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ABSTRACT. The planar circular restricted three-body problem is considered.
The control enters linearly in the equation of motion to model the thrust of
the third body. The minimum time optimal control problem has two scalar
parameters: The ratio of the primaries masses which embeds the two-body
problem into the three-body one, and the upper bound on the control norm.
Regular extremals of the maximum principle are computed by shooting thanks
to continuations with respect to both parameters. Discrete and differential
homotopy are compared in connection with second order sufficient conditions
in optimal control. Homotopy with respect to control bound gives evidence of
various topological structures of extremals.

Introduction. An important simplification of the general three-body problem in
celestial mechanics is the planar circular restricted problem: Two primaries (e.g.,
Earth and Moon) rotate around the center of mass, while a third body evolves in the
plane of their Keplerian motion under their attraction, but not influencing them.
In a rotating frame centered on the barycenter of the primaries, the equations of
the controlled motion are

G+ 20V, (q) +2i¢g = eu, |u| = /u?+u3 <1,

where ¢ and u € C ~ R? are respectively the position and the control vector. The
potential is
g 1—up 7
[ S PR R P W
The system has two parameters, the ratio p of the primaries masses, and the bound
e on the acceleration available to control the third body (a spacecraft). The system
has two limit cases: (i) g = 0, which defines a two-body problem (the second
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primary having no mass); (ii) p = 1/2 for primaries with equal masses defining a
circular choreography.

In cartesian coordinates (g, ¢), the system is defined on the tangent bundle T'Q,,
where (), is the complex plane with two punctures at the primaries, —u and 1 — p,
(singularities of the potential). The set @, has the topology of the eight figure, with
a non-trivial fundamental group (Z x Z). One can alternatively use Jacobi energy
first integral,

Lo -
u(e,d) = =~ +Vula),
to write the uncontrolled system in Hamiltonian form. Setting p = ¢ + iq,
p? L—p p
Julap) = %ﬂmq_ la+ul lg—1+n4]
and the controlled dynamics is
. 0J, . 0Ju

-, =—— +teu, <L
o P aq+u |ul

In control form,
&= Fo(x) + e(ur Fi(x) +ueFao(x)), |u|l <1,
with z € X, and X,, = TQ,, or X, = T*Q,, (cotangent bundle) depending on the

choice of coordinates. In (g, ¢) variables,

e, — L0 0 0
—qa*q - (QaVu((J)‘FQ“J)aTj; Fi(z) = P 2(z) = P

We consider minimum time control of the system. (See [5] for the case of energy).
According to Pontryagin maximum principle, optimal trajectories must be projec-
tions on X, of extremals, that is of integral curves of the following Hamiltonian:'

H:pO+H0,M+€(u1H1+u2H2)7 HZ: <paFl(x)>v Z:07172

FO,u(x)

The Hamiltonian and the lifts H; are defined on 7% X, and there are two possi-
bilities because of homogeneity in (p°,p) (p° is a nonpositive scalar): (i) p° # 0
(normal case), (ii) p° = 0 (abnormal case). Restricting to normal extremals, we set
p® = —1. Moreover, the Hamiltonian has to be maximized almost everywhere with

respect to the control, so u = (Hy, Ha)/|(H1, H2)| and

H = -1+ Hy, +¢e\/H} + H3 (1)

outside the codimension two switching surface ¥ = {H; = Hy = 0}. (See [8] for a
detailed analysis).

The flow of the smooth Hamiltonian (1) is studied using homotopies on the two
parameters of the problem. First, “a la Poincaré”, with a continuation on parameter
w. This amounts to connecting (controlled) two- and three-body problems, the
former being well understood [3]. Discrete and differential homotopies on u are
compared in section 1. A neat framework for the latter is provided by the theory of
second order conditions in optimal control. In section 2, homotopy on the control
bound ¢ is considered. Using both discrete and differential homotopies, insight
into the corresponding paths is obtained despite difficulties due in particular to the
topology of @, as discussed in the last section.

IFrom now on, p denotes the dual to z, not to ¢ anymore: (x,p) € T Xy



DISCRETE AND DIFFERENTIAL HOMOTOPY IN THREE-BODY CONTROL 231

1. Homotopy on u. Continuation on y allows to embed the two-body controlled
problem into the three-body one. The simplest approach is then to devise heuristi-
cally a sequence () from g = 0 to the targeted value p, for instance u = 1/2. At
step k, the solution is used to initialize the (k 4+ 1)-th computation. Good initial-
izations are indeed crucial to ensure convergence of the so-called shooting method
based on Pontryagin maximum principle.

Since the final time to be minimized is unknown, extremals are to be sought on
the zero level set of the Hamiltonian. One defines the exponential mapping

exp,, : (ty,po) = (ts, zo,po)

on a neighbourhood of the origin in R x H(xo,.)"!({0}), where x(ts, xo,po) is the
projection on the x-space of the extremal departing from (xg,pp). Expliciting the
dependence with the homotopic parameter A = p (e is fixed), the shooting function
is

S(€,N) :expwo()\)(fv)‘) —xp(A), &= (ts,po),

where 2 is the target (a choice of coordinates in which to express the terminal
conditions is assumed). Both the initial and final points may vary with p, here,
hence the dependence of z and x5 in the parameter.” Numerical results of discrete
homotopy to compute time minimal trajectories towards the Ly Lagrange libration
point (equilibrium point of the uncontrolled system whose position depend on g,
see [12]) are displayed in Fig. 1. A remarkable feature is that, starting from u = 0,
one discrete step suffices to reach u ~ 1.21e — 2 corresponding to the Earth-Moon
system. Local optimality of the computed extremals is checked using the theory of
conjugate points that we now briefly sketch [1].

L L L L L L L L L L L
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FIGURE 1. Homotopy on u, € = 2.440e — 1, minimum time transfer
towards Lo Lagrange point. Left, u = 0.1. The first phase around the
first primary is essentially a two-body control phase. This is typically
the case for the Earth-Moon system as g ~ 1.21e — 2 is even smaller.
Right, = 0.5. The perturbation due to the second primary now with
equal mass is clearly observed as the eccentricity of intermediate orbits
is increased.

2The target alone will depend on the homotopy parameter, here.
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An extremal z = (x,p) is reqular if it exists a > 0 such that the strong Legendre
condition holds along z (below m is the dimension of the control),
2

ou?
Here, as u belongs to S!, one can set u = (cos,sinf) (§ € R), and extremals are
regular outside the switching surface as

0*H
07 = —e\/H? + HZ.

The variational equation on [0, ], 62(t) = ﬁ’(z(t))éz(t) is called the Jacobi equa-
tion along z. An instant t. € (0,%s] is a conjugate time (and x(t.) is a conjugate
point) if there is a Jacobi field, 6z = (dx, 0p), non-trivial (dx not = 0) and vertical
at 0 and t.,

(z(t), p(t), u(t))(v,v) < —alv]?, veR™, tel0,ty]

dz(0) = dx(t.) = 0.

Theorem 1.1. [1] A normal regular extremal without conjugate point is €°-locally
optimal among trajectories with same endpoints.

By restricting if necessary the open subset 2 of definition of the shooting function,
we may assume that S is regular. Then, 0 is a regular value and each connected com-
ponent of S71({0}) (there are finitely many if 2 is bounded) is a one-dimensional
embedded submanifold diffeomorphic either to S* or to R. As each ¢ = (£,)) € Q
is a regular point of S, it is possible to define ?(c) as the unit vector in the kernel
of S’(c). Such a vector is unique provided a choice of orientation is made according
to det(%S’(c), T (c)) > 0 (see [2]). Starting from ¢y € S~1({0}), the corresponding
connected component or branch is parameterized by the differential equation with
respect to curvilinear abscissa

L) =Tlels)), e(0) = ev )
At a point c(s) = (t¢(s),po(s), A(s)), second order sufficient conditions are checked
using a simple numerical rank evaluation [7]. Indeed, at time ¢ € (0,t;(s)], Jacobi
fields span the image of the differential with respect to (¢, pg) of

(tap0a )‘) = J?(t, Zo, Po, )‘)

So verifying that this mapping has a full rank derivative at all (¢,po(s)) for ¢t €
(0,t¢(s)] ensures that we have a 4°-local minimizer at ¢ ¢(s). This eventually implies
that 05/0&(c(s)) has full rank, so the path can locally be parameterized not only
by s but also by A (no turning point). The path computed thanks to [7] which,
in contrast to standard differential homotopy codes, integrates without correction

step equation (2), is portrayed in Fig. 2. The strength of the differential approach,
when applicable, is that steps are automatically computed and tuned.

2. Homotopy on . Having obtained three-body minimum time trajectories using
an homotopy on u, our second goal is to iterate these computations for smaller
values of the control bound,® . We are faced with several issues. Paths may have
turning points associated with rank drops in the partial derivative of the shooting
function that prevent the verification of second order sufficient conditions (see the
end of the section for an adaptation of such conditions to the case of terminal

3Low thrust transfers are an important class of applications in space mechanics. The SMART-1
mission is a recent example of such missions.
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transfer time
~
o

FIGURE 2. Homotopy on u, ¢ = 2.440e — 1, minimum time transfer
towards Lo Lagrange point. The value function p — t5(u) is portrayed.

submanifold—a circular orbit around the Moon is targeted, here). See for instance
Fig. 3-4. Moreover, to ensure global optimality, for a given € one has to compare
costs on the different connected components of the set of zeros, and it turns that
one has to jump from one component to another. While a given branch is followed
using differential homotopy (integration of 2), switching branches is obtained by
discrete homotopy. Combining both approaches allow to obtain extremals whose
local optimality is checked by second order conditions and whose global optimality
is tested by comparing various branches.
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FIGURE 3. Homotopy on &, Earth-Moon case (1 ~ 1.21e — 2), mini-
mum time transfer towards a circular orbit around the second primary.
On both subgraphs, € is expressed in Newtons. In the Earth-Moon sys-
tem, a 1 Newton thrust on a 1500 Kilogram spacecraft (typical mass
for medium or low-thrust transfers) is equivalent to & ~ 2.440e — 1.
The same reference to Newtons is made in subsequent figures. On the
left, the abscissa is the curvilinear abscissa on the path and two turning
points are observed (see also Fig. 4). The corresponding cusp points on
€ — ty(g) are observed on the right. Optimality is necessarily lost past
the self-intersection point near € ~ 9.675e — 1 (see also Fig. 9).

Before proposing a preliminary discussion of the topology of solutions observed
on different branches (see Fig. 5), we conclude the section by recalling that, in the
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FIGURE 4. Homotopy on e, Earth-Moon case (¢ ~ 1.21e—2), minimum
time transfer towards a circular orbit around the second primary. The
four components of the adjoint state py are portrayed. The same two
turning points as in Fig. 3 are observed. A refined computation confirm
that there is no self-intersection of the curves (no bifurcation).

case of a terminal condition defining a submanifold (here a circular orbit instead
of a single point such as a Lagrangian point as in section 2), the conjugate point
notion can be adapted as follows. When the target is a proper submanifold X, a
time t. € (0,ty] is said to be focal (see [11] for a discussion in the Riemannian case,
and [4] in optimal control) if there is a non-trivial Jacobi field §z along z which is
vertical at ¢ = 0 and such that

5Z(tc) S Tz(tC)X;_
where X JJ; is the Lagrangian submanifold
X;‘ ={z=(z,p) €T*"X |z e Xyandp L T, X}

We are thus again able to check local optimality of transfers from circular to circular
orbits, such as the one in Fig. 6.

3. Homological classification. Homotopy on € in the previous section suggests
that to different connected components of the path are associated solutions of dif-
ferent homological nature: Either winding around the second primary changes from
positive to negative, or the sign remain constant but the winding number changes.
A coarse classification can be made using homology of (closed) curves in Q. (The
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FIGURE 5. Homotopy on ¢, Earth-Moon case (¢ ~ 1.21e—2), minimum
time transfer towards a circular orbit around the second primary. Top
pictures are transfers for e = 2.440e — 1 (left) and € = 2.342e — 1 (right),
respectively. Bottom pictures are transfers for € = 2.294e — 1 (left) and
€ = 2.196e — 1 (right), respectively. While the two previous trajectories
wind up positively around the two primaries, both transfers wind up
negatively around the second primary, illustrating a first difference of
homological nature. Moreover, the last transfer differs from the three
others in having one more revolution around the first primary.

classification is coarse as it takes into account neither the ¢ coordinate, nor the
adjoint p).

First restricting to extremals with boundary conditions on g; = 0 (the line defined
by the two punctures in @Q,,), one can associate to any such extremal a closed curve
by patching to it the curve symmetric with respect to g = 0 (and orientation
reversed), see Fig. 7. The homology of this curve turns to be sufficient to classify the
different types of solutions observed on disjoint components of the homotopy path.
Note nevertheless that in Fig. 5, the first two curves (upper part) belong to the same
branch, have the same winding number around the first singularity but not around
the second one (though the winding sign is unchanged). For arbitrary boundary
conditions, the same symmetric closure has to be performed on the truncation of
the g-projection of the extremal from its first intersection with ¢o = 0 until the
last one. As a case study, the path between ¢ = 2.441e — 1 and € = 2.196e — 1
is discussed in Fig. 8. The optimality status of each homology class is analyzed in
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FIGURE 6. Earth-Moon minimum time transfer towards a circular orbit
around the second primary, fixed frame, ¢ = 2.220e — 1. Controlled tra-
jectory in blue, free trajectory (null control after the target is reached)
green. The capture into a quasi-periodic motion around the second pri-
mary is clearly observed.

Fig. 9. It is a matter of future investigation to integrate homological constraints
[10] to cut out sub-optimal components from the path.
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FIGURE 7. Closure by symmetrization. The extremal (blue) is trun-
cated if necessary so that endpoints lie on g2 = 0. Concatenating the
symmetric curve (red) with reversed orientation results in a closed curve
whose homotopy class and homology are well defined—(7, —1), here.
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FIGURE 8. Homotopy on ¢, Earth-Moon case (1 ~ 1.21e—2), minimum
time transfer towards a circular orbit around the second primary. Top
pictures are transfers for ¢ = 2.440e — 1 (left) and & = 2.206e — 1 (right),
respectively. The two extremals belong to the same branch, labeled I
(see Fig. 3) and have the same homology (positively winding up around
both primaries). Middle pictures are transfers for e = 2.440e — 1 (left)
and € = 2.197e — 1 (right), respectively. Extremals belong to the same
branch, labeled II, and have the same homology (now negatively winding
up around the second primary). Bottom pictures are transfers for ¢ =
2.440e—1 (left) and e = 2.196e—1 (right), respectively. Extremals belong
to the same branch, labeled III, and have the same homology (negatively
winding up around the second primary with one more revolution around
the first one that those on branches I and II).
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FIGURE 9. Homotopy on ¢, Earth-Moon case (u ~ 1.21e — 2), mini-
mum time transfer towards a circular orbit around the second primary.
Each curve represents the function € — t¢(¢) evaluated along the three
disjoint branches I (blue), II (red) and III (black) of the homotopy (see
Fig. 8). Slightly below £ ~ 2.367e — 1 (that is below 0.97 Newtons on
the graph), branch II provides a better criterion than I, but both have
already become worse than branch III. The infimum of the three curves
provides an upper bound for the value function e — ty ().
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