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Université de Toulouse
31071 Toulouse, France

E. Trélat
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Abstract. An algorithm to compute the first conjugate point along a smooth
extremal curve is presented. Under generic assumptions, the trajectory ceases
to be locally optimal at such a point. An implementation of this algorithm,
called cotcot, is available online and based on recent developments in geometric
optimal control. It is applied to analyze the averaged optimal transfer of a
satellite between elliptic orbits.

1. Introduction. Given a smooth optimal control problem, the well known Pon-
tryagin Maximum Principle [10] provides mainly first-order necessary conditions for
optimality which allow to compute optimal trajectories. Numerically, their compu-
tation is based on the shooting method (see, e.g., [12]). For a trajectory solution of
the maximum principle, second-order conditions based on the notion of conjugate
point characterize its local optimality (see [6] and references therein for a recent
survey on this theory which has been developed by many authors). Basically, a
solution of the maximum principle is locally optimal up to its first conjugate point,
and loses its optimality beyond this point.

In this article we first recall shortly in §2 the main definitions attached to the
notion of conjugate point, and provide some simple algorithms so as to compute
them. These algorithms have been gathered in [6] in a general framework, and have
been implemented in the cotcot code.1

The second section is devoted to the theoretical and numerical investigation of the
averaged coplanar energy minimization orbit transfer between Keplerian orbits. The
standard energy minimization problem for the coplanar orbit transfer is an optimal
control problem in dimension four, and it has been proved in [4] that averaging
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with respect to the longitude coordinate actually reduces the problem to a three-
dimensional Riemannian problem which shares very nice tractable geometric and
integrability properties. Moreover, this averaged problem happens to be a very good
approximation of the original one. Its study is therefore of primary importance.

After having provided the main geometric features of the problem, we present nu-
merical simulations, led with the aforementioned code, which allow to compute the
whole conjugate locus. Combined with the specific geometric features of the aver-
aged orbit transfer problem, global optimality of the geodesics can be characterized
in this case.

2. Geometric foundations of the method.

2.1. Maximum principle. We consider the time optimal control problem with
fixed extremities x0, xf , for a smooth system written ẋ = F (x, u) in local co-
ordinates on the state-space X and the control domain U that are manifolds of
dimension n and m, respectively.

Proposition 1. If (x, u) is an optimal pair on [0, tf ], then there exists an absolutely
continuous adjoint vector function p, valued in the cotangent space of X and such
that, with H = 〈p, F (x, u)〉, almost everywhere on [0, tf ] we have

ẋ =
∂H

∂p
(x, p, u), ṗ = −∂H

∂x
(x, p, u), (1)

and
H(x, p, u) = max

v∈U
H(x, p, v). (2)

Definition 1. The mapping H from T ∗X × U to R is called the pseudo-Hamilto-
nian. A triple (x, p, u) solution of (1) and (2) is called an extremal trajectory.

2.2. Micro-local resolution. Since U is a manifold, restricting to a chart we may
assume that, locally, U = Rm, and the maximization condition leads to ∂H/∂u = 0.
Our first assumption is the strong Legendre condition.

(A1) The quadratic form ∂2H/∂u2 is negative definite along the reference extremal.

Using the implicit function theorem, the extremal control is then locally defined as
a smooth function of z = (x, p). Plugging this function into the pseudo-Hamiltonian
defines a smooth true Hamiltonian, still denoted H, and the extremal is solution of

ż =
−→
H (z)

with appropriate initial conditions z0 = (x0, p0).

2.3. The concept of conjugate point.

Definition 2. Let z = (x, p) be the reference extremal defined on [0, tf ]. The
variational equation

δż = d
−→
H (z(t))δz

is called the Jacobi equation. A Jacobi field is a non-trivial solution δz = (δx, δp).
It is said to be vertical at time t if δx(t) = dΠ(z(t))δz(t) = 0 where Π : T ∗X → X
is the canonical projection.

The following standard geometric result is crucial [5].
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Proposition 2. Let L0 be the fiber T ∗x0
X, and let Lt = exp t

−→
H (L0) be its image

by the one-parameter subgroup generated by H. Then Lt is a Lagrangian manifold
whose tangent space at z(t) is spanned by Jacobi fields vertical at t = 0. Moreover,
the rank of the restriction to Lt of Π is at most n− 1.

We introduce the notion of endpoint mapping which will be used to formulate
the relevant generic assumptions.

Proposition 3 (see, e.g., [7]). Let x(t, x0, u) be the response to the control function
u starting from x0 at t = 0, and let Ex0,t : u 7→ x(t, x0, u) be the endpoint mapping
for a fixed positive time t. Then, an extremal control u is a singularity of the
endpoint mapping when the set of admissible controls is endowed with the L∞-norm
topology. Moreover, the adjoint vector p(t) is orthogonal to the image of dEx0,t(u).

In order to derive second order optimality conditions, we make additional generic
assumptions.

(A2) On each subinterval [t0, t1], 0 < t0 < t1 ≤ tf , the singularity of Ex(t0),t1−t0 is
of codimension one.

(A3) We are in the normal case, H 6= 0.

As a result, on each subinterval [t0, t1], the extremal trajectory admits a unique
extremal lift (x, p, u) on the cotangent bundle.

Definition 3. We define the exponential mapping

expx0,t(p0) = Π(z(t, x0, p0))

as the projection on X of the integral curve of H with initial condition z0 = (x0, p0),
p0 being restricted to an (n − 1)-dimensional submanifold of T ∗x0

X, depending on
the normalization of H.

Definition 4. Let z = (x, p) be the reference extremal. Under our assumptions,
the positive time tc is called conjugate if the mapping expx0,tc

is not an immersion
at p0. The associated point x(tc) is said to be conjugate to x0. We denote by t1c

the first conjugate time, and C(x0) the conjugate locus formed by the set of first
conjugate points.

The analysis of optimality is done as follows [11].

Proposition 4. Under our assumptions, the reference extremal is locally time op-
timal for the L∞-norm topology on the control set, up to the first conjugate time.

2.4. Testing conjugacy. We provide two equivalent tests.

Test 1. Consider the vector space of dimension n− 1 generated by the Jacobi fields
δzi = (δxi, δpi), i = 1, n−1, vertical at t = 0 and such that the δpi(0) are orthogonal
to p0. At a conjugate time tc, one has

rank {δx1(tc), . . . , δxn−1(tc)} < n− 1.

Test 2. An equivalent test is to augment the family with δzn = (ẋ(t), ṗ(t)) that
corresponds to a time variation δt, and the test becomes

δx1(tc) ∧ · · · ∧ δxn−1(tc) ∧ ẋ(tc) = 0.
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2.5. Central field, sufficient conditions and shooting. We assume that the
reference trajectory t 7→ x(t) is one-to-one, and that there exists no conjugate point
on [0, tf ]. Then we can imbed locally the reference extremal into a central field F

formed by all extremal trajectories starting from x0. Let H̃ = p0 + H be the cost
extended Hamiltonian where p0 is normalized to −1 in the normal case. Restricting
ourselves to the zero level set, we introduce

L = {H̃ = 0}
⋂ ⋃

t≥0

Lt.

By construction, F is the projection of L on the state-space X. The following is
clear.

Proposition 5. The submanifold L is Lagrangian and the projection Π is regular
along the reference extremal. There exists a generating map V such that L is locally
the graph {x, p = ∂V (x)/∂x}.

Using this geometric construction we deduce the standard sufficient condition
hereafter [3].

Proposition 6. Excluding the initial extremity x0, there exists an open neigh-
bourhood W of the reference trajectory and two smooth mappings V : W → R,
û : W → U such that, for each (x, u) in W × U the maximization condition

H̃(x, dV (x), û(x)) ≥ H̃(x, dV (x), u)

holds, as well as H̃(x, dV (x), û(x)) = 0. The reference trajectory is optimal among
all trajectories of the system with the same extremities and contained in W .

The shooting mapping of the problem with fixed extremities x0, xf is defined in
a micro-local neighbourhood of the reference extremal by

S(t, p0) = expx0,t(p0)− xf .

According to the previous paragraph, our assumptions ensure that it is a smooth
function of full rank. This is the crucial condition to compute numerically the tra-
jectory by a shooting method, using for instance a smooth numerical continuation.

The cotcot code. The aim of the method is to provide numerical tools so as to
(i) integrate the smooth Hamiltonian,
(ii) compute Jacobi fields along the extremal,
(iii) detect the resulting conjugate points,
(iv) solve the problem finding a zero of the shooting function.

3. Application to the averaged optimal orbit transfer.

3.1. Global optimality results in Riemannian geometry. Consider a Rie-
mannian problem on an n-dimensional manifold state space X, written as

ẋ =
n∑

i=1

uiFi(x), l =
∫ tf

0

(
n∑

i=1

u2
i

)1/2

dt → min

where l is the length of a curve, and F1, . . . , Fn smooth vector fields. Then g =∑n
i=1 u2

i defines a Riemannian metric on X, and {F1, . . . , Fn} form an orthonormal
frame. If we introduce the energy E =

∫ tf

0

∑n
i=1 u2

i dt, the length minimization is
well-known [7] to be equivalent to the energy minimization problem (with fixed final
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time), and to the time minimal control problem if the curves are parameterized by
arc-length by prescribing the control on the unit sphere,

∑n
i=1 u2

i = 1.
We can easily compute the extremals for the energy minimization problem. In

the normal case (p0 = −1/2, here), the pseudo-Hamiltonian is indeed

H = −1
2

n∑

i=1

u2
i +

n∑

i=1

uiPi(x, p)

where the Pi’s are the Hamiltonian lifts 〈p, Fi(x)〉, i = 1, n. The maximization
condition leads to ui = Pi for i = 1, n, so that the true Hamiltonian is

H(x, p) =
1
2

n∑

i=1

P 2
i (x, p),

which is quadratic in p with full rank.

Definition 5. The separating line L(x0) is the set where two minimizing extremals
departing from x0 intersect. The cut locus Cut(x0) is the set of points where
extremals cease to be globally optimal. We note i(x0) the distance to the cut locus,

i(x0) = d(x0, Cut(x0)),

and i(X) the injectivity radius,

i(X) = inf
x0∈X

i(x0).

We summarize now some useful properties of these sets [9].

Proposition 7. Assume the Riemannian metric complete. Then,
(i) A cut point is either on the separating line, or a conjugate point.
(ii) If x1 is a point that realizes the distance i(x0), then either x1 is conjugate to

x0, or there are two minimizing geodesics joining x0 to x1 that form the two
halves of the same closed geodesic.

(iii) The distance i(x0) is the smallest r such that the Riemannian sphere S(x0, r)
is not smooth.

3.2. Coplanar orbital transfer and averaging. We sketch the framework of [4]
to which we refer the reader for details. We consider the coplanar orbit transfer
represented in Gauss coordinates (l, x) where l is the longitude (polar angle of the
satellite), and where x contains the orbit elements [8], e.g., x = (P, ex, ey), P
being the semi-latus rectum, and (ex, ey) the eccentricity vector whose direction is
the semi-major axis and whose length e is the standard eccentricity. The system
decomposes into

ẋ = u1F1(l, x) + u2F2(l, x), l̇ = g0(l, x),

with

F1 = P 1/2

(
sin l

∂

∂ex
− cos l

∂

∂ey

)

F2 = P 1/2

[
2P

W

∂

∂P
+

(
cos l +

ex + cos l

W

)
∂

∂ex
+

(
sin l +

ey + sin l

W

)
∂

∂ey

]
,

and W = 1 + ex cos l + ey sin l, g0 = W 2/P 3/2. This system of coordinates is well
defined on the elliptic domain X = {P > 0, |e| < 1} filled by elliptic trajectories
of the controlled Kepler equation. The boundary |e| = 1 corresponds to parabolic
trajectories whereas e = 0 defines circular orbits.



150 B. BONNARD, J.-B. CAILLAU AND E. TRÉLAT

We consider the energy minimization problem with cost
∫ tf

0
(u2

1 + u2
2)dt. The

final longitude is free and can be used to reparameterize the trajectories. The true
Hamiltonian in the normal case is obtained as before,

H(l, x, p) =
1

2g0(l, x)

2∑

i=1

Pi(l, x, p)2, Pi(l, x, p) = 〈p, Fi(l, x)〉.

We observe that H is 2π-periodic with respect to l, and this leads to introduce the
averaged Hamiltonian. Such a system is related to an approximation of the true
trajectories by the standard theory [1].

Definition 6. The averaged Hamiltonian is

H(x, p) =
1
2π

∫ 2π

0

H(l, x, p)dl.

It is evaluated using the residue theorem and we get the result hereafter [4].

Proposition 8. Let P = (1−e2)/n2/3, ex = e cos θ and ey = e sin θ, where n is the
mean movement and θ the argument of perigee. In the new coordinates x = (n, e, θ),
the averaged Hamiltonian is

H =
1

4n5/3

[
18n2p2

n + 5(1− e2)p2
e + (5− 4e2)

p2
θ

e2

]
.

Accordingly, integral curves of H are extremals of the Riemannian metric in R3

defined by

ds2 =
1

9n1/3
dn2 +

2n5/3

5(1− e2)
de2 +

2n5/3

(5− 4e2)
e2dθ2,

and (n, e, θ) are orthogonal coordinates.
Our problem is then to analyze the corresponding Riemannian problem to derive

optimality results for the original one.

3.3. Clairaut-Liouville metrics. An important step in the analysis consists in
computing normal coordinates.

Proposition 9. In the elliptic domain, we set

r =
2
5
n5/6, ϕ = arcsin e.

In these coordinates, the metric of the averaged problem is

ds2 = dr2 +
5
2
r2(G(ϕ)dθ2 + dϕ2) (3)

where

G(ϕ) =
5 sin2 ϕ

1 + 4 cos2 ϕ
·

We first observe that metrics of the form (3) reveal two metrics in dimension
two, namely

g1 = dr2 +
5
2
r2dϕ2 and g2 = G(ϕ)dθ2 + dϕ2.

The Hamiltonian associated with the full metric on R3 is

H =
1
2
p2

r +
2

5r2
H2,
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while H2 is associated with g2,

H2 =
1
2

(
p2

θ

G(ϕ)
+ p2

ϕ

)
.

Lemma 1. Since θ is a cyclic coordinate, pθ is a first integral. On the level set
{pθ = 0}, extremals verify θ = constant and geodesics of the polar metric g1 are
straight lines in coordinates x = r sin ψ, z = r cos ψ, with

ψ =
ϕ

c
, c =

√
2
5
·

To complete the analysis, we introduce the following [2].

Definition 7. A metric of the form G(ϕ)dθ2 + dϕ2, where G is a 2π-periodic
function, is called a Clairaut-Liouville metric. The level sets of the two angles θ
and ϕ are meridians and parallels, respectively.

Proposition 10. The Gaussian curvature of a Clairaut-Liouville metric G(ϕ)dθ2+
dϕ2 is

K = − 1√
G

∂2
√

G

∂ϕ2
,

and the Clairaut relation holds,

pθ = cos φ
√

G

where φ is the angle of an extremal parameterized by arc-length with a parallel.
Morevover, the extremal flow is integrable by quadratures.

We fix the level set to H = 1/2. If (r, θ, ϕ) are the components of an extremal
curve, we begin by noting that r2 is a degree two polynomial of time,

r2(t) = t2 + 2r(0)pr(0)t + r2(0). (4)

The remaining equations are then integrated thanks to the reparameterization

dT = 2dt/(5r2) (5)

as Clairaut-Liouville extremals.
Regarding global optimality, the crucial point is to relate the cut locus of the

three-dimensional metric to the cut locus of the restriction of this metric to the
sphere. Let x1 and x2 be two extremal curves, both starting from the same initial
condition x0. Since extremals are parameterized by arc-length, finding points in
L(x0) amounts to finding t such that x1(t) = x2(t). Now, if r1(t) = r2(t) then
pr,1(0) = pr,2(0) and r1(t) = r2(t) for all t by virtue of (4). The analysis is thus
reduced to dimension two.

Proposition 11. The separating line L(x0) is characterized as follows: There exists
two extremals x1, x2 with initial condition x0, and there exists T > 0 such that

θ1(T ) = θ2(T ), ϕ1(T ) = ϕ2(T ),

and such that, for some finite t, the following compatibility condition is fulfilled,

T =
∫ t

0

2dt

5r2
·
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3.4. Application to orbital transfer. According to the previous reduction, the
main point to conclude about global optimality is to evaluate i(x0), the distance
to the cut locus of the Clairaut-Liouville metric g2 = G(ϕ)dθ2 + dϕ2. A direct
computation gives the curvature.

Proposition 12. The curvature of the Clairaut-Liouville metric g2 is

K =
5(1− 8 cos2 ϕ)
(1 + 4 cos2 ϕ)2

≤ 5.

Besides, we can rewrite the metric according to

g2 = E−1
µ (ϕ)

(
sin2 ϕdθ2 + Eµ(ϕ)dϕ2

)

with Eµ = µ2 + (1− µ2) cos2 ϕ and µ = 1/
√

5.

Proposition 13. The Clairaut-Liouville metric g2 is conformally equivalent to the
flat metric on an ellipsoid of revolution of semi-minor axis 1/

√
5.

The restriction of the flat metric on R3 to the ellipsoid

x = sin ϕ cos θ, y = sinϕ sin θ, z = µ cosϕ

is indeed ds2 = sin2 ϕdθ2 + Eµ(ϕ)dϕ2.
Using the cotcot algorithm, we can compute for both metrics the corresponding

conjugate loci. On figure 1, the geodesics associated to orbital transfer are given
for ϕ0 = π/2. On figure 2, we compare the conjugate loci of the two metrics.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

θ

φ

Figure 1. Geodesics in orbital transfer for ϕ0 = π/2. The conju-
gate locus appears as the leftmost enveloppe of points.

An important observation is that ϕ0 = π/2 is the equator solution where the
curvature is constant and maximum: The curvature K is equal to 5, and the first
conjugate point has minimum length, π/

√
5. On figure 3, we compute the respective

spheres for ϕ0 = π/2. In orbital transfer, much similarly to the standard situation
on the ellipsoid, the sphere is smooth up to length π/

√
5 that defines the injectivity

radius.
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Figure 2. Conjugate loci for ϕ0 = π/2. Flat case (top) and or-
bital transfer (bottom). The standard astroid conjugate locus is
obtained in the flat case.
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Figure 3. Spheres and injectivity radius for ϕ0 = π/2. Flat case
(top) and orbital transfer (bottom).
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aux,” Math. and Applications 51, Springer, 2005.

[9] M. P. Do Carmo, “Riemannian Geometry,” Birkhäuser, 1992.
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