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ABSTRACT.This article deals with the optimal transfer of a satellite between Keplerian orbits
when the control is oriented along the tangential direction. We consider the time-optimal con-
trol problem and the energy minimization problem. The optimal controls laws have disconti-
nuities and continuations and averaging techniques are applied to smooth the discontinuities.
The smooth approximations of the solutions are computed using a shooting method taking into
account second-order optimality conditions.
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1. Introduction

The orbital transfer is described by thecontrolledKEPLERequation

q̈(t) =−µ
q(t)
|q(t)|3

+
u(t)
m(t)

, (1)

and the mass variation equation

ṁ(t) =−β |u(t)| (2)

where the gravitation constantµ is normalized to 1,q ∈ R3 is the position of the
satellite in a fixed frame whose origin is the Earth center,m is the mass,β > 0 and
u∈R3 represents the thrust, satisfying|u| ≤ ε, and the maximal thrust is small forlow
propulsion.

Two relevant optimal control problems are thetime-optimalcontrol problem (the
transfer time can take several months) and theenergy minimization problem:
Minu(·)

∫ T
0 |u|2dt, this second problem is a regularization of the minimum-fuel op-

timal problem, which amounts to an L1-minimization problem, see [Ger ar].

The thrust can be decomposed in thetangential-normal frame

u = utFt +unFn +ucFc (3)

whereFt , Fn, Fc form an orthonomous frame andFt is colinear to∂/∂ q̇, Fc is perpen-
dicular to the osculating plane Span{q, q̇}, andFn = Fc∧Ft .

An important subproblem is to consider the case where the control is oriented
along the tangential directionFt alone, and the system becomes single-input. This, in
order to understand the effect of each control componentut , un or uc. Moreover, in
electro-ionic propulsion, due to technologic reasons, we must imposecone constraints
conditionson the control directions.

Due to this restriction, the optimal solutions are not smooth. A consequence is a
numerical instability in shooting methods. Moreover, the second-order conditions im-
plemented in theCOTCOTcode [BON 06e] require smooth extremals. The objective
of this article is to present smooth approximations using continuations and homotopic
techniques, which allow to handle numerically the optimal problems, using a shooting
method, taking into account second-order optimality conditions.



Smooth approximations of optimal transfer 3

2. The time-minimal control problem

2.1. Preliminaries

The controlled KEPLERequation where the control is decomposed in the tangential-
normal frame is written

ẋ(t) = F0(x(t))+
1

m(t)

3

∑
i=1

ui(t)Fi(x(t)) (4)

where|u| ≤ ε. According to [Cai 00] the time-optimal transfer is almost everywhere
with maximal thrust|u| = ε andm(t) can be computed integrating (2). Moreover,
excepted isolated singularities that can be handled numerically, an optimal control is
smoothand is given by

u =
ε(H1, H2, H3)
|(H1, H2, H3)|

(5)

whereHi is the Hamiltonian lift〈p, Fi〉 and p is the adjoint vector, solution of the
adjoint system.

If we consider the single-input case, whereut is oriented alongFt , the system takes
the form

ẋ(t) = F0(x(t))+
ut(t)
m(t)

Ft(x(t)) , |ut | ≤ ε ,

and for geometric analysis we can assume that the mass is constant. Since the thrust
is oriented along the osculating plane, the statex = (q, q̇) is restricted to the four-
dimensional space formed by its tangent space. Hence, we can only transfer the system
towards acoplanar orbit. We introduce the so-calledelliptic domainfilled by the
elliptic orbits of KEPLERequation,

X = {(q, q̇) | q∧ q̇ 6= 0, H(q, q̇) < 0}

whereH(q, q̇) = |q̇|2/2−1/|q| is the energy of the KEPLERequation.

Using the analysis of [BON 05c] we have

Proposition 2.1.

(i) The system restricted to the elliptic domain is controllable.

(ii) Every time-optimal control isbang-bang, i.e. u∗(t) = ε sign〈p, Ft(x)〉, where p
is the adjoint vector, and with a finite number of switchings.

2.2. The shooting method

We briefly recall the shooting method applied to the time-minimum problem, with
fixed extremitiesx0 andxf . We consider a system of the form

dx
dt

(t) = f (x(t), u(t)) , (x,u) ∈ X×U ,
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whereX is a n-dimensional manifold andU is the control domain. Thepseudo-
Hamiltonianassociated with the time-optimal control problem is

H(x, p, u) = 〈p, f (x, u)〉.

From PONTRYAGIN’s maximum principle every optimal trajectory is a projection
of aBC-extremal(z, u), z= (x, p) solution of the boundary value problem

ẋ =
∂H
∂ p

(x, p,u) ,

ṗ =−∂H
∂x

(x, p,u) ,

x(0) = x0, x(t f ) = xf

(6)

whereu is computed using the maximization condition

H(x, p, u) = Max
v∈U

H(x, p, v). (7)

By homogeneity, the adjoint vector can be restricted to the projective space
P(T∗

x X) and the maximum of (7) is constant along a reference extremal. We intro-
duce the shooting mapping.

Definition 2.1. We fix x0 and we consider all the extremal curves z(t) = (x(t), p(t))
starting at time0 from x0 and depending upon p(0) = p0. Theshooting mappingis
S : (p0, t f ) 7→ x(t f , p0)− xf , where u is computed using the maximization condition.
Solving the boundary value problem reduces to solve the shooting equation S(p0, t f ) =
0.

2.3. JACOBI equation. Conjugate point

2.3.1. Main assumption

We assume that the control domain is anm-dimensional manifold and restricting
to a chart, the maximization condition implies

∂H
∂u

= 0. (8)

We consider a reference extremalz(t) = (x(t), p(t)) defined on[0, T] and we assume
the strict LEGENDRE condition along z(t) : ∂ 2H/∂u2 < 0 so that the control can
be computed as asmoothmappingur(z). Pluggingur into H(z, u), we define atrue
smooth Hamiltonian Hr(z).

For a fixedx0, let z(t, p0) be the extremal solution of
−→
Hr with initial condition

p0 ∈ P(T∗
x0

X). If Π is the projection(x, p) 7→ x, theexponential mappingis

expx0
: (t, p0) 7→ Π(z(t, p0)) = x(t, p0).
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For a fixedt, the image is the projection of the(n−1)-manifoldL(t) = {z(t), p0 ∈
P(T∗

x0
X)}, and the previous shooting mapping isS(p0, t f ) = expx0

(t f , p0)−xf .

Definition 2.2. Let z(t) = (x(t), p(t)), t ∈ [0, T], be the reference extremal. TheJA-
COBI equation is the variational equatioṅδz(t) = d

−→
Hr(z(t))δz(t). The non-trivial

solutions of this equation are calledJACOBI fields. Let J(t) = (δx(t), δ p(t)) be aJA-
COBI field, J is saidverticalat time t ifδx(t) = 0. A time tc > 0 is said to beconjugate
if there exists aJACOBI field vertical at time t= 0 and t= tc. The point x(tc) is then
called aconjugate point.

A straightforward result is the following.

Proposition 2.2. A time tc is conjugate if and only if the derivative of the exponential
mapping with respect to p0 is not of full rank at t= tc.

2.4. Second-order sufficient condition

We make the following additional assumptions. The reference extremal trajec-
tory t 7→ x(t) is one-to-one on[0,T]. Moreover we assume that on each subinterval
0 ≤ t0 < t1 ≤ T the adjoint vectorp is unique up to a scalar and we are in the so-
callednormal casewhereH = 〈p, f (x, u)〉 is not zero. Hencep can be normalized,
for instance by being chosen on the level set〈p, f (x, u)〉 = 1. We have the following
[SAR 82].

Proposition 2.3. The reference extremal t7→ x(t) is optimal in the C1-topology up to
the first conjugate time t1c and no more optimal if t> t1c.

To getC0-optimality we proceed as follows. If there exists no conjugate point
on [0, T], we can embed the reference trajectory into acentral fieldF formed by all
extremal curves at timet of all extremal curves starting fromx0. At time t, this field is
the projection ofL(t). This construction is valid in a neighbourhood of the reference
curve, but it can be prolongated to a maximal open setW homeomorphic to a convex
cone. The important result is the following [BON 05a].

Proposition 2.4. Excluding x0, assume that there exists an open neighbourhood W of
the reference trajectory in the C0-topology and two smooth mappings V: W → R and
û : W → U such that for each(x, u) in W×U, we have the maximization condition

H(x, dV(x), û(x))≥ H(x, dV(x), u).

Then the reference trajectory is optimal among the trajectories of the system with the
same extremities and contained in W.

Remark 1. The construction of V is equivalent to solve the standardHAMILTON -
JACOBI-BELLMAN equation

Max
u∈U

H

(
x,

∂V
∂x

(x), u

)
= 1,
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and the transfer time between x′
0 and x′1 in W is V(x′1)−V(x′0), the adjoint vector p

being∂V/∂x.

The following is clear.

Proposition 2.5. The shooting mapping S is a local diffeomorphism onto W.

And the final result is

Theorem 2.6. Under our assumptions, the reference curve is C0-optimal with respect
to all curves solution of the system with same extremities and contained in the domain
covered by the central field.

The crucial computational point is to evaluate conjugate points and we have the
following algorithm [BON 06e].

2.4.1. Computation of conjugate points

Let (Ji)i with Ji(0) = (0, δ pi(0)), i = 1, . . . , n− 1 be a basis of JACOBI fields
that are vertical at timet = 0, δ p(0) being normalized byp(0)δ p(0) = 0. The time
tc is conjugate if and only if the rank of the matrixC(t) whose columns areδx j(t),
1≤ j ≤ n−1 is strictly less thatn−1 att = tc.

The numerical efficient test about the rank is provided by asingular value decom-
position(SVD) of the matrixC(t). If σn−1(t) is the smallest singular value, the test is
σn−1(tc) = 0.

This theory requires the Hamiltonian to be smooth, so it cannot be applied to an-
alyze the single-input orbital transfer and we shall need to smooth the Hamiltonian
using regularizing processes such as those described in next section.

3. Continuation methods

Consider the time optimal control problem with fixed extremitiesx0 andxf and
the shooting equationS(p0, t f ) = 0. An important problem to ensure convergence is
to have agood initial guess on p0. For this purpose a powerful method is thecontinu-
ation method[All 90]. We embed the single-input transfer problem denoted(P1) into
a one-parameter family(Pλ ) of problems whereλ ∈ [0, 1] with associated shooting
equationsSλ (p0, t f ) = 0. It was used in time optimal transfer by [Cai 00] (continua-
tion on the maximal thrustε) and in [Ger ar] (continuation between the energy mini-
mization problem and the maximization of the final mass). A crucial property in such
continuation methods is the regularity of the continuation path.

Next, we present two continuations to understand the single-input transfer and
discuss the crucial smoothness property.
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3.1. Continuation on the control domain.

We consider(P0) as the transfer towards a coplanar orbit by settinguc = 0, i.e.
u = utFt +unFn (see the decomposition in (3)) and connect the single-input transfer to
a problem with two control entries.

The only difference between(P0) and(P1) is the set of admissible controls : for
(P0), U0 is the disc of centre 0R2 and radiusε, whereas for(P1), U1 is the segment line
[−ε, ε] directed along the tangential direction (see fig. 1).

λ = 0
0 < λ < 1
λ = 1

ut

un

Figure 1. Continuation on the control domain

The homotopy can therefore be defined as follows. The problem(Pλ ) is the orbital
transfer with control domainUλ whereUλ is the ellipse of centre 0R2, semi-major
axisε along the tangential direction, and semi-minor axis(1−λ )ε along the normal
direction. Except at isolated singularities [Cai 00], the problem(Pλ ) is smooth forλ
in [0, 1[, and associated with the true Hamiltonian function

Hr,λ (t,x, p) = H0 +
ε

m(t)
[
H2

1 +(1−λ )H2
2

]1/2
(9)

with, as before,Hi = 〈p,Fi〉, i = 0, . . . ,3, andHr,λ → Hr = H0 + (ε/m)|H1| when
λ → 1.

3.2. Continuation on the inclination

We impose that the initial orbit, in contrast with the final one, does not belong to
the equatorial plane, and we make a convex homotopy on the initial inclination (that is
on the initial condition, see fig. 2) defined by the vectorh of the equinoctial elements
(see section 3.4):

hx,λ (0) = (1−λ )η (10)
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λ = 0
0 < λ < 1
λ = 1

η (1−λ )η

Figure 2. Continuation on the inclination

whereη 6= 0 is the given initial inclination for the problem(P0). Indeed, the single-
input transfer is a coplanar transfer and we use the following result [Cai 00].

Lemma 3.1. Every extremal trajectory for the coplanar orbit transfer problem is also
extremal for the general orbit transfer problem, provided the initial and final inclina-
tions are the same.

We define(P0) by settingun = 0, i.e. u= utFt +ucFc, and connect the single-input
transfer to a problem with two controls, including a non-coplanar thrustuc in this case.

3.3. Smoothness of the continuation path

According to our preliminary results in Section 2, we have the following (under
assumptions therein).

Proposition 3.2. Provided there is no conjugate point along the path, the mapping
λ 7→ (p0(λ ), t f (λ )) associated with either of the two continuations is smooth for0≤
λ < 1.

Proof. Consider for fixedλ the shooting equationSλ (t f , p0) = 0. If there is no con-
jugate pointSλ is of maximum rank and the equation can be smoothly solved using
the implicit function theorem.

3.4. Numerical computations

For numerical reasons, we chooseequinoctial coordinates [Cai 00]
(P, ex, ey, hx, hy, l) whereP is the semi-latus rectum,e= (ex, ey) the eccentricity vec-
tor,h= (hx, hy) the inclination vector andl the longitude. The first five coordinates are
slow variablescorresponding to the first integrals of the uncontrolled motion, whilel
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is thefast variable. For the numerical computations, we consider the physicals values
of tables 1 and 2, and we assume the mass is varying with equation 2.

Variable Value
ε 6 Newtons
µ 5165.8620912 Mm3.h−2

β = V−1
e 0.0142 Mm−1.h

Table 1. Physical values

Initial conditions Final conditions
P 11.625 Mm 42.165 Mm
ex 0.75 0
ey 0 0
hx η = 0.0612 rad 0 rad
hy 0 rad 0 rad
l π rad 62.000 rad
m 1500 kg

Table 2. Boundary conditions

3.4.1. Evolution of the optimal control along homotopies

We present in figures 3 and 4 the evolution of the optimal thrust along the homo-
topy path respectively for the homotopy on the control domain and the homotopy on
the inclination.

We can see that switchings can be localized at the very beginning of the homotopy
path, that forλ near 0. The remaining part of the homotopy path confirms this local-
ization and tends to give the final shape of the optimal control. This phenomenon has
already been observed in [Ger ar] for the minimum consumption problem where the
homotopy consists in deforming an L2-cost into an L1-cost.

As a first comparison, we can also remark that the localization is far more efficient
in the case of the homotopy on the inclination.

3.4.2. Computation of conjugate times

We can apply the conjugate point test on the intermediate problems(Pλ ) for λ in
[0, 1[, since they provide smooth extremals.

Once we have obtained an extremal by the shooting method, we extend this ex-
tremal up to several times the minimum time. Then we apply our test for fixed ex-
tremities to the extended extremal.
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We present in the figures 5 and 6 the evolution of the smallest singular value along
the homotopy path respectively for the homotopy on the control domain and the ho-
motopy on the inclination. Forλ near to 1, the first conjugate times found for both
homotopies appear to be roughly the same.

We can notice that we have conjugate times at roughly three times the final time
obtained by the shooting method, which confirms previous results [BON 05c].

3.4.3. Analysis of the extremal trajectories

We observe that zones whereu = ε (acceleration phases) are located around the
apocenter. The apocenter is indeed the point where the gravitation is the weakest
therefore it is the place where the acceleration is the most efficient. Conversely, zones
whereu = −ε (deceleration phases) are located around the pericenter where the de-
celeration is the most efficient since the gravitation is the strongest at this point.

Finally, a preliminary interesting constatation on single-input transfers is that,
compared to coplanar transfers with two thrusters, the minimum time is only increased
of approximatively 20%. As illustrated by the second homotopy, a similar approach
with two thrusters instead of three can be considered for non-coplanar transfers.

0 20 40 60 80 100 120
−100

−50

0

50

100

t

u t

λ = 0
λ = 0.5
λ = 0.8
λ = 1

0 20 40 60 80 100 120
−100

−50

0

50

t

u n

λ = 0
λ = 0.5
λ = 0.8
λ = 1

Figure 3. Optimal control: Homotopy on the control domain
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Figure 4. Optimal control: Homotopy on the inclination

4. Averaging method

4.1. Preliminaries

This method can be applied to every optimal transfer with low propulsion but an
appropriate cost is the energyc =

∫ T
0 u2dt, where the transfer time is fixed. It leads

to an averaged system which can be explicitly computed and has moreover a nice
geometric interpretation. The control is rescaled by settingu = εu, |u| ≤ 1, as well as
the cost (c→ εc). To make the computation explicit, we drop the bound|u| ≤ 1 and
practically the constraint|u| ≤ 1 will be fulfilled for large enough transfer times.

It is crucial to represent the system in the adapted coordinates of [GEF 97] denoted
(v,x) wherex = (n,e,ω) belongs to theelliptic domain,

X = {n > 0,−1 < e< 1, ω ∈ S1}.

Herebefore, we have used theelliptic elementswheren is themean movementequal
to

√
1/a3 –a being the semi-major axis–,e is theeccentricity, ω is theargument of
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Figure 5. Smallest singular value: Homotopy on the control domain

the pericenter, andv is thetrue longitudecorresponding to the angle of the pericenter:
v = l −ω wherel is the polar angle orlongitude. The equations are:

ṅ =−3n2/3
(

1+2ecosv+e2

1−e2

)1/2

u, (11)

ė=
2(e+cosv)

n1/3

(
1−e2

1+2ecosv+e2

)1/2

u, (12)

ω̇ =
2sinv

n1/3e

(
1−e2

1+2ecosv+e2

)1/2

u, (13)

l̇ = n
(1+ecosv)2

(1−e2)3/2
· (14)

The coordinates are singular for circular orbits but the singularitye= 0 is removed by
using theeccentricity vector

ex = ecosω, ey = esinω.
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Figure 6. Smallest singular value: Homotopy on the inclination

The control system is of the form

l̇ = ω0(l ,x) ,

ẋ = uF(l ,x)

wherex is in X, l is in S1, F is a smooth vector field onS1×X andω0 is a smooth
positive function defined onS1×X.

4.2. Minimum energy control and averaging

The energy can be written

∫ T

0
u2dt =

∫ l f

l0

u2dl
ω0(l ,x)
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so that, after replacing time by cumulated longitudel , the Hamiltonian to consider
from the maximum principle is

H(l ,x, p,u) =
p0u2 +uP(l ,x, p)

ω0(l ,x)
,

andP is the Hamiltonian lift〈p,F(l ,x)〉.

Hence we have

H(l ,x, p,u) = ε
−u2/2+uP(l ,x, p)

ω0(l ,x)

wherep0 has been normalized to−1/2 in thenormal case(p0 6= 0).

The maximization condition leads then to∂H/∂u = 0 and extremal controls are
u = P(l ,x, p). Plugging such controls intoH, we obtain thetrue Hamiltonian

Hr(l ,x, p) = ε
P2(l ,x, p)
2ω0(l ,x)

· (15)

We drop the parameterε, which amounts to parameterizing byl̃ = ε l instead ofl .
SinceH is 2π-periodic in the angular variable, we introduce

Definition 4.1. The averaged Hamiltonian is

Hr(x, p) =
1

2π

∫ 2π

0
Hr(l ,x, p)dl.

From standard approximation results between trajectories ofHr andHr , the fol-
lowing is true [ARN 78].

Proposition 4.1. Let z(l) and z(l) be respective integral curves of Hr and Hr with
same initial conditions, then the difference z−z is uniformly of ordero(ε) for a length
of order1/ε, and the difference between the respective energy costs is of ordero(ε2).

An important conceptual step introduced in [BON 05b] is to relateH to an optimal
control problem. We refer the reader to the sub-Riemannian formalism, see [BON 03]
for details.

4.3. Averaged Hamiltonian of energy minimization coplanar transfer

4.3.1. Computations

According to equations (11)-(14), the true HamiltonianHr(l ,x, p) can be written
(1/2)〈A(v,x)p, p〉 whereA(v,x) is a symmetric matrix, see [BON 06c]. The averaged
Hamiltonian is similarly written(1/2)〈A(x)p, p〉 whereA(x) is the symmetric matrix
whose elements are the averaged of the six coefficients ofA(v,x).
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Proposition 4.2. The matrixA(x) is diagonal and the averaged Hamiltonian is

Hr =
1

2n5/3

[
9n2p2

n +
4(1−e2)3/2

1+
√

1−e2
p2

e +
4(1−e2)

1+
√

1−e2

p2
ω

e2

]
.

Theorem 4.3. The averaged HamiltonianHr is associated with the three-dimensional
metric

g =
dn2

9n1/3
+n5/3 1+

√
1−e2

4(1−e2)3/2
de2 +n5/3 (1+

√
1−e2)e2

4(1−e2)
dω

2 , (16)

and(n,e,ω) are orthogonal coordinates, singular for circular orbits (e= 0).

4.3.2. Normal coordinates

4.3.2.1. Geometric preliminaries

The elliptic elements(n,e,ω) areorthogonal coordinates[BOL 00], which is an
important geometric reduction for the metric. Further normalizations are needed to
describe the geometric properties of the extremals and perform a complete analysis.
In particular, since the Hamiltonian is not depending onω, the coordinate iscyclic
and its dual variablepω is a first integral of the averaged motion. As a result, if we
restrict the system to the four-dimensional symplectic subspace{ω = pω = 0}, the
Hamiltonian is analytic and is associated with a planar Riemannian metric defined on
the restricted two-dimensional elliptic subdomainX0 = {n > 0, |e|< 1} by

ds2 =
dn2

9n1/3
+n5/3 1+

√
1−e2

4(1−e2)3/2
de2. (17)

Geometrically, the conditionpω = 0 is the transversality condition for a transfer to-
wards a circular orbit, where the angle of the pericenter is not prescribed. This is the
case for the important practical problem of steering the system to thegeostationary
orbit.

The main step when computing a normal form is to reduce the corresponding met-
ric, see [BON 06c].

Proposition 4.4. In the appropriate domain, the planar metric is isomorphic to ds2 =
du2 + u2dv2 (polar form) with u= (2/5)n5/6 and v= (5/4)arcsin(1− 2

√
1−e2).

In suitable coordinates, the geodesics associated with the averaged transfer towards
circular orbits are straight lines.

Theorem 4.5.The extremal flow defined by the averaged HamilonianHr is completely
integrable.

For detailed proof, see again [BON 06c].
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4.3.3. Existence

The two-dimensional elliptic subdomainX0 is defined in polar coordinates by two
copies of{u > 0, v∈]−vc, vc[}, wherec = 4/5 andvc = π/(2c) = 5π/8. Indeed, the
change of variablesv = (1/c)arcsin(1− 2

√
1−e2) has a multiform inverse whene

belongs to]−1,1[ and the two copies have to be glued together alonge= 0 to obtain
the full elliptic subdomain. We setX−

0 = X0∩{e> 0} (respectivelyX+
0 = X0∩{e>

0}) and study now the contact withe = 0, as well as transitions from one copy to
another, see figures 7(i) to 7(iii).

Proposition 4.6. Contacts with e= 0 are either stationnary points or reflections from
X−

0 to X+
0 (or conversely) in flat coordinates.

Proof. Since the averaged Hamiltonian is quadratic in the adjoint state,e= constant
andpe = 0 are stationnary points of the system. More precisely,

ė=
4(1−e2)3/2

1+
√

1−e2
pe,

ṗe =
4e
√

1−e2(3+2
√

1−e2)
(1+

√
1−e2)2

p2
e ,

andė 6= 0 outside the stratumpe = 0: either the contact is a stationnary point, or the
sign of e changes and we go from one copy to another. In the second case, since
v = f (e2) with f = (5/4)arcsin(1−2

√
1−e2), v̇ has opposite left and right limits at

a time such thate= 0:

v̇+ =−v̇− =
5
√

2
4

ė 6= 0.

Now, sincex = uexp(iv) in flat coordinates, ˙x = (u̇+ iuv̇)expiv and the resulting rule

ẋ+− ẋ− = 2iv̇+x

defines a reflection at the contact withe= 0.

The interplay of the multiform change of variables with the lack of geodesic
convexity–that is convexity, geodesics being straight lines–of both copies of the do-
main is described in terms of existence by next proposition.

Proposition 4.7. Let x0 be in X−0 .

(i) If v0 ≥ v′c = π − vc, there are geodesics only towards points in X−
0 such that

v > v0−π.

(ii) If |v0|< v′c, there are geodesics towards any point in X−
0 , but only towards points

in X+
0 such that v< π −2vc−v0.

(iii) If v 0 ≤−v′c, there are geodesics only towards points in X−
0 such that v< π +v0,

and points in X+0 such that v< π −2vc−v0.
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The result on X+0 is deduced by symmetry.

Proof. Obvious, see figures 7(i) to 7(iii). In case (ii), for instance,X−
0 is starshaped

with respect tox0, whence the geodesic accessibility of any point within the copy.

4.4. Optimality results and Riemannian spheres

4.4.1. Preliminaries

Consider the averaged HamiltonianHr(x, p) where x = (n,e,ω) and
p = (pn, pe, pω) associated with the metricg defined by (16). We parameterize geo-
desics by arc-length by restricting the averaged Hamiltonian to the level setH = 1/2.
We noteS(x0, r) the Riemannian sphere with centerx0 and radiusr. Theconjugate
locus C(x0) is the set of first conjugate points when we consider all the extremals start-
ing from x0. The point where the extremal ceases to be minimizing is called thecut
point and the set of cut points form thecut locus L(x0).

The standard results in Riemannian geometry [GAL 87] are applied to make a
complete analysis. If the radius is small enough, the sphere is formed by extremities
of extremal curves and we get global results by extending such curves. A cut point is
either a conjugate point or a point where two minimizing geodesics with equal length
are intersecting. At such points, the sphere is not smooth. As a consequence, the
inspection of the extremal flow permits to decide on global optimality. TheCOTCOT
algorithm is used to evaluate the conjugate points.

4.4.2. Geometric analysis and global optimality

Using Proposition 4.4, we get that extremal curves of the two-dimensional subsys-
tem are globally straight lines. This allows to solve the problem of transfer towards
circular orbits.

To complete the analysis, it is sufficient to analyze the extremals of the two-
dimensional Riemannian metricdv2 + G(v)dw2 [BON 06d]. The covariant function
G(v) is related to the Gauss curvature. It governs the distribution of conjugate points
according to Jacobi equation, and the conjugate locus can be computed.

4.4.3. Numerical simulations

Although explicit computations are tractable thanks to complete integrability, we
can also use numerical simulations to represent Riemannian spheres and conclude
about optimality. Besides, those simulations are necessary to give comparisons be-
tween the extremals of the averaged and the original Hamiltonians. The method of
continuation is then fruitful to initialize the computation of the real system trajecto-
ries.
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(i) v0 ≥ v′c = π −vc

x

y

vc

e=−1

e= 0

x0

v0

X−
0

v0−π

x

y

vc

e= +1

e= 0

X+
0

(ii) |v0|< v′c

x

y

vc

e=−1

e= 0

x0

v0

X−
0

x

y

vc

e= +1

e= 0 π −2vc−v0

X+
0

(iii) v0 ≤−v′c

x

y

vc

e= 0
x0

v0

X−
0

v0 +π

x

y

vc

e= +1

e= 0

π −2vc−v0

X+
0

Figure 7. Domains of existence of optimal solution. Given x0 ∈ X−
0 , i.e. with negative

eccentricty, we obtain (in white) the set of points xf in X−
0 and X+

0 for which an
optimal solution from x0 and xf exists. The sub-domain in X0 where such solutions do
not exist is represented in light gray. The domain in dark gray is outside the elliptic
domain.
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In all figures, we considerx0 = (e0,n0,ω0) = (0.75,0.5,0). On figure 8 we rep-
resent geodesics of the transfer to circular orbits, that is minimizing extremals such
that ω = pω = 0. The figure 9 is a projection of the extremals in the plane(v,w)
and corresponds to extremals of the metric defined in Proposition 4.4. On figure 10
we eventually compare minimizing trajectories of the averaged system with the min-
imizing trajectory of the real problem sharing the same boundary conditions, thus
illustrating the convergence of the continuation method.

Acknowledgements

This work is supported in part by the French Space Agency (contract
02/CNES/0257/00 ) and done in the framework of the HYCON Network of Excel-
lence, contract numberFP6-IST-511368 . Romain DUJOL is CTS (Control Train-
ing Site) fellow numberHPMT-GH-01-00278-101 .

5. References

[All 90] A LLGOWER E., GEORG K., Numerical continuation methods: an introduction,
Springer-Verlag, New York, 1990.

[ARN 78] ARNOLD V. I., Mathematical Methods of Classical Mechanics, Springer-Verlag,
New York, 1978.

[BOL 00] BOLSINOV A. V., FOMENKO A. T., Integrable geodesics flows on two dimensional
surfaces, Kluwer, New York, 2000.

[BON 03] BONNARD B., CHYBA M., Singular trajectories and their role in Control Theory,
vol. 40 ofSMAI - Mathématiques et Applications, Springer, 2003.

[BON 05a] BONNARD B., CAILLAU J.-B., “Advanced Topics in Control Systems Theory”,
vol. 328 ofLecture Notes in Control and Information Sciences, chapter 1 - Introduction to
Nonlinear Control, Springer-Verlag, 2005, Lecture Notes from FAP 2005.

[BON 05b] BONNARD B., CAILLAU J.-B., DUJOL R., “Averaging and optimal control of
elliptic Keplerian orbits with low propulsion”,22nd IFIP TC7 Conference, 2005.

[BON 05c] BONNARD B., CAILLAU J.-B., TRÉLAT E., “Geometric optimal control of elliptic
Keplerian orbits”,Discrete and Continuous Dynamical Systems - Series B, vol. 5, num. 4,
2005, p. 929 – 956.

[BON 06a] BONNARD B., CAILLAU J.-B., DUJOL R., “Note sur la moyennation appliquée
au transfert orbital”, report num.RT/APO/06/4 , Avril 2006, ENSEEIHT-IRIT.

[BON 06b] BONNARD B., CAILLAU J.-B., DUJOL R., “Smooth homotopies for single-input
time optimal orbital transfer”,13th IFAC Workshop on Control Applications of Optimisa-
tion, Cachan, France, April 26-28 2006.

[BON 06c] BONNARD B., CAILLAU J.-B., DUJOL R., “Energy minimization of single input
orbit transfer by averaging and continuation”,Bulletin des Sciences Mathématiques, , to
appear, 2006.

[BON 06d] BONNARD B., CAILLAU J.-B., TRÉLAT E., “Second-order optimality conditions
in optimal control with applications to spaceflight mechanics”,6th AIMS Conference on



20 International Scientific and Technical Encyclopædia.

Dynamical Systems, Differential Equations and Applications, Poitiers, France, June 25-28
2006.

[BON 06e] BONNARD B., CAILLAU J.-B., TRÉLAT E., “Second order optimality conditions
in the smooth case and applications in optimal control”,ESAIM-COCV, , to appear, 2006.

[BON ed] BONNARD B., CAILLAU J.-B., “Riemannian metric of the averaged energy mini-
mization problem in orbital transfer with low thrust”, Ann. I. H. Poincaré, submitted.

[Cai 00] CAILLAU J.-B., “Contribution à l’étude du contrôle en temps minimal des transferts
orbitaux”, PhD thesis, Institut National Polytechnique de Toulouse, Novembre 2000.

[CAI 03] CAILLAU J.-B., GERGAUD J., NOAILLES J., “3D Geosynchronous Transfer of a
Satellite: Continuation on the Thrust”,Journal of Optimization Theory and Applications,
vol. 118, num. 3, 2003, p. 327 – 350.

[CHA 87] CHAPLAIS F., “Averaging and deterministic optimal control”,SIAM Journal Con-
trol and Optimization, vol. 25, num. 3, 1987, p. 767 – 780.

[GAL 87] GALLOT S., HULIN D., LAFONTAINE J.,Riemannian geometry, Springer-Verlag,
Berlin, 1987.

[GEF 97] GEFFROY S., “Généralisation des techniques de moyennation en contrôle optimal,
application aux problèmes de rendez-vous orbitaux à poussée faible”, PhD thesis, Institut
National Polytechnique de Toulouse, France, Octobre 1997.

[Ger ar] GERGAUD J., HABERKORN T., “Homotopy Method for minimum consumption orbit
transfer problem”,ESAIM-COCV, , 2006, to appear.

[SAR 82] SARYCHEV A. V., “The index of second variation of a control system”,Math USSR
Sbornik, vol. 41, 1982, p. 338–401.



Smooth approximations of optimal transfer 21

−0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

u cos(v)

u 
si

n(
v)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

e

n

Figure 8. Geodesics of the transfer towards circular orbits up to length 1, and spheres
for radii between1e−1 and1. On the first graph, flat coordinates are used and the
multiform character of the change of variables from Proposition 4.4 is illustrated by
the reflexion phenomenon on v= −5π/8. As shown on the second graph in coordi-
nates(e,n), there is no self-intersection in the two-dimensional elliptic subdomain,
and the singularity e= 0 is smoothly crossed by geodesics.
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Figure 9. Geodesics up to length1 of the transfer projected on the(v,w)-space, and
associated spheres for radii between1e−1 and1.
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Figure 10. Computation by continuation of the non-averaged solution. The averaged
trajectories are clearly nice approximations of the optimal one of the original system.
Hence, convergence of the underlying shooting method to compute the non-averaged
minimizing trajectory is easily obtained.
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Figure 11. Trajectory of a non-averaged solution forε = 1e−2 with (e(0), n(0)) =
(0.75, 0.5) (e(t f ), n(t f ) = (0.05, 0.3). Dashed ellipses are averaged ellipses and pro-
vide good approximation of the motion.


