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Abstract: Averaging is a valuable technique to gain understanding of the long-term evolution of
dynamical systems characterized by slow dynamics and fast periodic or quasi-periodic dynamics.
Averaging the extremal flow of optimal control problems with one fast variable is possible
if a special treatment of the adjoint to this fast variable is carried out. The present work
extends these results by tackling averaging of time optimal systems with two fast variables,
that is considerably more complex because of resonances. No general theory is presented, but
rather a thorough treatement of an example, based on numerical experiments. After providing
a justification of the possibility to use averaging techniques for this problem “away from
resonances” and discussing compatibility conditions between adjoint variables of the original and
averaged systems, we analyze numerically the impact of resonance crossings on the dynamics of
adjoint variables. Resonant averaged forms are used to model the effect of resonances and cross
them without loosing the accuracy of the averaging prediction.
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1. INTRODUCTION

When the state of a dynamical system can be decomposed
into slow and fast oscillatory components, averaging the
equations of motion over the instantaneous period of
the fast variables is a valuable practice to simplify the
dynamics of the system and gain understanding on the
long-term evolution of the flow.

We recently investigated how trajectories of fast-oscillating
control system with a single fast variable converge to their
averaged counterpart (Dell'Elce et al. (2021)). The present
study is motivated by the need for understanding how to
generate “consistent” averaged trajectories of minimum
time control systems with two fast variables (i.e., char-
acterized by moderate drift with respect to their original
counterpart). For this purpose, we leverage on an aca-
demic example to provide evidence that existing theorems
on double averaging of dynamical systems (namely, the
Neishtadt theorem recalled in Section 3) cannot be directly
applied to controlled systems. Hence, we develop a proper
near-identity transformation (Section 5) of initial adjoint
variables that is sufficient to prevent large drift between
averaged and original trajectories in non-resonant regions.
Finally, we discuss the impact of resonance crossing on
the dynamics of adjoint variables and propose a way to
predict this behavior via resonant averaged forms. The
considerations of this paper may be of use to generate
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reliable initial guesses for indirect techniques to solve two-
point boundary value problems.

2. OPTIMAL CONTROL PROBLEM WITH SLOW
AND FAST DYNAMICS

Consider the minimum time maneuvering of a dynamical
system characterized by fast and slow dynamics, namely

min tf subject to:

d I

d t
= ε

[
f0(I, ϕ) +

m∑
i=1

f i(I, ϕ) ui

]
,

dϕ

d t
= ω (I) ,

I(0) = I0, I(tf ) = If , ‖u‖ ≤ 1.

(1)

Here, the cost function is tf , the maneuvering time, ε
is a small parameter, and u denotes the m-dimensional
control. Slow variables, I, are defined on a smooth n-
dimensional manifold I, and are characterized by ε-order
dynamics. We limit this study to systems with two fast
angle variables, so that ϕ is defined on the two-dimensional
torus, T2. The frequency vector, ω : I → R2\{0},
determines the fast dynamics of ϕ. Fields f j : I × T2 →
Rn are periodic with respect to ϕ and analytic on the
continuation of ϕ in a non-vanishing complex strip. For
the sake of conciseness, ε-small terms are not included in
the equation of motion of ϕ, and ε is not an argument
of f j . Also, initial and final conditions I0 and If are
prescribed on all components of I. These are simplifying
assumptions, but all outcomes of this note can be extended
to cases where initial and final conditions are only partially
prescribed, or dependance on ε or additive perturbations
of order 1 with respect to ε are added.
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of f j . Also, initial and final conditions I0 and If are
prescribed on all components of I. These are simplifying
assumptions, but all outcomes of this note can be extended
to cases where initial and final conditions are only partially
prescribed, or dependance on ε or additive perturbations
of order 1 with respect to ε are added.
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acterized by moderate drift with respect to their original
counterpart). For this purpose, we leverage on an aca-
demic example to provide evidence that existing theorems
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Neishtadt theorem recalled in Section 3) cannot be directly
applied to controlled systems. Hence, we develop a proper
near-identity transformation (Section 5) of initial adjoint
variables that is sufficient to prevent large drift between
averaged and original trajectories in non-resonant regions.
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point boundary value problems.

2. OPTIMAL CONTROL PROBLEM WITH SLOW
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Consider the minimum time maneuvering of a dynamical
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min tf subject to:

d I

d t
= ε

[
f0(I, ϕ) +

m∑
i=1

f i(I, ϕ) ui

]
,

dϕ

d t
= ω (I) ,

I(0) = I0, I(tf ) = If , ‖u‖ ≤ 1.

(1)

Here, the cost function is tf , the maneuvering time, ε
is a small parameter, and u denotes the m-dimensional
control. Slow variables, I, are defined on a smooth n-
dimensional manifold I, and are characterized by ε-order
dynamics. We limit this study to systems with two fast
angle variables, so that ϕ is defined on the two-dimensional
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2.1 Necessary conditions for optimality

Denote by pI and pϕ the adjoint varables of the slow
and fast variables, respectively. The application of the
Pontrjagin maximum principle (PMP) to Problem (1)
yields the Hamiltonian of the extremal flow,

H = pϕ · ω(I) + εK (I,pI ,ϕ) , (2)

where the functionK : T ∗I×T ∗T2 → R that characterizes
the slow component of the Hamiltonian is

K := H0 +

√√√√
m∑
i=1

H2
i ,

andHj , for j = 0, . . . ,m, are defined asHj := f j(I, ϕ) · pI .

Necessary conditions for optimality of Problem (1) consist
of the flow of the maximized Hamiltonian of Eq. (2),

d I

d t
= ε

∂ K

∂ pI
,

dpI

d t
= −ε

∂ K

∂ I
− pϕ

∂ ω

∂ I
,

dϕ

d t
= ω(I),

dpϕ

d t
= −ε

∂ K

∂ϕ
,

(3)

and of the boundary conditions,

I(0) = I0, pϕ(0) = 0, I(tf ) = If , pϕ(tf ) = 0. (4)

Maximizing control is given by

uopt
j (I,pI ,ϕ,pϕ) =

Hj√∑m
i=0 H

2
i

, j = 1, . . . ,m.

In view of the exploitation of shooting-based techniques,
triples (tf , pI0, ϕ0) are referred to as candidate solutions
for Problem (1) if trajectories of System (3) with initial
conditions I(0) = I0, pI(0) = pI0, ϕ(0) = ϕ0, and
pϕ0 = 0 satisfy the endpoint boundary conditions in
Eq. (4), i.e., candidate solutions are zeros of the shooting
function

S (tf ,pI0,ϕ0) :=

[
I(tf |I0,pI0,ϕ0,0)− If

pϕ(tf |I0,pI0,ϕ0,0)− 0
‖pI0‖ − 1

]
, (5)

and are such that H
(
I0,pI0,ϕ0,pϕ0, ε

)
> 0. Here, the

notation I(tf |I0,pI0,ϕ0,pϕ0) denotes the evaluation of
I(tf ) obtained by integrating the equations of motion of
I with initial conditions I0,pI0,ϕ0,pϕ0.

For a minimum time problem, the adjoint state cannot
vanish and one can normalize it assuming it lies on the
unit sphere of the cotangent bundle; since pϕ0 = 0 by
transversality, one has ‖pI0‖ = 1.

2.2 Toy problem

A simple case study is introduced to streamline the flow
of the discussion. Numerical simulations of this example
are used to support discussions and mathematical devel-
opments of the paper. The dynamical system and optimal
control problem is a special case of (1) with a scalar slow
variable, I, and two fast variables, ζ and ψ, i.e. I = I,
ϕ = (ζ, ψ). The optimal control problem is

min√
u2
1+u2

2≤1

tf subject to :

d I

d t
= ε [cos ζ + cos (ζ − ψ)u1 + u2] ,

d ζ

d t
= I,

dψ

d t
= 1,

I(0) = I0, I(tf ) = If .

(6)

In the terms of (1), f0 = cos ζ, f1 = cos(ζ − ψ), f2 =
1, ω = (I, 1). The frequency of ψ is constant; this is
not a restrictive assumption: as emphasized in (Lochak
and Meunier, 1988, Chap. 4), any problem with two
frequencies, where at least one frequency does not vanish
on the manifold I can be recast into a form where one
frequency is constant.

We note that the dynamical system of Problem 6 could
be recast into a single-input control system. All consid-
erations in this paper indeed hold for any problem in the
form (1), e.g., low-thrust orbital transfer, but we preferred
to use this simple model to streamline the presentation of
results as much as possible.

The Hamiltonian associated to Problem (6) is

H = Ipζ +pψ + ε
[
pI cos ζ + |pI |

√
1 + cos2 (ζ − ψ)

]
. (7)

Numerical values used in all simulations are ε = 10−3

and I0 = 2−0.5. Simulation-specific values are listed in the
captions of the figures.

3. TWO-PHASE AVERAGING OF
FAST-OSCILLATING UNCONTROLLED SYSTEMS

This section is aimed at recalling results on the averaging
of the uncontrolled form of the dynamical system intro-
duced in Eq. (1).The motion of I is characterized by a slow
trend perturbed by ε-small oscillations. Provided that the
two frequencies are not in resonance, the gross behavior of
I can be understood by filtering out these oscillations via
the averaging of the equations of motion with respect to
the two-dimensional torus. This yields the averaged system

d I

d t
= εf0

(
I
)
,

dϕ

d t
= ω

(
I
)
, (8)

where averaged vector field, f0 : I → R is defined as

f0

(
I
)
:=

1

4π2

∫

T2

f0

(
I,ϕ

)
dϕ,

Averaged fields are independent of fast variable by def-
inition. As such, the motion of I is decoupled by ϕ,
which can be eventually evaluated a posteriori. It is de-
sirable that trajectories I(t) and I(t) emanated from the
same point on the manifold I remain ”close” for ”long”
time. Compared to single-frequency systems, this question
is non-trivial because the double average is not a good
approximation of the original systems whenever the two
frequencies are nearly commensurate. Under arguably re-
strictive assumptions, the Neishtadt theorem provides an
estimate of the drift between trajectories of the original
and averaged systems that rigorously accounts for the
error introduced by using double averaging inside resonant
zones. Section 3.1 recalls the Neishtadt theorem (Neishtadt
(2014)) which provides an optimal estimate of the drift
between trajectories of System (8) and its original version.
Section 3.2 details the near-identity transformation aimed
at restoring fast oscillations of an averaged trajectory.

3.1 The Neishtadt Theorem

Assume that there exist I0 ⊆ I such that all trajectories
of the averaged slow variables, I(t), with initial conditions

in I0 satisfy 1 I(t) ∈ I and∣∣∣∣
(
ω1

(
I
) ∂ω2

∂I
− ω2

(
I
) ∂ω1

∂I

)
· f0

(
I
)∣∣∣∣ > 0, ∀ t ∈ [0,

1

ε
].

(9)
Then, there exist a partition {V1,V2} of I0 × T2 and
constants {c1, c2} = O(1) such that

sup
t∈[0, 1ε ]

∥∥I(t)− I(t)
∥∥ < c1

√
ε log

(
1

ε

)

∀ (I(0),ϕ(0)) ∈ V1, I(0) = I(0),

(10)

and
µ (V2) ≤ c2

√
ε,

where µ (V2) denotes an ordinary measure on I × T2.
Detailed statement and proof of the theorem are available
in (Lochak and Meunier, 1988, Chap. 4).

In layman’s terms, this theorem states that I(t) is a
good approximation of I(t), i.e.,

√
ε log(1/ε) = 0 as ε

approaches zero, for most initial conditions, since the size
of the ”bad” set V2 is bounded by the square root of
ε. However, although V2 vanishes for very small ε, its
elements uniformly fill the phase space. The assumption of
Eq. (9) guarantees that the frequency ratio of the averaged
trajectory, ω1

(
I
)
/ω2

(
I
)
, evolves monotonically in time.

Hence, any resonance is crossed transversally with non-
vanishing speed, so that the cumulated error due to the
wrong modeling of the motion inside resonant zones is
small. Trajectories of the original system emanated from
V2 experience capture into resonance, i.e., they spend long
time inside a single resonant zone. The simple double
average over the two-dimensional torus ignores the phase
lock specific of this resonance, so that the doubly-averaged
system is unable to adequately approximate the motion
of the original system during this possibly-long period of
time.

3.2 Near-identity transformation of the initial conditions

Short-period variations of averaged trajectories of slow
variables can be restored as a function of the averaged state
itself. A large body of literature discusses this process, e.g.,
(Sanders and Verhulst, 1985, Chap. 7), (Danielson et al.,

1995, Chap. 2). Denote by Î and ϕ̂ the reconstructed
osculating slow and fast variables, respectively. A trans-
formation, ν : I × T2 → I × T2, can be developed such
that [

Î
ϕ̂

]
=

[
I
ϕ

]
+ εν

(
I,ϕ

)
. (11)

The objective of the transformation is the establishment
of second-order matching between the time derivative of
the reconstructed variables and the right-hand side of the
original system, namely:

d Î

d t
=

d

d t

[
I + ενI

(
I,ϕ

)]
= εf0

(
Î, ϕ̂

)
+O

(
ε2
)
,

d ϕ̂

d t
=

d

d t

[
ϕ+ ενϕ

(
I,ϕ

)]
= ω

(
Î
)
+O

(
ε2
)
,

where νI and νϕ denote the projections of ν to the slow
and fast variables, respectively. In addition, reconstructed

1 We note that ε could be re-scaled to fit a desired time window of
size O (1/ε).

trajectories are required to oscillate with zero mean about
the averaged ones. These constraints yield the system of
partial differential equations (PDE)

ω1

(
I
) ∂ νI

∂ ϕ1

+ ω2

(
I
) ∂ νI

∂ ϕ2

= f0

(
I,ϕ

)
− f0

(
I
)
,

ω1

(
I
) ∂ νϕ

∂ ϕ1

+ ω2

(
I
) ∂ νϕ

∂ ϕ2

=
∂ ω

∂ I

∣∣∣∣
I

νI ,

∫

T2

ν
(
I,ϕ

)
dϕ = 0.

(12)

Equation (12) can be solved by first evaluating νI and then
νϕ.Any first-order solution of this problem is valuable.

Let f
(k)
0

(
I
)
be the coefficients of the Fourier series of

f0

(
I,ϕ

)
−f0

(
I
)
. The magnitude of

∣∣∣f (k)
0

(
I
)∣∣∣ is bounded

by an exponentially-decreasing function of |k| = |k1|+|k2|,
where k1 and k2 are the components of k, because of the
assumptions on the analyticity of f0. Consequently, there
is a constant c3 such that

f0

(
I,ϕ

)
=

∑
0≤|k|≤N

f
(k)
0

(
I
)
eik·ϕ +O (ε)

for N ≥ −c3 log ε. Assume that the state of the averaged
system is outside of any resonant zone of order smaller
than N ≥ −c3 log ε, i.e., there is a constant c4 such that

k · ω
(
I
)
≥ c4

√
ε ∀ k ∈ Z2, 0 < |k| ≤ N.

Hence, formal solution of Eq. (12) is

νI

(
I,ϕ

)
= −i

∑
0<|k|≤N

f
(k)
0

(
I
)

k · ω
(
I
) eik·ϕ,

νϕ

(
I,ϕ

)
= − ∂ ω

∂ I

∣∣∣∣
I


 ∑
0<|k|≤N

f
(k)
0

(
I
)

(
k · ω

(
I
))2 eik·ϕ


 .

(13)

When frequencies are nearly commensurate, a resonant
averaged form of the system needs to be used instead of the
double average. This problem is discussed in Section (6).
Because the transformation amends ε-small correction to
the averaged state, the inverse transformation of Eq. (11)
can be approximated by[

I
ϕ

]
=

[
Î
ϕ̂

]
+ εν−1

(
Î, ϕ̂

)
≈

[
Î
ϕ̂

]
− εν

(
Î, ϕ̂

)
.

4. THE AVERAGED CONTROL SYSTEM

Applying averaging theory to the extremal flow detailed
in Eq. (3) is questionable because the structure of this
vector field differs from the conventional (uncontrolled)
fast-oscillating system. Specifically, the equation of motion

of pI , includes the term pϕ
∂ ω

∂ I
that may possibly be of

order larger than ε. Hence, adjoints to slow variables are
not necessary slow themselves. This section justifies the
application of averaging theory to System (3) by showing
that adjoints to fast variables are systematically ε-small
for any extremal trajectory with free phases, and, as such,
dpI

d t
= O (ε) when restrained to these trajectories.

Consider the canonical change of variables [I,pI ,ϕ,pϕ] →
[J ,pJ ,ψ,pψ] such that J = I and ψ = Ω(I) ϕ, where
Ω : I → R2×2 is defined as
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in I0 satisfy 1 I(t) ∈ I and∣∣∣∣
(
ω1

(
I
) ∂ω2

∂I
− ω2

(
I
) ∂ω1

∂I

)
· f0

(
I
)∣∣∣∣ > 0, ∀ t ∈ [0,

1

ε
].

(9)
Then, there exist a partition {V1,V2} of I0 × T2 and
constants {c1, c2} = O(1) such that

sup
t∈[0, 1ε ]

∥∥I(t)− I(t)
∥∥ < c1

√
ε log

(
1

ε

)

∀ (I(0),ϕ(0)) ∈ V1, I(0) = I(0),

(10)

and
µ (V2) ≤ c2

√
ε,

where µ (V2) denotes an ordinary measure on I × T2.
Detailed statement and proof of the theorem are available
in (Lochak and Meunier, 1988, Chap. 4).

In layman’s terms, this theorem states that I(t) is a
good approximation of I(t), i.e.,

√
ε log(1/ε) = 0 as ε

approaches zero, for most initial conditions, since the size
of the ”bad” set V2 is bounded by the square root of
ε. However, although V2 vanishes for very small ε, its
elements uniformly fill the phase space. The assumption of
Eq. (9) guarantees that the frequency ratio of the averaged
trajectory, ω1

(
I
)
/ω2

(
I
)
, evolves monotonically in time.

Hence, any resonance is crossed transversally with non-
vanishing speed, so that the cumulated error due to the
wrong modeling of the motion inside resonant zones is
small. Trajectories of the original system emanated from
V2 experience capture into resonance, i.e., they spend long
time inside a single resonant zone. The simple double
average over the two-dimensional torus ignores the phase
lock specific of this resonance, so that the doubly-averaged
system is unable to adequately approximate the motion
of the original system during this possibly-long period of
time.

3.2 Near-identity transformation of the initial conditions

Short-period variations of averaged trajectories of slow
variables can be restored as a function of the averaged state
itself. A large body of literature discusses this process, e.g.,
(Sanders and Verhulst, 1985, Chap. 7), (Danielson et al.,

1995, Chap. 2). Denote by Î and ϕ̂ the reconstructed
osculating slow and fast variables, respectively. A trans-
formation, ν : I × T2 → I × T2, can be developed such
that [

Î
ϕ̂

]
=

[
I
ϕ

]
+ εν

(
I,ϕ

)
. (11)

The objective of the transformation is the establishment
of second-order matching between the time derivative of
the reconstructed variables and the right-hand side of the
original system, namely:
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d
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[
I + ενI

(
I,ϕ

)]
= εf0
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)
+O
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ε2
)
,
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)]
= ω

(
Î
)
+O

(
ε2
)
,

where νI and νϕ denote the projections of ν to the slow
and fast variables, respectively. In addition, reconstructed

1 We note that ε could be re-scaled to fit a desired time window of
size O (1/ε).

trajectories are required to oscillate with zero mean about
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partial differential equations (PDE)
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double average. This problem is discussed in Section (6).
Because the transformation amends ε-small correction to
the averaged state, the inverse transformation of Eq. (11)
can be approximated by[

I
ϕ

]
=

[
Î
ϕ̂

]
+ εν−1

(
Î, ϕ̂

)
≈

[
Î
ϕ̂

]
− εν

(
Î, ϕ̂

)
.

4. THE AVERAGED CONTROL SYSTEM

Applying averaging theory to the extremal flow detailed
in Eq. (3) is questionable because the structure of this
vector field differs from the conventional (uncontrolled)
fast-oscillating system. Specifically, the equation of motion

of pI , includes the term pϕ
∂ ω

∂ I
that may possibly be of

order larger than ε. Hence, adjoints to slow variables are
not necessary slow themselves. This section justifies the
application of averaging theory to System (3) by showing
that adjoints to fast variables are systematically ε-small
for any extremal trajectory with free phases, and, as such,
dpI

d t
= O (ε) when restrained to these trajectories.

Consider the canonical change of variables [I,pI ,ϕ,pϕ] →
[J ,pJ ,ψ,pψ] such that J = I and ψ = Ω(I) ϕ, where
Ω : I → R2×2 is defined as
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Ω :=
1

‖ω(I)‖

[
ω1(I) ω2(I)
−ω2(I) ω1(I)

]
.

Symplectic constraints yield the transformation of the
adjoints

pI = pJ + pψ
∂Ω

∂ J
ΩT ψ, pϕ = pψ Ω(J),

so that the transformed Hamiltonian is

H̃ = ||ω(J)||pψ1 + εK

(
J , pJ + pψ

∂Ω

∂ J
ΩT ψ, ΩT ψ

)

︸ ︷︷ ︸
:= K̃(J,pJ ,ψ)

.

Boundary conditions on the adjoints to fast variables
require that pϕ(0) = 0. Evaluating the Hamiltonian at
the initial time and considering the normalization of the
initial adjoints proposed in Eq. (5), i.e., ‖pI0‖ = 1, yields
the Hamiltonian level

εh := H̃(t = 0) = εK
(
I0, pI0, ΩT (I0) ψ0

)
︸ ︷︷ ︸

O(1)

.

Hence, pψ1 can be evaluated at any time by solving the
implicit function

pψ1 = ε
h− K̃ (J ,pJ ,ψ)

||ω(J)||
. (14)

Equation (14) reveals that pψ1 = O(ε) when evaluated
on a candidate optimal trajectory. As a consequence, pJ

exhibit ε-slow dynamics, i.e.,

dpJ

d t
= − ∂ ‖ω‖

∂ J
pψ1︸ ︷︷ ︸

O(ε)

− ε
∂ K̃

∂ J
= O(ε),

which justifies the averaging of the extremal flow.

Denote by K the averaged functional

K :=
1

4π2

∫

T2

K (I,pI ,ϕ) dϕ.

Averaging the extremal flow of Eq. (3) yields

d I

d t
= ε

∂ K

∂ pI
,

dpI

d t
= −ε

∂ K

∂ I
− pϕ

∂ ω

∂ I
,

dϕ

d t
= ω

(
I
)
,

dpϕ

d t
= 0.

Adjoints to the fast variables are indeed constant along
averaged extremal trajectories.

4.1 Averaging the toy problem

Averaging Eq. (7) yields

H = I pζ+pψ+

√
8

π
E

(
1√
2

)
ε |pI | ≈ I pζ+pψ+1.216ε |pI | .

where E(x) denotes the complete elliptic integral of the
second kind. The dynamical system associated to this
Hamiltonian is

d I

d t
≈ 1.216 ε

pI
|pI |

,
d pI
d t

= −pζ ,

d ζ

d t
= I,

d pζ
d t

= 0,
dψ

d t
= 1,

d pψ
d t

= 0,

(15)

By definition, the integration of the slowly-changing vari-
ables of System (15) is independent of ζ and ψ. Closed-
form solution of the slow averaged flow is

I ≈ I0 + 1.216 ε
pI
|pI |

γ(t),

pI = pI0 − pζ0 t, pζ = pζ0, pψ = pψ0.

where subscript 0 is used to address initial conditions, and
γ(t) is defined as

γ(t) =





t if pI0 pζ0 ≤ 0 or t ≤ pI0
pζ0

2
pI0
pζ0

− t otherwise
(16)

The slow variable I(t) coincides with the frequency ratio
of the averaged system, and it evolves as a continuous
piecewise linear function of time. The slope of I(t) switches
sign when pI crosses zero. For a given initial condition, this
can occur at most one time during the entire trajectory.

5. NEAR-IDENTITY TRANSFORMATION FOR
CONTROLLED SYSTEMS

Changing initial conditions of averaged trajectories by
means of the transformation discussed in Section 3.2 re-
duces the drift between I(t) and I(t). Qualitatively, the
transformation shifts the initial point of the averaged tra-
jectory right in the middle of the short-period oscillations
of I(t). The improvement obtained with this expedient
is possibly negligible for classical fast-oscillating systems
when compared to the estimate provided by the Neishtadt
theorem, which considers the same initial conditions for
the two trajectories. Conversely, the transformation of the
initial variables plays a key role for the optimal control
problem. To support this claim, consider Problem (6) and
assume that initial conditions of pI and pζ are restrained
to a compact set such that the switching event of γ(t)
outlined in Eq. (16) is attained not earlier than a desired
integration time tf for any trajectory originated from this
set. Then, the frequency ratio of the averaged trajectory
evolves monotonically, as required by Neishtadt’s theo-
rem. However, Figure 1 shows that pI and pI exhibit a
steady drift that largely exceeds the expected ”small” error
quantified in Eq. (10) when Systems (??) and (15) are
integrated with the same initial conditions. In addition,
comparing the red and orange curves of Figure 1 reveals
that trajectories of the original system strongly depend
on the values of initial phases. Section 5.1 shows that
transforming the adjoints to fast variables is sufficient to
drastically reduce the drift of pI . Section 5.2 describes a
new transformation for properly modeling short-periodic
variations of the system at hand.

5.1 The fundamental role of the adjoints of fast variables

The trigger of the drift of pI is the wrong assessment of the
averaged value of pϕ, as shown in the bottom of Figure 1.
This error is of order ε but it induces a steady drift on pI ,
which is of the same order of magnitude, i.e.,

dpI

d t
= −pϕ

∂ ω

∂ I︸ ︷︷ ︸
ε−small term

−ε
∂ K

∂ I
.

In turn, an ε-small error on pϕ induces an error on the
time derivative of pI that is comparable to its slow motion.
Transforming initial adjoints to fast variables by means of
Eq. (11) is sufficient to greatly mitigate this problem, as
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Fig. 1. Numerical integration of the toy problem. Trajecto-
ries of the original and averaged system are emanated
from the same point of the phase space. Initial ad-
joints are pI(0) = 1 and pψ(0) = pζ(0) = 0.
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Fig. 2. Numerical integration of the toy problem. Here,
initial adjoints to fast variables are transformed by
means of Eq. (13).

shown in Figure 2. Here, initial conditions of averaged and
original initial value problems (IVP) are mostly the same
(specifically I(0) = I(0) = I0 and pI(0) = pI(0) = pI0,
but the adjoints to fast variables are transformed such that
pϕ(0) = pϕ0 and pϕ(0) = pϕ0 + νpϕ

(
I0,pI0,ϕ0,pϕ0

)
,

where, following Eq. (13) and assuming that I0 is in a
non-resonant zone, νpϕ is given by

νpϕ = −i
∑

0<|k|≤N

[
−∂ K

∂ϕ

](k)
eik·ϕ

k · ω
(
I
) . (17)

As a result, pϕ oscillates with zero mean about pϕ, and
the drift between pI(t) and pI(t) is drastically reduced.

Given the averaged state, Eq. (17) establishes a mapping
between ϕ and pϕ. Because νpϕ has zero mean, there exist

ϕ0 ∈ T2 such that p̂ϕ = pϕ + νpϕ

(
I,pI ,ϕ0

)
= 0.
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of the classical transformation.
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Fig. 4. Reconstruction of short-period variatioins of the
adjoints to slow variables by means of the proposed
transformation.

5.2 Transformation of the adjoints of slow variables

Changing pϕ is mandatory to have consistent trajectories
of the averaged and original systems. Transforming the
initial value of slow variables and their adjoints is less
critical, but it can further reduce the drift. Direct appli-
cation of Eq. (13) is not sufficient to reconstruct short-
period variations of pI , as shown in Figure 3. Here, initial
conditions of pI(t) (solid line) are computed by means of
Eq. (13). Then, the transformation is evaluated for t > 0
to assess if short-period variations are properly modeled.
Reconstructed trajectories (dash-dotted lines) of I and
pϕ well overlap their original counterpart. Conversely, the
reconstruction of pI is wrong (in the very specific case of
the toy problem, νpI

= 0). Once again, the term pϕ∂ω/∂I
in the dynamics of pI is responsible of the mismatch. In
fact, if short-period variations of pϕ are neglected, the
Fourier expansion of dpI/dt is carried out by introducing
ε-small errors in the evaluation of the ε-slow dynamics.
The transformation of pI should be carried out by includ-
ing νpϕ in the Fourier expansion, namely

νpI =
∑

0<|k|≤N

{
1(

k · ω
(
I
))2

[
∂ K

∂ϕ

](k)
∂ ω

∂ I

+
i

k · ω
(
I
)
[
∂ K

∂ I

](k)}
eik·ϕ.
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shown in Figure 2. Here, initial conditions of averaged and
original initial value problems (IVP) are mostly the same
(specifically I(0) = I(0) = I0 and pI(0) = pI(0) = pI0,
but the adjoints to fast variables are transformed such that
pϕ(0) = pϕ0 and pϕ(0) = pϕ0 + νpϕ

(
I0,pI0,ϕ0,pϕ0

)
,

where, following Eq. (13) and assuming that I0 is in a
non-resonant zone, νpϕ is given by

νpϕ = −i
∑

0<|k|≤N

[
−∂ K

∂ϕ

](k)
eik·ϕ

k · ω
(
I
) . (17)

As a result, pϕ oscillates with zero mean about pϕ, and
the drift between pI(t) and pI(t) is drastically reduced.

Given the averaged state, Eq. (17) establishes a mapping
between ϕ and pϕ. Because νpϕ has zero mean, there exist

ϕ0 ∈ T2 such that p̂ϕ = pϕ + νpϕ

(
I,pI ,ϕ0

)
= 0.
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5.2 Transformation of the adjoints of slow variables

Changing pϕ is mandatory to have consistent trajectories
of the averaged and original systems. Transforming the
initial value of slow variables and their adjoints is less
critical, but it can further reduce the drift. Direct appli-
cation of Eq. (13) is not sufficient to reconstruct short-
period variations of pI , as shown in Figure 3. Here, initial
conditions of pI(t) (solid line) are computed by means of
Eq. (13). Then, the transformation is evaluated for t > 0
to assess if short-period variations are properly modeled.
Reconstructed trajectories (dash-dotted lines) of I and
pϕ well overlap their original counterpart. Conversely, the
reconstruction of pI is wrong (in the very specific case of
the toy problem, νpI

= 0). Once again, the term pϕ∂ω/∂I
in the dynamics of pI is responsible of the mismatch. In
fact, if short-period variations of pϕ are neglected, the
Fourier expansion of dpI/dt is carried out by introducing
ε-small errors in the evaluation of the ε-slow dynamics.
The transformation of pI should be carried out by includ-
ing νpϕ in the Fourier expansion, namely

νpI =
∑

0<|k|≤N

{
1(

k · ω
(
I
))2

[
∂ K

∂ϕ

](k)
∂ ω

∂ I

+
i

k · ω
(
I
)
[
∂ K

∂ I

](k)}
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Fig. 5. Example of resonance crossing (1:1). Double averag-
ing is not sufficient to capture the evolution of adjoint
variables inside the resonant zone. Hence, large drift
occurs after crossing the resonance.

This transformation is capable of properly reconstructing
short-period variations of the adjoints to slow variables, as
shown in Figure 4.

6. RESONANCE CROSSING

Approaching a resonance may entail two main effects. The
first one is referred to as capture into resonance. It occurs
when the state of the system remains in the neighborhood
of the resonance for a long amount of time; this defeats any
estimate like Eq. (10) of the drift, but, in the framework
of Neishtadt theorem, it is proved that the constraint out-
lined in Eq. (9) prevents such a phenomenon from happen-
ing. The second effect consists of the scattering between
trajectories of the original and averaged systems due to the
rapid crossing of a resonant zone. The drift accumulated
by crossing several resonances is somehow small for clas-
sical fast oscillating systems (as quantified by Eq. (10)).
Conversely, resonance crossing may be detrimental when
dealing with trajectories of System (3) because of the very
specific form of the equations of motion.

Figure 5 shows that trajectories of the toy problem
abruptly drift after the one-to-one resonance is crossed.
The mechanism yielding this drift is analogous to the one
discussed in Section 5.1: resonance crossing induces a small
variation of the averaged value of pϕ which is not modeled
by the doubly-averaged system. For this purpose, resonant
averaged forms can be used to properly model the motion
of pϕ inside important resonances. Specifically, assuming
that the resonance identified with the index k is crossed,
namely I is such that |ω(I)·k| ≤ c

√
ε, a change of variables

is performed such that ϕ is decomposed into a slow and a
fast components, β and α, respectively, namely β = k · ϕ
and α = k⊥ · ϕ, The Hamiltonian is then averaged with
respect to α on the period 2π k1 k2.

A transformation analogous to the one discussed in Sec-
tion 3.2 can be established to transform the state vector at

t [min]
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Fig. 6. Example of resonance crossing (1:1). The resonant
form efficiently captures the evolution of adjoint vari-
ables inside the resonant zone. Double averaging is
used outside resonant zones.

the interface between the doubly-averaged system and the
resonant form. Figure 6 depicts the averaged trajectory
obtained by modeling the motion inside the one-to-one
resonance crossing of the toy problem.

Two open questions still need to be addressed before the
proposed methodology can be used to automatically gener-
ate averaged trajectories. First, important resonances need
to be identified by inspection of the averaged trajectory.
Second, a quantitative assessment of the width of resonant
zones is required.

7. CONCLUSION

This paper is devoted to the averaging of optimal control
systems with two fast variables. We showed that existing
theorems on multi-frequency averaging are not directly
applicable to this problem as trajectories of the original
and averaged systems with the same initial conditions
quickly drift apart. Hence, we developed a near-identity
transformation establishing an equivalence between points
of the averaged and original phase spaces, that can be
used to generate consistent boundary conditions of the
averaged system. A similar transformation, serving as
interface between doubly and resonant averaged systems
at switching instants, was also introduced to tackle the
crossing of important resonances. We believe that this
discussion could shed light on some difficulties of the
problem.
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