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Abstract The circular restricted three-body problem is considered to model the dynam-
ics of an artificial body submitted to the attraction of two planets. Minimization of the fuel
consumption of the spacecraft during the transfer, e.g. from the Earth to the Moon, is con-
sidered. In the light of the controllability results of Caillau and Daoud (SIAM J Control
Optim, 2012), existence for this optimal control problem is discussed under simplifying
assumptions. Thanks to Pontryagin maximum principle, the properties of fuel minimizing
controls is detailed, revealing a bang-bang structure which is typical of L1-minimization
problems. Because of the resulting non-smoothness of the Hamiltonian two-point bound-
ary value problem, it is difficult to use shooting methods to compute numerical solutions
(even with multiple shooting, as many switchings on the control occur when low thrusts are
considered). To overcome these difficulties, two homotopies are introduced: One connects
the investigated problem to the minimization of the L2-norm of the control, while the other
introduces an interior penalization in the form of a logarithmic barrier. The combination of
shooting with these continuation procedures allows to compute fuel optimal transfers for
medium or low thrusts in the Earth–Moon system from a geostationary orbit, either towards
the L1 Lagrange point or towards a circular orbit around the Moon. To ensure local optimal-
ity of the computed trajectories, second order conditions are evaluated using conjugate point
tests.
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1 Introduction

The fuel optimal control of space vehicles is a foundational topic in astrodynamics and con-
trol. Minimizing propellant usage enables a mission to continue for a longer period of time
or, often more crucially, allows for the launch of a less massive spacecraft from the Earth.
Thus, even with the advent of highly efficient low-thrust propulsion devices, such as the
one used in the recent SMART-1 mission (Racca 2002), the question of how little propellant
mass is required for a specific mission remains important. The fundamental theory of optimal
control, especially as applied to thrusting space vehicles, has been well established since the
60s in the form of the necessary conditions that an optimal control law will satisfy. This
theory is quite remarkable and surprisingly simple to pose. Despite the ease with which it is
stated, the solution of specific optimal control problems is quite difficult and continues to be
an active area of research. The typical problems that arise in these solutions are mainly rooted
in the need to solve two-point boundary value problem for the optimal control to be found.
Whereas the numerical solution of initial value problems in ordinary differential equations is
well posed and highly advanced, the solution of two-point boundary value problems involving
ordinary differential equations is not so well developed. This paper carries out research that
directly addresses this aspect of the problem, focusing on transfers in the Earth–Moon sys-
tem modeled with the circular restricted three-body problem. While practical control laws for
transfers in the Earth–Moon system were found using direct methods (Mingotti et al. 2009,
2011; Ross and Scheeres 2007), relying on the knowledge of stable/unstable manifolds of
periodic orbits (Martin and Conway 2010), or hybrid ones (Ozimek and Howell 2010)—
combination between direct and indirect methods—, the full solution of such problems for
the actual thrust constraints using the more rigorous indirect method method is still lack-
ing. The indirect solution of this problem has important theoretical implications as it can be
directly checked as to whether it is a local optimum, and in that its solution defines the true
mathematical form that extremal solutions to this problem must possess.

The paper is organised as follows: In Sect. 2, the model used for the mathematical analysis
of the problem is presented. In Sect. 3, existence issues are sketched; using the necessary
condition for solutions, the structure of fuel minimizing controls is derived. Because of the
so-called bang-bang structure of controls, a continuation technique that deforms the problem
into a simpler one is introduced in the last section. Preliminary numerical results using two
different continuations with single shooting are finally given.

2 Problem statement

The Earth–Moon system is modeled with the circular restricted three-body problem (Szebe-
hely 1967). An artificial satellite of negligible mass whose thrust is the control is attracted
by two primary bodies: The Earth, of mass m1, and the Moon, of mass m2. The primaries
describe circular orbits around their common center of mass under the influence of their
mutual gravitational attraction. The spacecraft motion is supposed to be in the orbital plane
containing the primaries (in practice, any deviation manoeuver to get out of this plane calls
for large additional energies). The three dimensional case is concerned with a motion of the
satellite that does not take place in the plane of motion of the primaries. This case appears
when the initial (or final) conditions of the third body (the spacecraft) are such that the body
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Minimum fuel control of the restricted three-body problem 139

is not initially in the plane of motion of the primaries, or when its initial velocity vector has
a component which does not belong to this plane. A standard nondimensionalization of the
restricted problem is performed. Since the mass of the third body is negligible, the character-
istic mass, m∗ := m1 +m2, is the sum of the two primary masses. The characteristic length is
the constant distance between the primaries, l∗. Finally, the characteristic time τ ∗ is defined
in such a way that the gravitational constant G is equal to one. This is accomplished through
the use of Kepler’s third law:

τ ∗ =
√

l∗3

Gm∗ ·

Let µ ∈ (0, 1) be the ratio of the primary masses, µ := m2/m∗, and let us denote m the
mass of the spacecraft and Tmax its maximal thrust. The position-speed vector x is in R4.
The spacecraft motion is ruled by the following first-order controlled differential equation
(Caillau et al. 2010, 2011):

ẋ(t) = f (x(t), u(t))

= F0(x(t)) + Tmax

m
F1(x(t))u1(t) + Tmax

m
F2(x(t))u2(t),

|u(t)| =
√

u2
1(t) + u2

2(t) ≤ 1

where

F0(x) =

⎡

⎢⎢⎢⎣

x3
x4

2x4 + x1 − 1−µ

r3
13

(x1 + µ) − µ

r3
23

(x1 − 1 + µ)

−2x3 + x2 − 1−µ

r3
13

x2 − µ

r3
23

x2

⎤

⎥⎥⎥⎦
,

F1(x) =

⎡

⎢⎢⎣

0
0
1
0

⎤

⎥⎥⎦ , F2(x) =

⎡

⎢⎢⎣

0
0
0
1

⎤

⎥⎥⎦ ,

and u = (u1, u2) the control vector. The spacecraft dynamics are written in barycentric rotat-
ing frame with nondimensional units: The angular velocity of the primaries, their distance,
and the sum of their masses are all set to 1. The first primary of mass 1 − µ, is located at
(−µ, 0), whereas the second primary, of mass µ, is located at (1 − µ, 0). The quantities
r13 and r23 are the distances between the spacecraft and, the Earth and Moon respectively:
r13 = ((x1 + µ)2 + x2

2 )1/2 and r23 = ((x1 − 1 + µ)2 + x2
2 )1/2. Excluding the singularities

at the two primaries, one defines the state space as the submanifold

Xµ := {x ∈ R4 | (x1, x2) ̸= (−µ, 0) and (x1, x2) ̸= (1 − µ, 0)}.

Remark 1 One has to multiply the ratio Tmax/m—where Tmax is expressed in Newtons and m
in kilograms—by the normalization constant l∗3/(Gm∗) when performing numerical com-
putations.

The drift F0 describes the dynamics of the uncontrolled motion. It has five equilibrium
points, namely the Lagrange points or libration points, L1, . . . , L5. Their locations are cal-
culated by solving F0(x) = 0. There are three collinear points situated on the the primaries
axis and two points forming symmetric equilateral triangles with the two primaries. In this
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study, we are interested in the L1 collinear libration point situated between the primaries.1

The dynamics should also take into account the variation of the mass according to

ṁ(t) = −β|u(t)|
where β depends on the specific impulse of the engine. As a result, optimizing fuel comsup-
tion amounts to minimizing the L1-norm of the control,

t f∫

0

|u(t)| dt → min,

where t f is the fixed final time and |.| the Euclidian norm in R2. The variation of the mass will
be neglected in our model for the following reasons: (i) On typical examples, the mass varies
only slightly during the transfer (this fact is verified numerically); (ii) In the two body problem
the numerical results are qualitatively unchanged whether the dynamics of the mass is taken
into account or not for minimum time transfers (Caillau et al. 2003; Bonnard et al. 2007) or
minimum fuel transfers (Gergaud and Haberkorn 2006) and typical specific impulses; (iii)
Mathematically, the inclusion of the mass dynamics leads to a more complicated system of
equations, therefore the system is reduced to equations of motion alone. (iv) Once a solu-
tion of the fixed mass problem is calculated, a continuation procedure (see Sect. 4) on the
parameter β may used to to connect the simplified problem to the one with mass variation.

For a fixed final time t f , the control u achieving the minimum fuel transfer is the solution
of the optimal control problem

(P)

⎧
⎨

⎩

J (u) :=
∫ t f

0 |u(t)| dt → min
ẋ(t) = f (x(t), u(t)), |u(t)| ≤ 1
x(0) ∈ X0, x(t f ) ∈ X f

where X0 and X f are submanifolds of Xµ ⊂ R4. In this paper, we investigate transfers from
an Earth orbit. Two targets are considered: First, the libration point L1; secondly, an orbit
around the Moon that we call MO.

3 Existence and structure of controls

Controllability properties are studied in Caillau and Daoud (2012) where they are related to
the value of the Jacobi first integral Jµ at the L1 Lagrange point. Recall that
⎡

⎣Jµ(x) = 1
2
(x2

3 + x2
4 ) − 1

2
(x2

1 + x2
2 ) − 1 − µ

√
(x1 + µ)2 + x2

2

− µ
√

(x1 − 1 + µ)2 + x2
2

⎤

⎦,

and assume that points in X0 and X f have Jacobi constant less than2 Jµ(L1); then, for any
positive Tmax, an admissible trajectory connecting X0 and X f exists.3 Despite the existence of
admissible trajectories, existence of minimizing controls is still an issue essentially because

1 We do not follow here the classical notation of, e.g., Szebehely (1967), where this point is referred to as the
L2 libration point.
2 Note that this value depends on µ not only through Jµ but also through L1.
3 To be accurate, one has to restrict to the appropriate connex component of {x ∈ Xµ | Jµ(x) < Jµ(L1)}
(see Caillau and Daoud 2012).
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Minimum fuel control of the restricted three-body problem 141

of collisions, as one has to prove that trajectories not remaining in a fix compact cannot be
optimal. We do not address this delicate point here and assume that we can restrict to some
compact (depending on µ, Tmax, X0 and X f ) to which optimal trajectories are interior.

Proposition 1 Under the previous assumption, existence of optimal trajectories hold.

Proof As we have assumed that trajectories remain in a fix compact, existence is given by
Filippov theorem (Agrachev and Sachkov 2004) since the convexity issues due to the |u|
term in the integrand of the cost can be dealt with as in Gergaud and Haberkorn (2006). ⊓)

Minimizing trajectories are projections of extremal curves parameterized by the maximum
principle (Agrachev and Sachkov 2004). Let ū : [0, t f ] → R2 be a measurable optimal con-
trol, and let x̄ be the associated trajectory; there exist a nonpositive scalar p̄0 and a Lipschitz
covector function p̄ : [0, t f ] → (Rn)∗, not both zero, such that

˙̄x(t) = ∂H
∂p

(x̄(t), ū(t), p̄(t)), ˙̄p(t) = −∂H
∂x

(x̄(t), ū(t), p̄(t))

almost everywhere on [0, t f ] where H(x, u, p) := p0 f 0(x, u) + p f (x, u). Moreover, the
maximization condition holds,

H(x̄(t), ū(t), p̄(t)) = max
|u|≤1

H(x̄(t), u, p̄(t))

almost everywhere on [0, t f ].
The triple (x̄, ū, p̄) is called an extremal. Finally, transversality conditions assert that

p̄(0) ⊥ Tx(0) X0, p̄(t f ) ⊥ Tx(t f ) X f . (1)

The nontrivial pair ( p̄0, p̄) is defined up to a positive scalar, and there are two cases: Nor-
mal ( p̄0 < 0) and abnormal ( p̄0 = 0). For given µ, Tmax, X0 and X f , let tmin

f denote the
minimum time (which exists under the same assumption as in Proposition 1).

Proposition 2 If t f > tmin
f there is no abnormal trajectory.

Proof Let ū be an optimal control. Along the extremal associated with ū, define

ϕ(t) := (H1, H2)(x̄(t), p̄(t)), Hi (x, p) := ⟨p, Fi (x, p)⟩, i = 0, 2. (2)

This function has a finite number of zeros on [0, t f ] (see, e.g., Caillau et al. 2003). Assume
by contradiction that p̄0 = 0; the maximization condition implies that ū(t) = ϕ(t)/|ϕ(t)|
almost everywhere, so |ū(t)| = 1 almost everywhere. As a consequence,

t f∫

0

|ū(t)| dt = t f > tmin
f

which contradicts optimality as ũ defined as equal to the minimum time control on [0, tmin
f ]

and 0 on [tmin
f , t f ] has a smaller performance index. ⊓)

Hence, we are only interested in the normal case p̄0 ̸= 0, and we normalize ( p̄0, p̄) by
setting p̄0 = −1. The optimal control is calculated thanks to the maximization condition.
We introduce the switching function

ψ(x, p) := Tmax

m
|ϕ(x, p)| − 1. (3)
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142 J.-B. Caillau et al.

The control value is determined according to the sign of ψ as below:

u(x, p) =

⎧
⎨

⎩

ϕ(x, p)/|ϕ(x, p)| if ψ(x, p) > 0,

0 if ψ(x, p) < 0,

αϕ(x, p)/|ϕ(x, p)|, α ∈ [0, 1] if ψ(x, p) = 0.

The maximized Hamiltonian is a function of (x, p) only, H(x, p) = H0(x, p) + ψ+(x, p)

with y+ := max(y, 0). The maximum principle thus leads to solve the two point boundary
value problem whose right-hand side is well defined outside {ϕ = 0} ∪ {ψ = 0},

ẋ(t) = ∂H
∂p

(x(t), p(t)) , ṗ(t) = −∂H
∂x

(x(t), p(t)) , (4)

b0(x(0), p(0)) = 0, b f (x(t f ), p(t f )) = 0,

where the functions b0 and b f parameterize the transversality conditions (1). The resolution of
this boundary value problem amounts to finding a zero of the shooting function S : R8 → R8

defined by:

S(x0, p0) := (b(x0, p0), b(x(t f , x0, p0), p(t f , x0, p0)))

where (x, p)(t, x0, p0) denotes the solution of the Hamiltonian differential equation (4) at
time t . The true Hamiltonian is non smooth and only continuous. The optimal control is
bang-bang: |u| switches between zero and one. As in the two-body case, this fact makes it
difficult if not impossible, to find zeros of the shooting function which is not even continuous
at some points (Gergaud and Haberkorn 2006). This is due to the fact that the cost function,
f 0 : (x, u) .→ |u|, is only concave but not strictly concave with respect to u, and so is the
Hamiltonian H(x, u, p) with respect to u. The initialization task is complicated since the
control solution involves switchings. In addition, the number of switchings increases when
considering lower thrusts. To have an initial guess to solve the shooting equation with a
Newton-type method requires to know a priori the number and approximate location of the
optimal control switchings. To address this concern, we use continuation methods as in the
two-body case (Gergaud and Haberkorn 2006).

4 Continuation methods

We embed the previous optimal control into a one-parameter family of control problems (Pλ)
with strictly concave cost integrand f0(x, u, λ),

(Pλ)

⎧
⎨

⎩

Jλ(u) :=
∫ t f

0 f 0(x(t), u(t), λ) dt → min
ẋ(t) = f (x(t), u(t)), |u(t)| ≤ 1
x(0) ∈ X0, x(t f ) ∈ X f

The resolution of (Pλ), for the two transfer cases, leads to find a zero of a shooting function,
Sλ. The homotopy on the parameter λ ∈ [λ0, λ f ] is choosen such that:

(i) For λ = λ f we retrieve the initial problem, (Pλ f ) = (P).
(ii) It is known how to find a zero of Sλ0 , which solves (Pλ0).

(iii) The cost function is strictly concave with respect to u for λ < λ f and so is the
maximized Hamiltonian; as a result, the function u(x, p) is at least continuous.

Once a zero of Sλ0 is found, the path of zeros of the shooting function Sλ is followed from
λ = λ0 to λ f .
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Minimum fuel control of the restricted three-body problem 143

4.1 Energy-consumption homotopy

We focus first on a so-called energy-consumption homotopy, also referred to as L2 − L1

homotopy as it connects the minimization of the (squarred) L2-norm of the control to the
L1-norm. The homotopy is obtained by taking a convex combination of the two costs,

f 0(x, u, λ) := (1 − λ)|u|2 + λ|u|.
When λ = 1, problem (P) is retrieved. When λ = 0 the problem is called energy minimi-
zation problem. It is known to be much easier to solve than the minimum fuel problem, as
investigated in the two-body case (Gergaud and Haberkorn 2006). The Hamiltonian now is

Hλ(x, u, p) = −λ|u| − (1 − λ)|u|2 + H0(x, p) + Tmax

m
(u1 H1(x, p) + u2 H2(x, p)).

For λ < 1, Hλ(x, u, p) is strictly concave with respect to u and admits a unique maximizer
continuously depending on (x, p). Let us define

αλ(x, p) := (Tmax/m)|ϕ(x, p)| − λ

2(1 − λ)
, λ < 1.

As before |u| ≤ 1, so the maximization condition implies that

uλ(x, p) =

⎧
⎨

⎩

ϕ(x, p)/|ϕ(x, p)| if αλ(x, p) > 1,

0 if αλ(x, p) < 0,

αλ(x, p)ϕ(x, p)/|ϕ(x, p)| if 0 ≤ αλ(x, p) ≤ 1.

Remark 2 The optimal control uλ is continuous but not smooth so the true Hamiltonian in
this case is also only continuous and non smooth.

In order to study the variation of the criterion Jλ(u) with respect to the homotopic parameter
λ and its convergence when λ tends towards 1, we recall the following result.

Proposition 3 (Gergaud and Haberkorn 2006) Let (xλ, uλ) be a solution of the problem (Pλ)
then for 0 ≤ λ ≤ λ′ ≤ 1, we have:

(i) Jλ(uλ) ≤ Jλ′(uλ′) ≤ J1(u1) ≤ J1(uλ)
(ii) Jλ(uλ) and J1(uλ) tend to J1(u1) when λ tends to 1.

To start the energy-consumption homotopy one has to solve the minimum energy transfer
problem. To facilitate the numerical resolution, we omit the constraint on the control, |u| ≤ 1.
This makes the control and the true Hamiltonian smooth. Let us consider so

(P̃0)

⎧
⎨

⎩

∫ t f
0 |u(t)|2 dt → min

ẋ(t) = f (x(t), u(t))
x(0) ∈ X0, x(t f ) ∈ X f

One has (P̃0) = (P0) when the control solution verifies |u(t)| ≤ 1, ∀t ∈ [0, t f ]. Applying
the maximum principle to the relaxed problem leads to a smooth maximized Hamiltonian:

H̃0(x, p) = H0(x, p) + T 2
max

2m2 (H2
1 (x, p) + H2

2 (x, p)).

The strategy is (i) to solve P̃0—which is quite easy even without a priori knowledge on the
solution—, (ii) then to increase the fixed final time (performing a discrete continuation on t f )
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Table 1 Minimum energy transfer towards the orbit MO, Tmax = 10 N

ct f 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

∥u∥∞ 4.12 2.02 1.22 1.02 1.15 1.49 0.83 0.72

The ratio ct f := t f /tmin
f between the fixed final time and the minimum time of the CR3BP computed in

Caillau and Daoud (2012) is iteratively increased (discrete continuation on ct f ) until the constraint on the
control is satisfied

Fig. 1 Control norm |uλ| versus
time for λ equal to
0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
and 0.99 (red), L2−L1 homotopy,
target MO, Tmax = 10 N.
Convergence is observed
numerically when λ tends to one

Fig. 2 Value function versus
time for λ equal to
0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
and 0.99 (red), L2−L1 homotopy,
target MO, Tmax = 10 N.
Convergence is observed
numerically when λ tends to one

so as to satisfy the constraint on the control (the essential supremum of the control tends to
zero as t f → ∞, see Bonnard et al. 2010). The approach detailed previously is consolidated
by numerical tests. Let us consider a spacecraft of mass m = 1500 kg. We aim to design a
minimum fuel transfer from a circular orbit around the Earth of radius 42.165 Mm towards a
circular orbit MO around the Moon of radius 13.084 Mm. The maximum thrust Tmax is 10 N.
Table 1 summarizes the numerical results obtained for (P̃0). The final time for the L2−L1

continuation is so set to 1.7× tmin
f . The bang-bang structure on |u| is captured by the method

as λ tends to 1 (see Figs. 1, 2). Additional results as well as corresponding trajectories in the
moving frame for thrusts between 10 and 3 N are given Fig. 3.

The design of space missions requires a compromise between the mission duration to
reach the target and the propellant consumption. In this context, a very important informa-
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Minimum fuel control of the restricted three-body problem 145

Fig. 3 Minimum fuel consumption optimal trajectory to MO, energy-consumption homotopy, moving frame.
Top left Tmax = 10 N, top right Tmax = 7 N, bottom left Tmax = 5 N, and Tmax = 3 N bottom right. Red
points indicate thrust arcs. The number of these arcs increases when the maximal thrust decreases, reflecting
the growing number of revolutions around the primaries

Fig. 4 Maximum final mass
(in kilograms) with respect to the
time ratio ct f = t f /tmin

f .
Transfer towards MO, maximum
thrust of 10 N. The final mass is
comprised between 1360 and
1370 kg when t f ≥ 1.5tmin

f ; the
final mass is almost constant for
ct f ≥ 2

tion is the graph giving the variation of the final mass versus the transfer time. Such a graph,
as presented Fig. 4, is obtained using a continuation on the ratio ct f ; the graph is concave,
indicating that a good compromise is obtained without going to large values of ct f .
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146 J.-B. Caillau et al.

The L2−L1 continuation has two drawbacks: Firstly, the precision on the solution of the
shooting function deteriorates significantly when λ tends to one as the number of control
switchings becomes very large for low thrusts. Secondly, we are not able to test local optimal-
ity of the computed extremals because second order conditions are only valid for the smooth
case (here, the maximized Hamiltonian is only continuous). A more regular homotopy is
introduced in the next subsection to try and overcome these difficulties.

4.2 Logarithmic barrier homotopy

The logarithmic barrier homotopy is defined by the following new one parameter family of
problems (ε > 0):

(Pε)

⎧
⎨

⎩

Jε(u) :=
∫ t f

0 |u(t)| − ε log |u(t)| − ε log(1 − |u(t)|) dt → min
ẋ(t) = f (x(t), u(t)), 0 < |u(t)| < 1
x(0) ∈ X0, x(t f ) ∈ X f

whereas the original cost functional is retrieved when ε = 0, the control domain is the
pointed open unit ball {u ∈ R2 | 0 < u2

1 + u2
2 < 1} for any ε. This domain not being convex,

existence is an issue we do not elaborate on here. When applying the maximum principle,
one considers the Hamiltonian

Hε(x, u, p)=−|u| + ε(log(|u|) + log(1−|u|)) + H0(x, p) + Tmax

m
(u1 H1(x, p) + u2 H2).

For any positive ε, the unique maximizer is

uε(x, p) = αε(x, p)
ϕ(x, p)

|ϕ(x, p)|
with ψ and ϕ defined by (2) and (3), respectively, and

αε(x, p) := 2ε

2ε − ψ(x, p) +
√
ψ(x, p)2 + 4ε2

·

The maximized Hamiltonian reads

Hε(x, p) = H0(x, p) + ψ(x, p)αε(x, p) + ε logαε(x, p) + ε log(1 − αε(x, p)).

Although nonconvexity makes the convergence analysis more intricate as in the L2−L1 case,
we recall some monotonicity properties of the value function.

Proposition 4 (Gergaud 2008) For all 0 < ε ≤ ε′, if u, uε and uε′ are respectively the
optimal controls solution of the problems (P), (Pε) and (Pε′), then

J (u) ≤ J (uε) ≤ Jε(uε) ≤ Jε′(uε′).

Following an idea of Bertrand and Epenoy (2002), the numerical strategy is to find ε0
such that the solution of (P̃0) (relaxed L2-minimization problem) is a suitable guess for
(Pε0). Then, since the maximized Hamiltonian is now smooth, we can use differential con-
tinuation as implemented in the hampath code (Caillau et al. 2012) to solve the shooting
equation for ε close enough to zero. The result of this approach to compute a minimum fuel
trajectory from the geostationary orbit towards the L1 Lagrange point is given Fig. 5. The
maximum thrust is Tmax = 0.3 N for a mass m = 1500 kg. The transfer to the L1 point is
performed in 8 months and 5 days with a fuel consumption of 31 kg. In terms of acceleration,
this case is equivalent to the SMART-1 mission (see http://www.esa.int/export/SPECIALS/
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Fig. 5 Minimum fuel
consumption trajectory from a
geostationary orbit towards L1,
moving frame, logarithmic
barrier homotopy, L1 target,
Tmax = 0.3 N

Fig. 6 Value functions J (uε)
(blue) and Jε(uε) (black),
logarithmic barrier homotopy, L1
target, Tmax = 0.3 N. The red
points indicate the values actually
computed. Both J (uε) and
Jε(uε) decrease to the same limit
value, which is consistent with
Proposition 4

SMART-1) for which the maximum thrust was 0.07 N for a mass of 350 kg. In the SMART-1
case, initial and final orbits are different from the ones in our simplified model, and the trans-
fer is not planar so only a qualitative and preliminary comparison can be drawn. The duration
of the SMART-1 mission was 13 months for a fuel consumption of 59 kg. For low thrust cases
the transfer time is high and the number of oscillations of the norm of the optimal control
increases a lot. Small homotopic steps are thus needed to ensure shooting convergence down
to low ε values (see Fig. 6).

As afore-mentioned, the maximum principle is essentially a first order necessary con-
dition. To ensure local optimality, second order necessary conditions are introduced. We
recall the theoretical framework and explain the suitable numerical tests. Let (x̄, ū, p̄) be a
reference extremal such that z̄ = (x̄, p̄) is solution of the smooth maximized Hamiltonian
system

ż(t) = −→
H ε(z(t)), t ∈ [0, t f ]
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Fig. 7 Second order condition test for a minimum energy transfer towards the L1 Lagrange point, Tmax =
0.3 N (log-barrier homotopy, ε = 10−5). On the top graph is displayed the determinant of the four Jacobi fields
required for the rank test (log-like scale on the y-axis); the first zero of the determinant (dashed vertical line)—
that is the first conjugate time—is located slightly after the final time (plain vertical line). A complementary
test consists in computing the singular value decomposition of the matrix formed by δxi (t), i = 1, . . . , 4; see
bottom graph

where
−→
H ε = (∂Hε/∂p,−∂Hε/∂x), and satisfies the initial and final conditions x(0) = x0

and x(t f ) = x f (we first assume boundary conditions given as endpoints). The variational
or Jacobi equation along the extremal is the linearized system

δż(t) = −→
H ′
ε(z̄(t))δz(t), t ∈ [0, t f ].

A Jacobi field is a non trivial solution δz = (δx, δp) of this equation; it is said to be vertical
at time t if δx(t) = *δz(t) (where *(x, p) = x is the canonical projection for R8 to R4)
vanishes. A positive time tc is conjugate (to t = 0) if there exists a Jacobi field along the
reference extremal which is vertical at t = 0 and t = tc. The point x(tc) is then called a
conjugate point. This notion generalizes the notion of conjugacy of Riemannian geometry
and is related to local optimality of trajectories. Before stating the generalization of the Jaocbi
theory to the optimal control setting, recall that an extremal is said to be regular if the strong
Legendre condition holds,

∂2 Hε
∂u2 (x̄(t), ū(t), p̄(t))(u, u) ≤ −α|u|2, u ∈ R2, t ∈ [0, t f ],

for some positive constant α.
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Lemma 1 Extremal solutions of (Pε) are regular.

Proof Setting ρ = |u|, it is sufficient to prove that the Hessian of Hε with respect to ρ is
negative definite. Now,

∂2 Hε
∂ρ2 = −ε

(
1
ρ2 + 1

(1 − ρ)2

)
< 0

along the reference extremal, so the result follows. ⊓)
Proposition 5 If there is no conjugate point on (0, t f ] along the reference extremal, then
the extremal is C 0-locally optimal.

Proof The maximized normal Hamiltonian is well defined and smooth, and the reference
extremal is regular by virtue of Lemma 1; in the absence of conjugate point on (0, t f ], we can
construct a field of extremals as in Agrachev and Sachkov (2004) and conclude on optimality
of the reference trajectory among C 0-close trajectories with same endpoints. ⊓)

The algorithm to evaluate conjugate times is the following Bonnard et al. (2005): One
has to compute numerically the Jacobi fields δzi = (δxi , δpi ), i = 1, . . . , 4, corresponding
to the initial conditions δxi (0) = 0 and δpi (0) = ei , i = 1, . . . , 4, where (ei )i=1,...,4 is the
canonical basis of R4. The time tc is conjugate time whenever

rank{δx1(tc), δx2(tc), δx3(tc), δx4(tc)} < 4.

Such a test is implemented in the numerical code hampath (Caillau et al. 2012). The numer-
ical rank tests show that the first conjugate time, t1c, along the computed extremals occurs
after the final time, ensuring local optimality (see Fig. 7 for Tmax = 0.3 N).

5 Conclusion

A method to design minimum fuel, low thrust, transfers in the Earth–Moon system has been
described in this paper. The method uses Pontryagin maximum principle to compute the
optimal law realizing the transfer in the circular restricted three-body problem. Convergence
issues of the shooting algorithm are overcomed by means of suitable continuations, and two
such homotopies have been proposed. Moreover, second-order conditions are tested to ensure
local optimality of the computed extremals. Although these results on a simplified two-dimen-
sional model are of preliminary nature, they illustrate how a combination of shooting and
homotopic techniques allow to address efficiently three-body control problems. Using again
continuation from the simplified model should permit to compute realistic transfers in more
accurate and higher dimensional models (see for instance the 3D results for minimum time
in Caillau and Daoud 2012; Daoud 2011).
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