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Abstract— Microorganisms have evolved submitted to a con-
tinuous optimisation process that has improved their capacity to
proliferate in nature, developing highly optimized distribution
mechanisms of their resources. Considering the microbial self-
replication process as a resource allocation problem is a novel
approach that has motivated numerous applications to the
artificial production of metabolites of interest. Model-based
optimal control studies are essential in understanding these
naturally-evolved allocation strategies, but they are usually
represented by open-loop control laws. In this context, we
introduce a hierarchical shrinking-horizon non-linear MPC
scheme that aims to maximise the production of a metabolite
of interest. The control loop acts on an external signal that is
able to disrupt the natural allocation process. The approach
uses an optimal control-based input parametrisation that takes
into account the structure of the open-loop natural allocation
strategy of the cell, to emulate a closed-loop control law.
We provide examples of the open-loop control strategies, and
simulations of the hierarchical scheme.

I. INTRODUCTION

Microorganisms have evolved over millions of years under
natural selection, submitted to a continuous optimisation
process that has improved their capacity to proliferate in na-
ture. Thus, they have developed highly optimized distribution
mechanisms of their internal resources to cellular functions
enabling them to face changing environments. Unraveling
these internal mechanisms has always been of great interest
for the scientific community, not only from a pure biological
point of view, but also for biotechnological purposes. In this
context, being able to understand and control the growth
process is key for several industrial applications, such as
in combating antibiotics resistance, food preservation, and
biofuel production [1].

Considering the microbial self-replication process as a
resource allocation problem is a novel approach that has
successfully answered some of the underlying question in the
field [2]. The latter has also motivated numerous applications
to the artificial production of metabolites of interest [3],
[4], [5], [6]. These studies aim to find how to divert the
cell internal resources into a heterologous pathway in order
to efficiently synthesize a specific protein. This is done
through an external control that is able to disrupt the cellular
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RAE, CNRS, Sorbonne Université, Biocore Team, Sophia Antipolis, France.
agustin.yabo@inria.fr, jean-luc.gouze@inria.fr
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allocation process of a growing culture by reengineering the
transcriptional control of the expression of RNA polymerase
[7]. In a dynamical systems framework, the problem can be
posed as an Optimal Control Problem (OCP), which can be
approached through the well-known Pontrjagin’s Maximum
Principle (PMP).

Model-based optimal control studies are essential in un-
derstanding the overall allocation process, as they are able
to provide the gold-standard strategies, i.e. the best that can
be achieved from a theoretical point of view. However, in
most cases, it is impossible to obtain a closed-loop control
strategy: the obtained optimal control often depends on the
so-called adjoint state, which hinders its implementation (as
it is the case in [3]). Additionally, such approaches depend on
the accuracy of the model and the precision of its parameters,
which often tend to be limited for most biochemical and
biological processes. At the same time, the existing industrial
applications that allow a closed-loop implementation are
mainly based on general schemes such as non-linear Model
Predictive Controllers (NMPC), which tend to disregard the
structure of each particular problem [8].

Motivated by the lack of synergy between pure theoretical
approaches and very general implementations, in this work
we revisit the metabolite production problem. We summarize
the open-loop optimal allocation strategies found in the lit-
erature, which are characterized by sharing the same simple
structure and a common parametrisation. Then, we propose
a hierarchical NMPC scheme designed on the basis of these
open-loop optimal controllers. In particular, we resort to
the shrinking horizon NMPC (sh-NMPC) [9], an approach
targeted to control processes of known time duration, such as
batch processes [10]. In contrast to typical receding horizon
approaches, in the sh-NMPC, the final time of the process is
fixed, and so the time window considered in the optimisation
problem (i.e. the prediction horizon) shrinks at each step.

Our approach uses an optimal control-based input
parametrisation that takes into account the structure of
the open-loop natural allocation strategy of the cell. Thus,
we first implement an MPC loop which creates a closed-
loop natural allocation, followed by a second MPC that
computes the external control maximising the production
of a metabolite of interest. Similar approaches have been
proposed to control batch and semi-batch processes through
the manipulation of the feedrate [9], [11], which is a standard
scheme in the bioreactor framework. The novelty of this
work resides in a hierarchical control scheme that aims to
affect the internal pathways of the cells in a bacterial growing
culture by affecting the expression of RNA polymerase.
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Fig. 1: Coarse-grained self-replicator model. The external
substrate S is consumed by bacteria and transformed into
precursor metabolites P through the action of the metabolic
machinery M. These precursors are used to produce macro-
molecules of the gene expression machinery R, the metabolic
machinery M, the housekeeping machinery Q, and metabo-
lites X. The external control I is able to externally affect the
natural allocation parameter α in order to channel resources
into the production of metabolites of interest.

We start the paper by defining the model, and the
naturally-evolved resource allocation strategy used by the
bacteria. Then, we propose a suboptimal parametrisation
intended to emulate the open-loop strategy. In Section III, we
introduce the open-loop metabolite maximisation problem,
and the closed-loop hierarchical scheme. Finally, we provide
a numerical simulation of the approach and a comparison
with the optimal case, followed by a conclusion.

II. MODEL DEFINITION

A. Self-replicator system

Based on [2], we define the self-replicator system composed
of the mass (in grams) of: precursor metabolites P, the gene
expression machinery R, the metabolic machinery M, the
housekeeping machinery Q, and a metabolite of interest X.
As illustrated in Figure 1, substrate S is taken from the
environment and transformed into P at rate VM through
a reaction catalyzed by M. Then, the precursors P are
transformed into M, Q, R and X at rates rmax(1 − α)VR,
(1 − rmax)VR, rmaxαVR, and VX , respectively. While the
reactions that produce M, Q and R are catalyzed by R,
the reaction synthesizing X is catalyzed by M. In short,
the ribosomal proteins R are responsible of producing new
proteins, and the metabolic proteins M are responsible for
the uptake of nutrients into the cell, and the production of
metabolites X. The latter represents a classical trade off in
synthetic biology, and is modeled through the parameter α,
defined as a time function with bounds α(t) ∈ [0, 1]. The

dynamical system is

Ṡ = Vin − VM
Ṗ = VM − VX − VR,
Ṙ = rmaxαVR,

Ṁ = rmax(1− α)VR,

Q̇ = (1− rmax)VR,

Ẋ = VX .

where the time variable t is measured in hours. The bacterial
volume is defined as V .

= β(R+M+Q), and the growth rate
given by µ .

= V̇/V . We define the intracellular concentrations

p =
P

V
, r =

R

V
, m =

M

V
, q =

Q

V
and the extracellular concentration of substrate s. Using
the definition of bacterial volume, we obtain the relation
β(r + m + q) = 1. Then, following [12], we assume the
transcription of proteins Q to be internally autoregulated to
a constant value, such that

β(r +m) = rmax, βq = qmax
.
= 1− rmax. (1)

We define the rates of mass flow per unit volume, which we
assume to be functions of the concentrations s, m and r, as
vM (s,m)

.
= VM/V and vR(p, r)

.
= VR/V . In this new sys-

tem, the growth rate becomes µ = βVR/V = βvR(p, r). Tak-
ing into account that a minimal concentration of ribosomes
rmin is required in order for bacteria to self replicate, we
define the kinetics of the problem as vM (s,m)

.
= wM (s)m,

vR(p, r)
.
= wR(p) (r − rmin) and vX (p,m)

.
= wX(p)m,

with wR(p)
.
= kR p/(KR + p), wM (s)

.
= kMs/(KS + s)

and wX(p)
.
= kXp/(KX + p). We will model a production

process in which the substrate remains constant. This could
be the result of an external control regulating through an
inflow of fresh medium to the bioreactor, or due to high
availability in the medium. Thus, we replace wM (s) = eM ,
with eM > 0 constant. We define the non-dimensional
timescale t̂ = kRt, as well as the mass fractions of the
total volume V: p̂ .

= βp, r̂ .
= βr, r̂min

.
= βrmin, m̂ .

=
βm = rmax − r, q̂ .

= βq = 1 − rmax. Additionally, we
define non-dimensional synthesis rates ŵR(p) = wR(p)/kR,
ŵX(p) = wX(p)/kR, and parameter EM

.
= eM/kR. Then,

dropping all hats, the model becomes

ṗ = EM (rmax − r)− wX(p)(rmax − r)

−(p+ 1)wR(p)(r − rmin),

ṙ = (rmaxα− r)wR(p)(r − rmin),

Ẋ = wX(p)(rmax − r)V,

V̇ = wR(p)(r − rmin)V,

(2)

where q and m have been removed using equations (1). The
parameter values of the kinetics and of bounds rmin and rmax

are fixed based on previous studies [2], [3], [13].
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B. Naturally-evolved resource allocation strategy

A common assumption in biology is that microorganisms
have evolved resource allocation strategies that maximise
their growth rate, which allow them to outgrow competing or-
ganisms. Such assumption can be represented by an OCP, in
which the objective is to maximise the synthesis of biomass
in an interval of time T given by ∆V(T ) = V(T ) − V(0).
This defines the cost function

JN (α) =

∫ T

0

wR(p)(r − rmin)V dt.

Thus, as neither the states nor the cost function depend on
variable X , we will define the OCP for the reduced state
(p, r,V) with dynamics

ṗ = EM (rmax − r)− wX(p)(rmax − r)

−(p+ 1)wR(p)(r − rmin),

ṙ = (rmaxα− r)wR(p)(r − rmin),

V̇ = wR(p)(r − rmin)V,

(SN)

and initial conditions

p(0) = p0, r(0) = r0 V(0) = V0. (IC)

with p0 > 0, r0 ∈ (rmin, rmax) and V0 > 0. The OCP is
then defined as

maximise
α

biomass production JN (α),

subject to dynamics (SN),
initial conditions (IC),
α(·) ∈ U ,
t ∈ [0, T ].

(OCPN)

where U is the set of admissible controllers, which are
Lebesgue measurable real-valued functions defined on the
time interval [0, T ] and satisfying α(t) ∈ [0, 1]. In [2], the
particular case where wX(p) = 0, rmax = 1 and rmin = 0
has been studied, and similar analyses have been carried
out in [3], [4]. By application of the PMP, it is possible to
show that the optimal control that solves OCPN has bang and
singular arcs, where the singular arc corresponds to the solu-
tion of the static optimal control problem obtained through
the addition of the constraint (ṗ, ṙ, V̇) = 0. The solution
is characterized by the presence of the Fuller phenomenon
before and after the constant singular arc, which produces an
infinite number of bangs (also known as chattering), a feature
that, due to obvious physical limitations, is not possible to
implement (nor expected to be found in nature). An example
of this kind of structure is shown in Figure 2.

Remark 1: Problem OCPN can be further simplified by
considering the cost function lnV(T ) instead of V(T ). Then,
neither the dynamics nor the cost function depend on V , so
the problem can be rewritten in terms of the state (p, r) [2].

C. MPC parametrisation of the natural allocation

In order to incorporate the natural allocation strategy of the
cell into the MPC loop, we propose a sub-optimal parametric
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Fig. 2: Optimal control α obtained with Bocop [14]. Simula-
tion in a rich medium with eM = kR, meaning the medium
enables the maximum growth rate. Initial conditions are
p0 = 0.024, r0 = 0.2, and V0 = 0.003, and the simulation
time is set to T = 15.

form of α given by

αso(θ, t) =

 b1 if t < t1,
α∗ if t1 ≤ t ≤ t2,
b2 if t > t2,

with the set of parameters θ .
= (b1, b2, t1, t2, α

∗) subject to

b1 ∈ {0, 1}, b2 ∈ {0, 1},
tf ≥ t2 ≥ t1 ≥ 0, 1 ≥ α∗ ≥ 0,

(3)

where b1 and b2 are Boolean parameters. The suboptimal
parametric allocation αso deliberately neglects the chattering
artifact from the optimal control α, replacing it by pure
bang controls during the intervals [0, t1) and (t2, T ]. In
order to compare the performance of the proposed controller,
we write an optimisation problem with the same biomass
production objective JN . At each time instant of the control
loop, the algorithm finds the vector of parameters θ that
maximises the final volume of biomass V(T ). The latter
amount to solving four optimisation problems in terms of
(t1, t2, α

∗) given by all possible combinations of Boolean
parameters (b1, b2). At each iteration k, the control loop
starts by measuring the system and getting an estimation
(p̃k, r̃k, Ṽk) of the system state. Thus, the optimisation
problem at iteration k is formulated with initial conditions

(p(kτ), r(kτ),V(kτ)) = (p̃k, r̃k, Ṽk). (4)

This defines the optimisation problem

maximise
θ

biomass production JN (θ)

subject to dynamics (SN),
initial conditions (4)
α(·) = αso(θ, t),

input constraints (3)
t ∈ [kτ, T ]

(OPk)

which is solved at each instant kτ . The scheme proposes a
closed-loop form of the open-loop optimal control found in
Subsection II-B, with the purpose of implementing it in the
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hierarchical MPC loop.

D. Numerical example

Figure 3 shows a comparison of the optimal control α and
the proposed suboptimal control αso. The initial and final
Fuller arcs are approximated by pure bang arcs (which are
α = 1 for this particular case), and the parameter α∗ of the
suboptimal control takes exactly the same value of the static
optimal control α∗

opt. The difference between both control
functions is minor, which translates into an imperceptible
difference in the trajectories.
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Fig. 3: Comparison of the optimal control α(t) solution of
OCPN and the MPC scheme parametrized with the subopti-
mal control αso(θ, t). Initial conditions are set to p0 = 0.024,
r0 = 0.2, and V0 = 0.003. The scheme is executed with time
step τ = 0.3. The quantity ∆X amounts to X(T )−X(0).

III. ARTIFICIAL METABOLITE PRODUCTION

The artificial metabolite production problem is to maximise
the synthesis of X over a fixed interval of time [0, T ], which
is equal to ∆X(T ) = X(T )−X(0), and can be expressed
as

JX(u) =

∫ T

0

wX(p)(rmax − r)V dt.

As neither the states nor the cost function depend on variable
X , the reduced system (SN) can be used.

A. Optimal Control Problem

In the original approach [3], the naturally-evolved resource
allocation parameter α is overridden by the external control

u, and so the dynamical equation of r becomes

ṙ = (rmaxu− r)wR(p)(r − rmin).

Then, the optimal control problem is defined as

maximise
u

metabolite production JX(u)

subject to dynamics (SN)
initial conditions (IC)
u(·) ∈ U ,
t ∈ [0, T ].

(OCPX)

B. On the solution of the OCP

Applying PMP, we see that the Hamiltonian is affine in the
control, so it has the form H = H0 +uH1, meaning that the
solution is bang-singular-bang, given by

u(t) =

 0 if H1 < 0,
1 if H1 > 0,

using(t) if H1 = 0.

Examples of optimal trajectories are shown in Figure 4
and Figure 5, where both problems OCPN and OCPX are
compared for different environmental conditions representing
rich and poor qualities of the nutrient in the medium. While
the structures of the optimal control for both problems are
similar, the optimal strategy maximizing the production of
X is characterized by a non-constant singular arc, which is
close to the solution u∗opt of the static OCP, but deviates
from it towards the end. Additionally, the times at which
the junctions between bang and singular arc are produced
differ, as well as the values of the bangs. In particular, in
both Figures, the final bang of the natural control is α = 1,
while that of the artificial control is u = 0. More detailed
calculations of the PMP approach can be found in [3].
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Fig. 4: Optimal control obtained with Bocop. Simulation in
a rich medium with eM = kR, meaning that the substrate
enables the maximum growth rate. Initial conditions are p0 =
0.024, r0 = 0.1 and the simulation time is set to T = 30.

C. Product maximisation including naturally-evolved allo-
cation

The comparison between OCPN and OCPX proves useful to
observe that the natural behavior of microbes does not nec-
essarily match the artificial objective of producing a certain
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Fig. 5: Optimal control obtained with Bocop. Simulation in a
poor medium with eM = 0.5kR. Initial conditions are p0 =
0.024, r0 = 0.3 and the simulation time is set to T = 30.

metabolite. However, the assumption made in OCPX is a
pure theoretical one, as α cannot be completely substituted
by the external control. We then propose an approach that
takes into account two distinct processes: (i) the ability
of bacteria to maximise their biomass through the optimal
allocation described by the internal control problem OCPN,
(ii) the external action of an operator intending to maximise
the production of the metabolite of interest X. In practice,
the new pathway associated to the dynamics of X in (2) is
obtained by optogenetic engineering of a strain of bacteria:
a light-induced control I is able to externally modulate the
natural allocation process. This is modeled by replacing the
control u of OCPX by u = α(p, r)I , so that the external
control affects in a multiplicative way the internal allocation
strategy. The crucial difference with the previous formulation
[3] is that the internal control α of the bacteria now appears
in feedback form (thus depending on the two states of OCPN;
see Remark 1), and is modulated by the external light-
induced control I. It is noteworthy that no competition occur
between the two objectives (biomass vs. metabolite pro-
duction maximisation). The approach considers the internal
control in feedback form, which is mitigated by an external
control in relation with a global process that includes the
new pathway to produce the metabolite. In this context, the
proposed hierarchical approach proves to be more relevant
from a biological point of view than a multicriterion one.
Additionally, we assume that the feedback α(p, r) is known
and smooth. While the latter seems to be a strong assumption
from the control point of view (as the solution of OCPN com-
prises bang and singular arcs), it is a reasonable assumption
in our biological setting, where the kinetics of the involved
biochemical reactions prescribe continuous behaviours (see
[2] for biologically relevant approximations of the feedback).
Thus, the dynamical equation of r becomes

ṙ = (rmaxα(p, r)I − r)wR(p)(r − rmin), (5)

where the new control I(t) is subject to bound constraints
0 ≤ I(t) ≤ Imax, and the cost JX remains unchanged. This
defines problem OCPX .

D. Hierarchical MPC for metabolite production

In this approach, we approximate the allocation feedback
α(p, r) through the sh-MPC loop described in II-C. At each
iteration k, solving on [kτ, T ] (where T is, as before, the
fixed horizon) yields an approximation of α(pk, rk) (based
on the suboptimal parametric form αso), and of α evaluated
at further steps. Then, this suboptimal feedback is injected in
the dynamics (5) of OCPXso as to find the optimal external
control I maximizing X(T ). Thus, a second MPC is used
”above” the first one. There is a quite large literature on
such approaches combining several MPC loops (see, e.g.,
[15], [16] and references therein). Other relevant matters such
as using different time grids for each MPC loop or, more
generally, synchronisation issues, are not discussed here (see
also the recent paper [17] on convergence of MPC meth-
ods in finite horizon). Instead, we focus on the biological
application. We note, in particular, that when the feedback
α(p, r) is zero (which would be expected for the genuine—
though biologically unrealistic—feedback of OCPN as zero
bang arcs can occur), the external control I is not active.
In practice, when the allocation is close to zero, the MPC
loop would compensate through I for this discrepancy. As
the external control I is bounded, the latter can induce
certain performance loss between the results of the ideal
model OCPX and the more realistic problem OCPX . Such
comparisons are provided in the next paragraph.

IV. NUMERICAL RESULTS

Figure 6 shows a comparison between the optimal trajectory
solution of OCPX and the hierarchical MPC proposed in this
paper. Differences between both trajectories are marginal,
mainly given by the approximation of the singular arc by
a constant control u. In Figure 7 we see how, in order to
match the optimal control u solution of OCPX, the external
signal I completely arrests the natural allocation α (around
t = 12), which implies allocating all the cellular resources
to the metabolic machinery M, thus catalyzing the synthesis
of X. The latter produces the suboptimal control αso to
increasingly compensate until it reaches the value 1. This
result shows the difference between the simulated closed-
loop behavior of the natural allocation strategy αso(p, r),
and the open-loop one (which remains constant almost over
the whole interval [0, T ]).

V. CONCLUSION

In this paper, we presented a hierarchical sh-NMPC approach
to the problem of optimally producing a metabolite of interest
in bacteria. The scheme is based on a parametric version of
the naturally-evolved research allocation strategy proposed
in [2], which represents a closed-loop alternative to these
existing open-loop studies. A second sh-NMPC loop is
applied in a hierarchical manner, in order to achieve the
metabolite maximisation objective while taking into account
the closed-loop natural control. Despite the approach being
at an early stage, with no experimental results, it represents
a step towards plausible biosynthetic real-time implemen-
tations. In future works, we are interested in comparing the

671

Authorized licensed use limited to: INRIA. Downloaded on July 01,2022 at 08:30:49 UTC from IEEE Xplore.  Restrictions apply. 



0 5 10 15 20 25 30
t

0.0

0.5

1.0
u

0.01

0.02

p

0.2

0.4
r

0 20
t

0.01

0.02



0 20
t

0.00

0.02

0.04

ΔX

rmin

rmax

umin

u *
opt

umax

OCPX MPC

Fig. 6: Comparison of the optimal control u(t) solution of
OCPX and the hierarchical MPC scheme parametrized that
considers the natural allocation as an inner MPC loop. Initial
conditions are set to p0 = 0.024, r0 = 0.3, and V0 = 0.003.
Final time is set to T = 30, the scheme is executed with time
step τ = 1 and the environmental constant eM = 0.5kR.
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Fig. 7: Final control u and external signal I obtained from
the MPC loop simulated in Figure 6.

natural MPC approximation with alternatives proposed in the
literature, such as ppGpp regulation [2]. Other extensions
include the possibility of estimating the real value of the

natural allocation through online identification techniques.
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