of active ribosomal proteinsr [16]. Thus, they can be expressed as180

vM (s; m) = wM (s)m;181

vR (p; r) = wR (p)r;182

vX (p; m) = w R (p)m;183184
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where  > 0 is a proportionality constant, which allows the metabolite synthesis185

rate to be expressed asvX (p; m) = v R (p; r) m=r. Such assumption implies that186

the bacterial cell has the same a�nity to synthesize biomass and metabolites from187

the precursors, even if the reactions do not consume P in the same proportion. In188

the particular case of Michaelis-Menten kinetics, this feature is captured by the half-189

saturation constant [8]. The functions wI are assumed to have the following properties:190

Hypothesis 2.1. Function wI (x) : R+ ! R+ is191

� Continuously di�erentiable w.r.t. x,192

� Null at the origin: wI (0) = 0,193

� Strictly monotonically increasing: w0
I (x) = @

@xwI (x) > 0; 8x � 0,194

� Strictly concave downwards: w00
I (x) = @2

@x2 wI (x) < 0; 8x � 0,195

� Upper bounded: limx !1 wI (x) = kI > 0.196

For numerical simulations, we resort to the particular case where the functions follow197

Michaelis-Menten kinetics. For that case, we de�ne198

wR (p) := kR
p

K R + p
; wX (p) := kX

p
K X + p

; wM (s) := kM
s

K M + s
;199

200

where the values of the constantskR , K R , kX , K X , kM and K M are based on the201

literature [7, 27]. For the general case introduced in Hypothesis 2.1, we de�ne202

kR
:= lim

p!1
wR (p); kX

:= lim
p!1

wX (p); kM
:= lim

s!1
wM (s):203

204

2.4. Mass fraction formulation and non-dimensionalization. We de�ne205

non-dimensional mass fractions206

ŝ := �s; p̂ := �p; r̂ :=
�

r max
r; m̂ :=

�
r max

m; q̂ := �q; x̂ := �x;(2.5)207
208

where r̂ and m̂ are the mass fractions of the maximal ribosomal fractionrmax . Then,209

given that the transcription of housekeeping proteins in bacterial cells is internally210

auto-regulated [20], and that the mass fraction of non-translating ribosomal proteins211

is constant [16], we assume that the mass fraction of growth rate-independent proteins212

q̂ varies mildly compared to the remaining states, and thus we �x213

q̂ = 1 � r max ;(2.6)214215

which, replacing in (2.4), yields216

m̂ + r̂ = 1 :217218

The latter implies that the metabolic fraction can be expressed in terms of the riboso-219

mal fraction as m̂ = 1 � r̂ , and so the dynamical equation ofm̂ can be removed from220

the system. Additionally, we see that the quantity �r represents the mass fraction221

of translating ribosomal proteins in the cell which, using (2.4) and (2.6), has bounds222

[0; rmax ]. Thus, its upper bound is given by the di�erence between the maximal total223

ribosomal mass fraction and the constant non-translating ribosomal mass fraction. In224

the literature [25], such values are empirically �xed to 0:5 and 0:07, respectively, and225

so the parameterr max is here set to 0:43 for the numerical calculations. The biomass226

fraction of the bacterial culture is de�ned as227

V̂ :=
V
Ve

:(2.7)228
229

This manuscript is for review purposes only.
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We de�ne the non-dimensional time t̂ := kR rmax t and the non-dimensional functions230

ŵR (p̂) =
wR (p)

kR
; ŵX (p̂) =

wX (p)
kR

; ŵM (ŝ) =
wM (s)

kR
231
232

so that lim p̂!1 ŵR (p̂) = 1. For the sake of simplicity, let us drop all hats from the233

current notation. Thus, the system becomes234

8
>>>>>>>>>>><

>>>>>>>>>>>:

_s = � wM (s)(1 � r )V;

_p = wM (s)(1 � r ) � w R (p)(1 � r ) � wR (p)r (p + 1) ;

_r = ( u � r )wR (p)r;

_V = wR (p)r V;

_x = w R (p)(1 � r )V:

(S)235

236

In this formulation, and using (2.2), (2.3), (2.4), (2.5) and (2.7), the total mass in the237

bioreactor can be expressed in terms of the concentrations as238

S + P + M + R + Q + X =
Ve

�
(s + ( p + 1) V + x):(2.8)239

240

3. Model analysis.241

Lemma 3.1. The set242

� =
�

(s; p; r; V; x) 2 R5 : s � 0; p � 0; 1 � r � 0; V � 0; x � 0g243244

is positively invariant for the initial value problem.245

Proving Lemma 3.1 is standard and can be done by evaluating the vector �eld of246

(S) over the boundaries of �. Thus, we �x initial conditions247

s(0) = s0 > 0; p(0) = p0 > 0; x(0) = 0 ;

r (0) = r 0 2 (0; 1); V(0) = V0 > 0;
(IC)248

249

where the initial concentration of metabolites x(0) is set to 0 to represent the fact250

that, at the beginning of the bioprocess, no metabolite has been produced. Some251

relations are immediate from the dynamics: as _s � 0 and _V � 0 for all t, we have252

s(t) � s0; V(t) � V 0;(3.1)253254

representing the fact that the substrate can only be consumed (and not replenished),255

and the biomass can only grow.256

3.1. Total available mass. As typically occurs in batch processes, there is257

neither inow nor outow of mass in the bioreactor, which is reected in the dynamics258

of the system though a mass conservation law. We de�ne the constant259

� := s0 + ( p0 + 1) V0;260261

representing the initial mass concentration in the system. It can be seen that the
total mass concentration

z := s + ( p + 1) V + x

This manuscript is for review purposes only.
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is constant for all t (as _z = 0). This means that262

s + ( p + 1) V + x = � ;(3.2)263264

for all t. Thus, relation (2.8) and (3.2) show that the total mass in the system is265

constant and equal to Ve� =� . Variables V and x are maximal when the remaining266

variables are equal to 0, and so they are upper bounded. In particular, bothV(t) and267

x(t) are decreasing w.r.t. s(t) and p(t). As neither s nor p can be negative, we have268

that269

V(t) + x(t) = �(3.3)270271

when s(t) = p(t) = 0. This condition means that all the available substrate and pre-272

cursor metabolites have been depleted and transformed into biomass and metabolites,273

which is intuitively what one would expect from system (S) for t su�ciently large.274

Additionally, using (3.1) and (3.2), we can obtain the following result.275

Proposition 3.2. V(t) 2 [V0; �] , x(t) 2 [0; � � V 0] and p(t) 2 [0; p+ ] for all t,276

with p+ = � =V0 � 1.277

3.2. In�nite-time full depletion. Dynamics (S) shows that, under initial con-278

ditions (IC), s(t) and p(t) can only vanish asymptotically, that is, when t ! 1 . The279

latter can be proved by seeing that the derivatives ofs and p can be bounded by280

_s � � wM (s)� ; _p � � wR (p)p+ (p+ + 1 +  );281282

which means that, at worst, s and p decay exponentially (as functionswi (x) can be283

upper bounded by linear functions wi (x) � ci x), so that s(t) = p(t) = 0 cannot be284

reached in �nite time. Accordingly, we de�ne the depletion of s and p in an in�nite-285

time horizon.286

Definition 3.3. System (S) achievesFull depletion when all the substrate and287

the precursors are asymptotically depleted,i.e.288

lim
t !1

s(t) = lim
t !1

p(t) = 0 ;(Full depletion)289
290

3.3. Asymptotic behaviour. Now, we study the system dynamics for an in�-291

nite time t ! 1 . First, the case with a constant allocation u(t) = u� 2 (0; 1) for all292

t is analyzed, and then an extension to a general allocation function is proposed.293

3.3.1. Constant allocation u� .294

Theorem 3.4. For any trajectory of system (S) with initial conditions (IC) and295

constant allocation u(t) = u� , it follows that296

(u� � r (t))V(t) = ( u� � r 0)V0:(3.4)297298

Proof. Under a constant allocation u(t) = u� , the dynamics of r becomes

_r = ( u� � r )wR (p)r:

Using dynamics (S), it is possible to see that both the total mass of proteinsR = r V
and the quantity U = u� V have the same derivative

_R = _U = u� wR (p)r V;

which means that the di�erence of these two Ru = U � R should be constant (as299
_Ru = 0), which yields (3.4).300
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3.3.2. General allocation u(t). Due to the boundedness ofV stated in Lemma 3.2,301

and the relation betweenV and r shown in (3.2), we can see that any constant control302

u� yields a bounded ribosomal fractionr . We extend this notion to any function u(t).303

Lemma 3.5. For any trajectory of system (S) with initial conditions (IC) and any304

control u(t), the ribosomal concentration has boundsr (t) 2 [r � ; r + ] for all t, with305

r � := r 0
V0

�
> 0; r + := 1 � (1 � r 0)

V0

�
< 1:306

307

Proof. Let us extend system (S) by de�ning variables r low (t) and r up (t) with308

dynamics309

_r low = � r low wR (p)r � 0; _r up = (1 � r up )wR (p)r � 0;
r low (0) = r 0; r up (0) = r 0;

310
311

which correspond to the dynamics ofr with u = 0 and u = 1 respectively, and which
satisfy

r low (t) � r (t) � r up (t)

for all t. The latter can be easily proved by showing that the time-varying di�erences

� low (t) = r (t) � r low (t); � up (t) = r up (t) � r (t)

with dynamics

_� low = ( u � � low )wR (p)r; _� up = (1 � u � � up )wR (p)r

are always non-negative: they satisfy � low (0) = � up (0) = 0 and are repulsive or312

(at worst) invariant at 0. Then, based on the same principle used to obtain (3.4),313

we de�ne the quantities Rlow = r low V and Rup = (1 � r up )V which are constant (as314
_Rlow = _Rup = 0), and so315

r low (t) = r 0
V0

V(t)
; r up (t) = 1 � (1 � r 0)

V0

V(t)
;316

317

for all t. As V0 � V (t) � � for all t, we have318

r low (t) 2
�
r 0

V0

�
; r 0

�
; r up (t) 2

�
r 0; 1 � (1 � r 0)

V0

�

�
319
320

which shows that r � � r (t) � r + for all t.321

Lemma 3.5 states that, for any control u(t), the ribosomal concentration never322

reaches the boundsr = 0 and r = 1, and thus neither the substrate intake nor the323

protein synthesis is arrested. Using this fact, it can be proved that any controlu(t)324

produces (Full depletion).325

Theorem 3.6. Any trajectory of system (S) with initial conditions (IC) and any326

control u(t) achieves(Full depletion) when t ! 1 .327

Proof. Using Lemma 3.5, it is easy to see that328

_s � � wM (s)(1 � r + )V0;329330

which means that s(t) converges to 0 ast ! 1 . Then, this means that331

_p � � w R (p)(1 � r + ) � wR (p)r � ;332333

and sop(t) also converges to 0 ast ! 1 .334
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4. The biomass maximization case. In this section, we write the problem of335

maximizing the biomass both for in�nite time and �nite time in terms of the alloca-336

tion parameter u. The latter is a mathematical representation of the naturally-evolved337

resource allocation strategy used by bacteria in nature. Indeed, in biology it is very of-338

ten assumed that bacteria during exponential growth allocate their internal resources339

to maximize their growth rate, thus maximizing long-term biomass production [7].340

For this particular problem, we assume that no metabolite is produced, as the path-341

way responsible for its production is arti�cially engineered, and thus not present in342

wild-type bacteria. This is simply modeled through  = 0. The resulting Wild-Type343

Bacterial Model is344
8
>>>>>>>><

>>>>>>>>:

_s = � wM (s)(1 � r )V;

_p = wM (s)(1 � r ) � wR (p)r (p + 1) ;

_r = ( u � r )wR (p)r;

_V = wR (p)r V;

(WTB-M)345

346

4.1. In�nite-time problem.347

4.1.1. Problem formulation. We �rst write the biomass maximization prob-348

lem for an in�nite-time horizon, a non-realistic scenario that can provide valuable349

insight into the �nite-time process. Indeed, in this section, we show that the max-350

imum attainable performance can only be achieved in in�nite-time processes. The351

problem can be expressed as352

max
u( t )

lim
t !1

V(t):353
354

SinceV 2 [V0; �], applying ( Full depletion) in (3.2) yields the condition355

lim
t !1

V(t) = � :356
357

meaning that, in in�nite time, the biomass is maximized for every control u(t). We358

formalize the latter in the following theorem.359

Theorem 4.1. For any trajectory of system (WTB-M) with initial conditions360

(IC) and any control u(t), the volumeV(t) ! maxV(t) = � as t ! 1 .361

As a consequence, using Theorem 3.4, we have the following result for constant362

allocations.363

Corollary 4.2. For any trajectory of system (WTB-M) with initial conditions364

(IC) and constant control u(t) = u� ,365

lim
t !1

r (t) = u� � (u� � r 0)
V0

�
366
367

These results are illustrated by the numerical simulations shown in next section.368

4.1.2. Numerical simulations. Examples of trajectories con�rming the ana-369

lytical results are shown in Figure 2 and Figure 3, where we see that the system370

approaches (Full depletion) asymptotically in every case, thus approaching the max-371

imal biomass valueV(t) = �. Figure 2 shows the resulting trajectories associated to372
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the same initial conditions, when varying the allocation parameter u. On the other373

hand, Figure 3 illustrates the trajectories for di�erent values of r 0. Indeed, as � does374

not depend on the resource allocation strategy, all the available mass is transformed375

into biomass independently of the values ofr 0 and u(t).376

Fig. 2 . Simulation of (WTB-M) with initial conditions s0 = 0 :3, p0 = 0 :001, r 0 = 0 :8,
V0 = 0 :003, �xed �nal time t f = 50 and di�erent allocation functions u.

Fig. 3 . Simulation of (WTB-M) with initial conditions s0 = 0 :3, p0 = 0 :001, V0 = 0 :003,
u = 0 :5, �xed �nal time t f = 50 and di�erent values of r 0 .

4.2. Finite-time problem.377
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