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Abstract. This article deals with the transfer of a satellite between Keplerian
orbits. We study the controllability properties of the system and make a pre-
liminary analysis of the time optimal control using the maximum principle.
Second order su±cient conditions are also given. Finally, the time optimal tra-
jectory to transfer the system from an initial low orbit with large eccentricity
to a terminal geostationary orbit is obtained numerically.

1. Introduction. An important problem in astronautics is to transfer a satel-
lite between elliptic orbits. Recent research projects concern orbital transfer with
electro-ionic propulsion where the thrust is very low. Two techniques are mainly
used. First of all, the transfer can be achieved using stabilization methods, see
for instance [11, 12]. This approach provides simple feedback controllers but the
transfer time is not taken into account. Secondly, orbital transfers can be per-
formed by minimizing a cost: the time optimal control problem is important for
low propulsion because the transfer towards the geostationary orbit can take several
months. Moreover, minimizing the consumption with maximal thrust is equivalent
to minimizing the time.

In this article, we focus on the time optimal control problem. Preliminary results
are contained in [18, 14, 9] and we follow the same line. First of all, we make
an analysis of the extremal solutions of the maximum principle with geometric
methods. Then, using the theoretical results of [7, 21], we give second order su±cient
conditions which can easily be implemented.
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The organization of the paper is the following. In §2, we recall all the prelim-
inaries to analyze the problem: choices of coordinates to represent the equation,
maximum principle and extremal solutions. In §3 we describe the Lie bracket struc-
ture of the system. Indeed, the thrust can be decomposed into a tangential-normal
or radial-orthoradial frame. Using geometric control techniques, the eÆect of each
controller can be analyzed. Our computations allow us to derive the controllability
properties of the system and preliminary results about extremal solutions. We give
in §4 a nilpotent model to analyze the structure of the local time optimal control,
pointing the connection with systems from sub-Riemannian geometry. This model
resolves a singularity of the problem that was observed numerically in the transfer
to the geostationary orbit where the satellite inversed its thrust at a pericenter.
The final section addresses the question of second order conditions for which, in
our analysis, tests can be implemented. In particular, we present an algorithm to
compute the optimal control steering a satellite from a low eccentric orbit towards
the geostationary one. A candidate being selected using the maximum principle
and computed by means of a shooting method, su±cient second order optimality
conditions are checked.

2. Generalities.

2.1. Models and basic properties. In this section, we recall the representations
of the system as well as basic properties which are crucial for our analysis. We
denote by m the mass of the satellite and by F the thrust of the engine. The
equation describing the dynamics in Cartesian coordinates is

q̈ = °q
µ

|q|3
+

F

m

where q is the position of the satellite measured in a fixed frame I, J , K whose
origin is the Earth center, and µ the gravitation constant. The free motion where
F = 0 is the Kepler equation. The thrust is bounded, |F | ∑ Fmax, and the mass
variation is described by

ṁ = °

|F |

v
e

(1)

where v
e

is a positive constant. Practically, the mass has to remain greater than the
mass of the satellite without fuel, m ∏ ¬0, and we have a simplified model called the
constant mass model if (1) is not taken into account. Roughly, the latter is su±cient
for our geometric analysis though the mass equation has to be included for numerical
computations. Besides, observe that if the thrust is maximal, maximizing the final
mass boils down to minimizing the transfer time. If q ^ q̇ 6= 0, the thrust can be
decomposed into the tangential-normal frame according to

F = u
t

F
t

+ u
n

F
n

+ u
c

F
c

where

F
t

=
q̇

|q̇|

@

@q̇
, F

c

=
q ^ q̇

|q ^ q̇|

@

@q̇
,

and F
n

= F
c

^ F
t

. Another important decomposition used in the sequel is the
radial-orthoradial frame

F = u
r

F
r

+ uorFor + u
c

F
c

,
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with
F

r

=
q

|q|

@

@q̇
,

and For = F
c

^ F
r

. In both cases, if u
c

= 0 we have a 2D-problem, restricting our
system to the osculating plane spanned by q(0) and q̇(0). The following results are
standard.

Proposition 2.1. Consider the Kepler equation q̈ = °qµ/|q|3. The vectors below
are first integrals:

c = q ^ q̇ (angular momentum),
L = °q µ

|q| + q̇ ^ c (Laplace integral).

Moreover, the energy H(q, q̇) = 1
2 |q̇|

2
°

µ

|q| is preserved and the following relations
hold:

L · c = 0, L2 = µ2 + 2Hc2.

Proposition 2.2. For the Kepler motion, if c = 0 then q and q̇ are collinear and
the motion is on a line. If c 6= 0,

1. if L = 0, then the motion is circular;
2. if L 6= 0 and H < 0, then the trajectory is an ellipse,

|q| =
c2

µ + |L| cos(µ ° µ0)
,

where µ0 is the argument of pericenter.

Definition 2.1. The domain ß
e

= {(q, q̇) | H < 0, c 6= 0} is filled by elliptic orbits
and is called the elliptic (2D-elliptic, in the planar case) domain. To each (c, L)
corresponds a unique oriented ellipse.

Remark 2.1. Using (c, L) coordinates, we have a neat representation of the state
space. In particular, ß

e

is a fiber bundle — the fiber being S1 — whose topology
is clear. In these coordinates, the dynamics of the orbital transfer becomes

ċ = q ^
F

m
,

L̇ = F ^ c + q̇ ^ (q ^
F

m
).

This representation was introduced in [11] to compute controls in orbital trans-
fer using a stabilization method. A more detailed representation is provided by
the orbit elements. In the referential (I, J,K), we identify the plane (I, J) to the
equatorial plane, so that each point x = (q, q̇) of the elliptic domain is represented
by the geometric parameters of the osculating orbit [20]:

≠, longitude of the ascending node;
!, argument of the pericenter;
i, inclination of the osculating plane;
a, semi-major axis of the ellipse;
|e|, eccentricity;
l, cumulated longitude, or longitude (modulo 2º).

If e is the eccentricity vector collinear to L, with modulus |e|, we denote by e! the
angle between I, and

e
x

= |e| cos e!, e
y

= |e| sin e!.
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The line of the nodes contained in the plane (I, J) is represented by

h
x

= tan
i

2
cos≠, h

y

= tan
i

2
sin≠,

and we get the two systems of equations hereafter [24]. Both are commonly referred
to as Gauss equations.
Tangential-normal system. We use the coordinates x = (a, e

x

, e
y

, h
x

, h
y

, l) and
the thrust is decomposed into the tangential-normal frame

ẋ = F0 +
1
m

(u
t

F
t

+ u
n

F
n

+ u
c

F
c

).

In these coordinates,

F0 =
r

µ

P

W 2

P

@

@l
,

F
t

=
1
W

s
P

µ

µ
2WP |¥|

(1° e2)2
@

@a
+

2W¥
x

|¥|

@

@e
x

+
2W¥

y

|¥|

@

@e
y

∂
,

F
n

=
1
W

s
P

µ

µ
D¥

x

°W¥
y

|¥|

@

@e
x

+
W¥

x

+ D¥
y

|¥|

@

@e
y

∂
,

F
c

=
1
W

s
P

µ

µ
°Ze

y

@

@e
x

+ Ze
x

@

@e
y

+
C cos l

2
@

@h
x

+
C sin l

2
@

@h
y

+ Z
@

@l

∂
,

where

P = a(1° e2),
¥ = (¥

x

, ¥
y

) = (e
x

+ cos l, e
y

+ sin l),
W = 1 + e

x

cos l + e
y

sin l,

D = e
x

sin l ° e
y

cos l,

C = 1 + h2,

Z = h
x

sin l ° h
y

cos l.

The variable P is the so-called semi-latus rectum of the osculating ellipse and is
used in the second system.

Radial-orthoradial system. We set x = (P, e
x

, e
y

, h
x

, h
y

, l) and the thrust is
decomposed into the radial-orthoradial frame

ẋ = F0 +
1
m

(u
r

F
r

+ uorFor + u
c

F
c

).

In these coordinates, F0 and F
c

are unchanged, while

F
r

=
1
W

s
P

µ

µ
W sin l

@

@e
x

°W cos l
@

@e
y

∂
,

For =
1
W

s
P

µ

µ
2P

@

@P
+ (W cos l + ¥

x

)
@

@e
x

+ (W sin l + ¥
y

)
@

@e
y

∂
.

A geostationary orbit corresponds to |e| = |h| = 0. The 2D-model is obtained by
setting u

c

= 0. A standard representation is then to parametrize the trajectories
by the cumulated longitude l.
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Remark 2.2. The Gauss coordinates are important in celestial mechanics and in
orbital transfer with low thrust: the longitude is the fast variable, and the remaining
variables are describing the slow evolution of the orbit elements. They are used in
numerical simulations.

To understand the controllability properties of the 2D-problem, we can use the
following approach due to Lagrange-Binet [15]. We write the system in polar coor-
dinates

r̈ ° rµ̇2 = °

µ

r2
+

u
r

m
,

rµ̈ + 2ṙµ̇ =
uor

m
,

so that, up to a renormalization, it is equivalent to

r̈ ° rµ̇2 = °

1
r2

+ "u
r

,

rµ̈ + 2ṙµ̇ = "uor.

If we set v = 1/r and parametrize the equations by µ, our system can be written as

v00 + v ° (v2t0)2 = °"v2t02(u
r

+
v0

v
uor),

(v2t0)0 = °"v3t03uor,

where 0 denotes the derivative with respect to µ.
This representation shows the relation with the control of a linear oscillator and

is useful to apply averaging techniques (see [15]).

2.2. Maximum principle and extremal solutions. In this section, we consider
a smooth control system in Rn of the form

ẋ(t) = F (x(t), u(t)), u(t) 2 U, (2)

where the set U of admissible controls is the set of locally essentially bounded
mappings valued in the control domain U Ω Rm. We note x(t, t0, u) the solution of
(2) associated to an admissible control u 2 U with initial condition x0 at t = 0.

Definition 2.2. The accessibility set in time T is

A
x0,T

= {x(T, x0, u), u 2 U },

and A
x0 =

S
T∏0 A

x0,T

is the accessibility set. For any fixed x0, T , the endpoint
mapping is

E
x0,T

: u 2 U 7! x(T, x0, u).

We recall the maximum principle [19] in the time optimal case. Consider the
minimum time control problem for ẋ = F (x, u), x 2 Rn, u 2 U , with boundary
conditions x(0) 2 M0 and x(T ) 2 M1, M0 and M1 regular submanifolds. Pon-
tryagin’s maximum principle asserts that if u is an optimal control on [0, T ] with
response x, then there exists an absolutely continuous covector function p, valued
in (Rn)§\{0}, such that, with H = hp, F (x, u)i, almost everywhere on [0, T ],

ẋ =
@H

@p
(x, p, u), (3)

ṗ = °

@H

@x
(x, p, u), (4)

H(x, p, u) = H (x, p), (5)
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where H (x, p) = max
v2U

H(x, p, v). Moreover, H is constant and positive along
the curve z = (x, p), and the following transversality conditions are satisfied at
endpoints:

z(0) 2 M?
0 , z(T ) 2 M?

1 , (6)
where, for a manifold M , we denote by M? the Lagrangian submanifold of T §M
defined by

M? = {(x, p) 2 T §M | p ? T
x

M}.

Definition 2.3. The function H is called the Hamiltonian and p is the adjoint
vector. We call extremal a triple (x, p, u) solution of (3-5), and BC-extremal a triple
satisfying moreover (6). If H = 0 along the extremal, it is called exceptional. If the
maximization condition (5) implies @H/@u = 0, the extremal is said to be singular.

Consider a smooth single-input a±ne system ẋ = F0 + uF1, |u| ∑ 1. Singular
extremals satisfy H1 = hp, F1i = 0 along the solution.

Definition 2.4. The extremal is called regular if u(t) = sign H1(x(t), p(t)) almost
everyhere, and bang-bang if it is moreover piecewise constant.

We now state some standard properties of singular extremals in the single-input
a±ne case [4]. Let H0 = hp, F0i and H1 = hp, F1i be the Hamiltonian lifts of F0

and F1. Generic singular extremals are computed as follows. Let z(t) = (x(t), p(t))
be a singular extremal; diÆerentiating twice the relation H1(z(t)) = 0, we get, using
Poisson brackets,

H1 = {H0, H1} = 0,

and
{H0, {H0,H1}} + u

s

{H1, {H0, H1}} = 0

where {H0,H1} = dH1(
°!

H 0). If {H1, {H0,H1}} 6= 0, the singular extremal is said
to be of order two and the singular control is obtained as the dynamic feedback

u
s

(z) = °

{H0, {H0,H1}}(z)
{H1, {H0,H1}}(z)

·

Introduce the Hamilton function H
s

(x, p) = H(x, p, u
s

(x, p)). Singular extremals
are integral curves of the smooth Hamiltonian vector field

°!

H
s

contained in H1 =
{H0, H1} = 0. As a result of the maximum principle, H0 is nonnegative for time
minimal solutions. Besides, using second order necessary conditions — namely, the
generalized Legendre-Clebsch condition —, we get

@

@u

d2

dt2
@H

@u
(z(t)) = {H1, {H0, H1}}(z(t)) ∏ 0.

The projection on the state-space of singular extremals gives trajectories of (2) along
which the linearized system is not controllable. They correspond to singularities of
the endpoint mapping E

x0,T

, where the Fréchet derivative is computed on the set
of controls endowed with the L1-topology. Let 0 < t ∑ T , then E0

x0,t

is singular
on the restriction of the singular control to [0, t] and we denote by K(t) its image,
also known as the first order Pontryagin cone [19]. Consider the generic case where
K(t) is of codimension one. By construction, the adjoint vector p is orthogonal to
K(t) and is oriented by the condition H0 ∏ 0. The singular trajectories are then
classified using the Legendre-Clebsch condition. Assuming {H1, {H0, H1}} 6= 0
(singular extremal of order two), we have the following definition.
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Definition 2.5. Under our assumptions, a singular trajectory is called exceptional
if H0 = 0. If H0 6= 0, it is called elliptic if {H1, {H0,H1}} < 0, hyperbolic if
{H1, {H0,H1}} > 0.

It is well known that hyperbolic (resp. elliptic) trajectories are candidates to
minimize (resp. maximize) time. More precisely, the time optimality status of sin-
gular trajectories has been analyzed in [7] and the results will be used in §5.

Other trajectories, meaningful to understand the structure of the boundary of the
accessibility set, are the regular extremals. In the generic case, they are classified by
their contact with the switching surface ß = {H1 = 0} (see [17] for details on what
follows). We fix a reference extremal z(t) = (x(t), p(t)) on [0, T ] and we introduce
the switching function ©(t) = H1(z(t)), denoted respectively ©+ or ©° depending
on whether the control is +1 or °1. DiÆerentiating twice we get the relations

©̇+ = ©̇° = {H0,H1},

©̈± = {H0, {H0,H1}} ± {H1, {H0,H1}},

and we consider two cases.

Regular case. Take a point z0 on ß which is assumed to be locally a smooth hy-
persurface. The point z0 is called a regular switching point if {H0,H1} 6= 0 (contact
of order one). At such a point, extremal arcs are transverse to ß and locally, every
extremal is bang-bang with at most one switching.

Fold case. Let z0 belong to ß0 = {H1 = {H0,H1} = 0} which is assumed to be
locally a smooth submanifold of codimension two. At such a point, extremal arcs
meet the switching surface with a contact of order at least two since ©± = ©̇± = 0.
Assume that the contact is of order two for both arcs, that is ©̈± 6= 0. This defines
the fold case and we have three subcases.
Parabolic case. Both ©̈+ and ©̈° have the same sign at z0. Then each extremal is
locally bang-bang with at most two switchings and no admissible singular can pass
through z0.
Hyperbolic case. One has ©̈+ > 0 and ©̈° < 0 at z0. Then, it is necessary that
{H1, {H0,H1}}(z0) > 0 and through z0 passes a singular extremal of order two
(exceptional or hyperbolic) with singular control |u

s

| < 1. Each extremal is a con-
catenation of arcs of the form ∞±∞

s

∞±.
Elliptic case. One has ©̈+ < 0 and ©̈° > 0 at z0. As before, there exists through
z0 a singular extremal of order two (exceptional or elliptic) which is admissible,
but the connection with a regular extremal is impossible. Each regular extremal is
locally bang-bang but the number of switchings is not uniformly bounded.

This analysis deals only with the generic case of codimension one and little more
is known about the behaviour of extremal solutions, the analysis being intricate.
One reason is the saturation phenomenon. For instance, if ©̈+ = 0 at z0 and if
{H1, {H0,H1}}(z0) 6= 0, the singular control corresponding to the singular extremal
of order two through z0 is saturating. Nevertheless, a Fuller situation where a reg-
ular extremal connects the switching surface with an infinite number of switchings
has been analyzed in [17]. We recall the according definition.
Definition 2.6. An extremal (z, u) defined on [0, T ] is called a Fuller extremal if
the switching times form a sequence 0 ∑ t1 < t2 < · · · ∑ T such that (t

n

)
n

! T
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when n !1 and if there exists k > 1 with the property that t
n+1 ° t

n

' 1/kn as
n !1 (see [4]).

3. Lie algebraic structure in orbital transfer and consequences.

3.1. Preliminaries. We can restrict our analysis to the constant mass model and
work with Cartesian coordinates, the computations being intrinsic,

ẋ = F0 + F,

where x = (q, q̇), F0 = q̇@/@q ° qµ/|q|3@/@q̇ and F is the thrust. It can be de-
composed into the tangential-normal or radial-orthoradial frames. Having chosen
a frame, we can restrict the thrust to one direction, and the system ẋ = F0 + uF1

is a single-input a±ne system. We make the computation of the corresponding Lie
algebra Lie(F0, F1). This will allow us to understand the action of every physical
actuator. In practice, one can have technical limitations such as u 2 C(Æ) where
C(Æ) is a cone of axis F

t

or For of angle Æ. Moreover, in space mechanics, the
eÆect of forces oriented along F

r

or F
t

is important and well studied. In particular,
the eÆect of a drag force corresponds to a force opposite to F

t

whose modulus is
proportional to Ωq̇2, where Ω is the atmosphere density.

Definition 3.1. The orbit of a point is the integral manifold of the involutive
distribution Lie(F0, F1) passing through this point.

3.2. Thrust oriented along Ft. We have a 2D-system and we denote q = (q1, q2),
r = |q|, and v = q̇ = (v1, v2). The Lie bracket of two smooth vector fields X, Y , is
the commutator [X,Y ] = XY °Y X. Singular trajectories are responses along which
the linearized system is not controllable. Beyond their importance in time optimal
control, they code a lot of information about the system and have to be computed
first. Since they are feedback invariants [4], we use the feedback u0 = u/|v| and
write the system

ẋ = F0 + u0F 0
t

,

where F 0
t

= v@/@v. We get

[F0, F
0
t

] = °v
@

@q
° q

µ

r3

@

@v
,

[F 0
t

, [F0, F
0
t

]] = °F0,

[F0, [F0, F
0
t

]] = q
2µ

r3

@

@q
+

2µ

r5

°
(2q2

1 ° q2
2)v1 + 3q1q2v2

¢ @

@v1

+
2µ

r5

°
3q1q2v1 + (2q2

2 ° q2
1)v2

¢ @

@v2
,

and since q ^ q̇ 6= 0, the vector fields F0, F 0
t

, [F0, F
0
t

], [F0, [F0, F
0
t

]] form a frame.
From our computations, we can easily deduce the controllability result and the
structure of singular extremals.

Proposition 3.1. Consider the single-input control system ẋ = F0 + uF
t

, |u| ∑ ",
" > 0. Then, for each (q, q̇), q ^ q̇ 6= 0, the rank of Lie

x

({F0, Ft

}) is four and
the system restricted to the 2D-elliptic domain is controllable, i.e., each point of
an elliptic orbit can be transfered on a prescribed elliptic orbit, with imposed final
longitude.
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Proof. The rank of the Lie algebra generated by F0 and F
t

is four whenever q^q̇ 6= 0.
The system restricted to the 2D-elliptic domain is thus controllable because the drift
is periodic [2].

Proposition 3.2. Consider the single-input control system ẋ = F0 + uF
t

. Then,
(i) all singular trajectories are of order two, elliptic and solution of

ż =
°!

H 0 + u
s

°!

H
t

on ß0 = {H0 = {H0,Ht

} = 0} with u
s

= |v|u0
s

and

u0
s

= °

{H0, {H0,H
0
t

}}

{H 0
t

, {H0,H 0
t

}}

.

(ii) For |u| ∑ ", " > 0, the relations

H
t

= {H0,Ht

} = {H0 ± "H
t

, {H0,Ht

}} = 0

are incompatible.

Proof. Singular extremals are solutions of

H 0
t

= {H0, H
0
t

} = 0,
{H0, {H0,H

0
t

}} + u0
s

{H 0
t

, {H0,H
0
t

}} = 0,

and since [F 0
t

, [F0, F
0
t

]] is collinear to F0, singular extremals that are not of order
two are exceptional. Now, as an exceptional singular such that {H 0

t

, {H0,H
0
t

}} = 0
holds it has to verify {H0, {H0,H

0
t

}} = 0, which is impossible since F0, F 0
t

, [F0, F
0
t

],
[F0, [F0, F

0
t

]] form a frame. Then H0 is positive and, since [F 0
t

, [F0, F
0
t

]] = °F0,
{H 0

t

, {H0, H
0
t

}} is negative and every singular trajectory is elliptic. Assertion (ii) is
obvious because we have a frame.

More complicated computations are required to analyze regular extremals. In-
deed,

[F0, Ft

] = °

1
|v|

F0 °
µq · v

r3
|v|2

F
t

+
2µ(q ^ v) ^ v

r3
|v|3

@

@v
,

[F
t

, [F0, Ft

]] = °

1
|v|2

F0 mod span({F
t

, [F0, Ft

]}),

and there exists a scalar function ∏ such that

[F0, [F0, Ft

]] = ∏F0 mod span({F
t

, [F0, Ft

]}).

According to the classification of fold points, we can have elliptic, parabolic, but
not hyperbolic points. Moreover, there may be cusp points whenever one of the
extremals with u = ±1, not both, has a contact of order three. Further analysis is
needed but an interesting result is the following (see [17] for the proof).

Proposition 3.3. There is no Fuller point and regular extremals are bang-bang.

The following proposition follows.

Proposition 3.4. Every time optimal trajectory of the system ẋ = F0+uF
t

, |u| ∑ ",
" > 0, is bang-bang.
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3.3. Thrust oriented along Fn. Consider the 2D-system ẋ = F0 + uF
n

with

F
n

= °

v2

|v|

@

@v1
+

v1

|v|

@

@v2
·

Computations give us

[F0, Fn

] = °

(q ^ v) ^ v

|(q ^ v) ^ v|

@

@q
° v

µ|q ^ v|

r3
|v|3

@

@v
,

and the brackets of length three are contained in span({F0, Fn

}).

Proposition 3.5. Consider the system ẋ = F0 + uF
n

, |u| ∑ ", " > 0, restricted to
the elliptic domain. Then, the orbit is of dimension three and is the intersection of
the elliptic domain with the osculating plane {a = a(0)}.

Proof. From our computations, the orbit is of dimension three and, plugging
u

t

= u
c

= 0 into the tangential-normal system, we see that the semi-major axis
a cannot be controlled.

3.4. Thrust oriented along Fc. Inspecting the tangential-normal system we also
observe that, if u

t

= u
n

= 0, we cannot control either the semi-major axis a or the
eccentricity |e|, the case |e| = 0 being singular (circular orbits). More precisely,

[F0, Fc

] = °

q ^ v

|q ^ v|

@

@q
,

[F0, [F0, Fc

]] = °

µ

r3
F

c

,

[F
c

, [F0, Fc

]] =
(q ^ v) ^ q

|q ^ v|2
@

@q
+

(q ^ v) ^ v

|q ^ v|2
@

@v
,

[F0, [Fc

, [F0, Fc

]]] = 0,

[F
c

, [F
c

, [F0, Fc

]]] = °

r2

|q ^ v|2
[F0, Fc

] +
q · v

|q ^ v|2
F

c

.

Lemma 3.1. (i) The vectors F0, F
c

and [F0, Fc

] are independent.
(ii) The vectors F0, F

c

, [F0, Fc

], [F
c

, [F0, Fc

]] form a frame of Lie(F0, Fc

) if and
only if L(0) 6= 0, where L is the Laplace vector.
(iii) If L(0) = 0, the Lie algebra generated by the system is finite-dimensional of
dimension three.

Proof. The first assertion is clear. Moreover, F0, F
c

, [F0, Fc

] and [F
c

, [F0, Fc

]] are
dependent if and only if F0 and [F

c

, [F0, Fc

]] are linearly dependent. In this case,
q · v = 0, µ = |v|2r. This corresponds to circular orbits where L = 0. Then, r and
|v| are constants and

[F
c

, [F0, Fc

]] =
1

|v|2
F0,

[F0, [F0, Fc

]] = °

µ

r3
F

c

.

The associated Lie algebra is therefore finite dimensional.

In particular, the proposition hereafter holds (see [2, 10]).
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Proposition 3.6. Consider the system ẋ = F0 + uF
c

, |u| ∑ ", " > 0, restricted to
the elliptic domain. (i) If L(0) 6= 0, then the orbit is of dimension four and is the
intersection of the elliptic domain with {a = a(0), |e| = |e(0)| 6= 0}.
(ii) ] If L(0) = 0, then the orbit is of dimension three and is the intersection of the
elliptic domain with {a = a(0), |e| = |e(0)| = 0}.
In both cases, any point of the orbit is accessible.

Another relevant consequence of our computations is the following.

Proposition 3.7. Assume L(0) = 0 and restrict the system to its orbit {a =
a(0), |e| = |e(0)| = 0}. Then, all singular trajectories are responses to the zero
control and are hyperbolic.

3.5. Radial-orthoradial decomposition. We shall proceed as for the tangential-
normal system. For simplicity, we shall only analyze the singular flow. Since we are
in the 2D-case,

F0 = v
@

@q
° q

µ

r3

@

@v
,

F
r

=
q

r

@

@v
,

For =
q2

r

@

@v1
°

q1

r

@

@v2
.

As before, we introduce a feedback u0 = u/r, and F 0
r

= rF
r

, F 0
or = rFor. In the

radial case, brackets of length up to three are

[F0, F
0
r

] = °q
@

@q
+ v

@

@v
, (7)

[F0, [F0, F
0
r

]] = °(q + v)
@

@q
° q

µ

r3

@

@v
, (8)

[F 0
r

, [F0, F
0
r

]] = 2F 0
r

. (9)

Lemma 3.2. Consider the system ẋ = F0 + uF
r

, |u| ∑ ", " > 0, restricted to the
elliptic domain. Then, the Lie algebra generated by F0 and F

r

is of dimension three
and F0, F

r

, [F0, Fr

] form a frame. The orbit is the intersection of the elliptic domain
with the osculating plane and {P = P (0)}, where P is the semi-latus rectum. Any
point of the orbit is accessible.

Proof. The dimension of the orbit is clear using (7-9). Obviously, from the defini-
tion of the radial-orthoradial system, the semi-latus rectum P cannot be controlled
if uor = 0. In such a case, r2µ̇ is a constant and P = (r2µ̇)/µ.

In the orthoradial case, we get

[F0, F
0
or] = °q2

@

@q1
+ q1

@

@q2
+ v2

@

@v1
° v1

@

@v2
,

[F0, [F0, F
0
or]] = 2

µ
°v2

@

@q1
+ v1

@

@q2
° q2

µ

r3

@

@v1
+ q1

µ

r3

@

@v2

∂
,

[F 0
or, [F0, F

0
or]] = °2F 0

r

,

Jean-Baptiste Caillau
+

Jean-Baptiste Caillau


Jean-Baptiste Caillau


Jean-Baptiste Caillau
-2v

Jean-Baptiste Caillau
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and

D0 = F 0
or ^ [F0, F

0
or] ^ [F0, [F0, F

0
or]] ^ F0 = 2(v ^ q)(|v|2 +

µ

r
),

D1 = F 0
or ^ [F0, F

0
or] ^ [For, [F0, F

0
or]] ^ F0

= °2r2q · v.

Lemma 3.3. (i) The vectors F0, F 0
or, [F0, F

0
or], [F0, [F0, F

0
or]] form a frame of the

Lie algebra Lie(F0, F
0
or).

(ii) The vectors F0, F 0
or, [F0, F

0
or] and [F 0

or, [F0, F
0
or]] are linearly independent if and

only if q · v 6= 0, that is outside pericenters and apocenters.

Proposition 3.8. Consider the system ẋ = F0 + uFor, |u| ∑ ", " > 0, restricted to
the 2D-elliptic domain. Then, any point of the domain is accessible.

Important informations about time optimality are coded by exceptional singular
extremals which are deduced from our computations.

Proposition 3.9. The exceptional control is such that u
e

= ru0
e

with

D0 + u0
e

D1 = 0, (10)

and all exceptional singulars are of order two outside pericenters and apocenters.
Moreover, along a singular exceptional trajectory, the drift F0 is not contained in
the vector subspace generated by F 0

or and [F0, F
0
or], while the first order Pontryagin

cone is spanned by F0, F 0
or and [F0, F

0
or].

Proof. Along a singular exceptional extremal, the adjoint vector p has to be or-
thogonal to F0, F 0

or, [F0, F
0
or] and [F0, [F0, F

0
or]] + u0

e

[F 0
or, [F0, F

0
or]], where u0

e

is the
exceptional control. Since the first three vector fields are independent, they gener-
ate the first order Pontryagin cone and F0 does not belong to span(F 0

or, [F0, F
0
or]).

Because p cannot vanish, the relation D0 + u0
e

D1 = 0 holds, and outside pericen-
ters and apocenters singular exceptionals are of order two for F0, F 0

or, [F0, F
0
or],

[F 0
or, [F0, F

0
or]] form a frame.

3.6. Consequences on controllability and complexity of the time optimal
control. As previously shown, the system is controllable in the elliptic domain with
a thrust oriented either along F

t

or For, plus the control direction F
c

. As a result, if
the final orbit is circular, the problem can be decomposed into two phases: during
the first one, F

t

or For is used to modify the geometric parameters of the ellipse in the
osculating plane. Then, during the second one, F

c

is used to correct the inclination
and the nodal line direction. Accordingly, an important question is to analyze the
2D-time optimal control problem, the thrust being oriented along the tangential
or orthoradial direction. The complexity depends on this choice. Indeed, in the
single-input tangential case, all singular trajectories are elliptic and thus locally
time maximizing. The time optimal are bang-bang and bounds on the number of
switchings can be computed using the concept of conjugate locus introduced by
[23] (see also [22]). On top of that, the time optimal control for small time can
be derived thanks to a nilpotent approximation of the Lie brackets. In the single-
input orthoradial case, the situation is intricate, even for small times. Actually,
elliptic, exceptional and hyperbolic singular extremals are allowed, exceptional and
hyperbolic trajectories being small time optimal. They can be strictly admissible
if |u

s

| < ", not admissible if |u
s

| > ", and saturating when |u
s

| = ". Nilpotent
approximations are not su±cient to analyze such situations as observed by [16].
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4. Time optimal control in orbital transfer and SR-systems with drift.
In this section, the system is written

ẋ = F0 +
1
m

3X

i=1

u
i

F
i

,

ṁ = °Ø|u|,

where Ø is a positive constant, where the F
i

’s form an orthonormal frame, and
where |u| is bounded by Fmax. Though the right member is only continuous in the
control, the maximum principle still applies and the associated Hamiltonian is

H = H0 +
1
m

3X

i=1

u
i

H
i

° Øp
m

|u|. (11)

In (11), the H
i

’s are the Hamiltonian lifts hp, F
i

i, p being the dual to x, p
m

the
dual to m. We shall assume in the sequel that the final mass is free and that the
constraint m ∏ ¬0 is not active. We first recall the following result from [10].

Proposition 4.1. Along an optimal solution, (i) the mass dual variable p
m

is
nonpositive and increasing;
(ii) whenever © = (H1,H2,H3) is not zero, the optimal control is given by

u = Fmax
©
|©|

·

Proof. Since the Hamiltonian is maximized over the Euclidean ball of radius Fmax,
clearly,

P3
i=1 u

i

H
i

has to be nonnegative. Now, the adjoint equation on p
m

is

ṗ
m

=
1

m2

3X

i=1

u
i

H
i

,

so that the dual to m is increasing towards p
m

(T ), T final time, which is zero by
transversality; p

m

is nonpositive and assertion (ii) readily follows.

Let (x, p, u) be an extremal. In accordance with our classification of regular
extremals based upon the order of the contact with the switching surface {© = 0},
the extremal is said to be of order zero if u is smooth and given by u = Fmax©/|©|,
singular if © ¥ 0. We restrict ourselves to the constant mass case and introduce
the concept of sub-Riemannian system with drift.

4.1. SR-system with drift.

Definition 4.1. We call SR-problem with drift the time optimal problem for a
system of the form

ẋ = F0 +
mX

i=1

u
i

F
i

,

with x 2 Rn, F0, . . . , Fm

smooth vector fields, the control u 2 Rm being bounded
by

P
m

i=1 |ui

|

2
∑ 1.

Let the H
i

’s be the usual Hamiltonian lifts hp, F
i

i, i = 0, . . . , m, and let ß be the
switching surface {H

i

= 0, i = 1, . . . , m}. The maximization of the Hamiltonian
H = H0 +

P
m

i=1 u
i

H
i

outside ß implies that

u
i

=
H

ipP
m

i=1 H2
i

, i = 1, . . . , m. (12)
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Plugging (12) into H defines the Hamiltonian function

H
r

= H0 +

√
mX

i=1

H2
i

! 1
2

. (13)

The corresponding solutions are the order zero extremals. From the maximum
principle, optimal extremals are contained in the level set {H

r

∏ 0}. Those in
{H

r

= 0} are exceptional. The following result is standard.

Proposition 4.2. The extremals of order zero are smooth responses to smooth
controls on the boundary of |u| ∑ 1. They are singularities of the endpoint mapping
E

x0,T

: u 7! x(T, x0, u) for the L1-topology when u is restricted to the unit sphere
Sm°1.

In order to construct all extremals, we must analyze the behaviour of those of
order zero near the switching surface. On one hand, observe that we can connect two
such arcs at a point located on ß if we respect the Weierstraß-Erdmann conditions

p(t+) = p(t°), H
r

(t+) = H
r

(t°),

where t is the time of contact with the switching surface. Those conditions, obtained
in classical calculus by means of specific variations, are contained in the maximum
principle. On the other hand, singular extremals satisfy H

i

= 0, i = 1, . . . ,m, and
are contained in ß. They are singularities of the endpoint mapping if u is interior to
the control domain, |u| < 1. Let then z = (x, p) be an extremal. Evaluated along z,
the H

i

’s are absolutely continuous functions whose time derivatives are expressed
using the Poisson bracket

Ḣ
i

= {H0,Hi

} +
X

j 6=i

u
j

{H
j

,H
i

}. (14)

We denote by D the distribution spanned by F1, . . . , Fm

. The following is straight-
forward from (14).

Proposition 4.3. We can connect any extremal of order zero converging to z0 =
(x0, p0) in ß with another order zero extremal departing from z0. If [D , D ](x0) Ω
D(x0), the coordinates H

i

are C 1, i = 1, . . . , m.

Our aim is to give an account of the singularity encountered when making junc-
tions between order zero smooth extremals. It is based on the preliminary work of
[10] (see [8] for more details). We limit our analysis to the 2D-case, m = 2, the
generalization being straightforward. The system is ẋ = F0 + u1F1 + u2F2 and
H = H0 + u1H1 + u2H2. The extremal controls of order zero are

u
i

=
H

ip
H2

1 + H2
2

, i = 1, 2,

and (14) takes the form

Ḣ1 = {H0,H1}° u2{H1,H2},

Ḣ2 = {H0,H2} + u1{H1,H2}.

As for SR-systems [4], we make a polar blowing up

H1 = Ω cos ', H2 = Ω sin ',
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in order that the system becomes

Ω̇ = cos '{H0,H1} + sin'{H0,H2}, (15)

'̇ =
1
Ω

({H1,H2}° sin '{H0,H1} + cos '{H0,H2}) . (16)

A nilpotent approximation of (15-16) consists in choosing vector fields F0, F1, F2

such that brackets of length greater than three are zero. Now, diÆerentiating we
get

d

dt
{H1,H2} = {H0, {H1,H2}} + u1{H1, {H1, H2}} + u2{H2, {H1,H2}}.

Similarly, the time derivatives of {H0,H1}, {H0,H2} only involve length three
brackets and are also zero in our approximation. Hence, for a given extremal,
we set

{H0, H1} = a1, {H0, H2} = a2, {H1, H2} = b, (17)
where a1, a2 and b are constants. As a consequence, (15-16) can be integrated using
the time reparametrization ds = dt/Ω and trajectories crossing ß = {H1 = H2 = 0}
with a defined slope are obtained by solving '̇ = 0. Let us assume we are in the
regular case of §2.2: if z0 2 ß is a point of order one where a1 and a2 are not both
zero, up to a rotation we have a2 = 0 and a1 6= 0. The equation '̇ = 0 reduces
to a1 sin ' + b = 0. It has two roots '0 < '1 on [0, 2º[ if and only if |b/a1| < 1.
Moreover, '0 = 0 and '1 = º if and only if b = 0. The latter is satisfied when D is
involutive. Besides, if '0 6= '1, then cos ' changes sign and one extremal reaches
ß while the other leaves it. We have just proved the following.

Proposition 4.4. In the generic nilpotent model, the extremals project onto

Ω̇ = a1 cos ' + a2 sin ', (18)

'̇ =
1
Ω
(b° a1 sin ' + a2 cos '), (19)

where H1 = Ω cos ', H2 = Ω sin ', and a1, a2, b are constant parameters defined by
(17). In the involutive case b = 0 and, when crossing ß at a point of order one, the
control rotates instantaneously of an angle º. The resulting singularity is called a
¶-singularity.

Consider now such a system ẋ = F0 + u1F1 + u2F2 in dimension four, that is
x 2 R4. Assume moreover that D = span({F1, F2}) is involutive, [D , D ] Ω D , and
that the system has the following regularity: for any x 2 R4, the rank of F1, F2,
[F0, F1], [F0, F2] is four. As a result, there is a vector mapping ∏ such that

F0 = ∏1[F0, F1] + ∏2[F0, F2] mod D .

Proposition 4.5. In the regular case, the only discontinuities of an optimal control
are ¶-singularities where the control rotates instantaneously of an angle º. In the
non-exceptional case, the extremals cross the switching surface with a given orien-
tation.

Proof. The result is a byproduct of proposition 4.4: since H1 = H2 = {H0,H1} =
{H0, H2} = 0 imply p = 0, the only singularities are ¶-singularities. With previous
notations, the extremal is solution of (18), the slope at the contact being defined by
°a1 sin ' + a2 cos ' = 0. Moreover, when crossing ß, H1 = H2 = 0 and H = H0.
Thus,

H0 = ∏1{H0,H1} + ∏2{H0,H2}
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and H ∏ 0 imposes hp,∏1[F0, F1] + ∏2[F0, F2]i ∏ 0. Hence, the orientation of any
trajectory but the exceptional one is fixed when crossing ß with slope '.

Corollary 4.1. In the regular case, all the optimal trajectories are bang-bang and
the number of switchings is uniformly bounded on each compact subset of R4.

To analyze the optimal control problem, we choose a representation of the nilpo-
tent model. Denoting x = (x1, . . . , x4), we set

F0 = (1 + x1)
@

@x3
+ x2

@

@x4
,

and F1 = @/@x1, F2 = @/@x2. Then, [F0, F1] = °@/@x3, [F0, F2] = °@/@x4 and all
Lie brackets with length greater than three are zero. We have

F0 = °(1 + x1)[F0, F1]° x2[F0, F2] = °[F0, F1]

whenever x = 0. If p = (p1, . . . , p4) is the adjoint vector, the condition H0 ∏ 0
orientates p according to p3 ∏ 0 and p3 = 0 in the exceptional case. Introducing
the planes E1 = {(x1, x3)} and E2 = {(x2, x4)}, the system is decoupled,

ẋ3 = 1 + x1, ẋ4 = x2,
ẋ1 = u1, ẋ2 = u2,

and the optimal synthesis around zero can easily be computed in each plane. In
E1, time minimal (resp. maximal) trajectories are of the form ∞+∞° (resp. ∞°∞+)
and u1 = sign(H1), u2 = 0. Conversely, in E2, optimal policies can be either of
the form ∞+∞° or ∞°∞+ with u1 = 0, u2 = sign(H2), and u = 0 corresponds to an
exceptional direction which is locally controllable. In particular,

Proposition 4.6. There are optimal trajectories with a ¶-singularity.

Remark 4.1. The analysis using the dimension 4 representation shows that they
fill a subset of codimension one. This singularity can be handled numerically by
adjusting the steplength during the integration of the system.

4.2. Application to the orbital transfer. We can apply our analysis to the
coplanar orbital transfer. Assuming the mass constant, the system is

mq̈ = K(q) + u1F1(q, q̇) + u2F2(q, q̇),

where K is the Kepler vector field and the thrust lies in the osculating plane (e.g.
F1 = F

r

, F2 = For). In order to avoid collisions, we must have r = |q| ∏ r
T

, r
T

being the Earth radius.

Proposition 4.7. Consider the 2D-orbital transfer problem. Then, for each pair
of points x0, x1, in the elliptic domain, there exists a trajectory transferring x0 to
x1. If r0 is the distance to collision of this trajectory, there exists a time minimal
trajectory such that r ∏ r0. Each optimal arc not meeting the boundary r = r0

is bang-bang with maximal thrust and is a concatenation of order zero arcs, the
switchings being ¶-singularities.

Proof. According to our Lie bracket computations, the orbit of each point of the
system restricted to the elliptic domain ß

e

is the domain itself. Since the free mo-
tion is periodic, the system is controllable. Take two points x0, x1 in ß

e

and let
x = (q, q̇) be a trajectory joining them in time T . Then, let r0 > 0 be the minimum
of |q| on the compact [0, T ]. If we add the constraint |q| ∏ r0, we observe that x is
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uniformly bounded on any real compact subinterval since K(q) ! 0 when |q|!1

and since the control is bounded by Fmax (hence q̇ is bounded, as well as q). As a
result, the control domain being also convex, x1 is accessible in minimum time ac-
cording to Filippov theorem [19]. Each optimal solution not meeting the boundary
is extremal and the result proceeds from the analysis of §3.

Remark 4.2. The trajectory is feasible if and only if r0 ∏ r
T

. An optimal trajectory
may be made of boundary arcs where |q| = r0, and of arcs not contained in the
elliptic domain.

5. Second order optimality conditions in orbital transfer. The purpose of
the last section is to present second order conditions which can be implemented in
the orbit transfer case. They are based on the concept of conjugate point and use
results from [7, 21]. We start with the standard case.

5.1. Second order conditions in the regular case. Consider the minimum time
control of the system

ẋ = F (x, u), x(0) = x0,

where x belongs to a smooth manifold M identified with Rn. The right hand side
F : Rn

£Rn

! Rn is smooth and u takes values in Rm. Since the control domain
is unbounded, every optimal control u on [0, T ] is a singularity of the endpoint
mapping E

x0,t

for t in ]0, T ], and the resulting trajectory is the projection of an
extremal (x, p, u) solution of

ẋ =
@H

@p
, ṗ = °

@H

@x
,

and
@H

@u
= 0,

where H = hp, F (x, u)i is the standard Hamiltonian, constant and nonnegative
along the extremal. Without losing any generality, we can assume that the trajec-
tory is one to one on [0, T ]. We make the strong Legendre assumption,

(A1) The quadratic form @2H/@u2 is negative definite along the reference extremal.

Therefore, using the implicit function theorem, the extremal control can be locally
defined as a smooth function of z = (x, p), solution of @H/@u = 0. Plugging u into
H as a dynamic feedback controller defines a true Hamiltonian function

H
r

(x, p) = H(x, p, u(x, p)),

and the reference extremal is a smooth solution of

ż =
°!

H
r

(z). (20)

Let (x(t, x0, p0), p(t, x0, p0)) denote the solution of (20) for the initial condition
(x0, p0).

Lemma 5.1. One has u(x,∏p) = u(x, p) and

x(t, x0,∏p0) = x(t, x0, p0),
p(t, x0,∏p0) = ∏p(t, x0, p0).
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Definition 5.1. Let z = (x, p) be the reference extremal defined on [0, T ]. The
variational equation

±ż =
°!

H 0
r

(z(t))±z (21)
is called the Jacobi equation. A Jacobi field is a non trivial solution J of (21). It is
said to be vertical at time t if ±x(t) = d¶(z(t))(J(t)) = 0 where ¶ : (x, p) 7! x is
the standard projection.

The geometric result hereafter is crucial.

Proposition 5.1. Let L0 be the fiber T §
x0

M and L
t

= exp t
°!

H
r

(L0) be its image by
the one parameter subgroup generated by

°!

H
r

. Then L
t

is a Lagrangian submanifold
whose tangent space at z(t) is generated by the Jacobi fields J vertical at t = 0, and
the rank of the restriction of ¶ to L

t

is at most n° 1 at z(t).

Proof. The fiber L0 is a Lagrangian submanifold, so is L
t

as its image by a symplec-
tomorphism. By definition, the Jacobi fields with ±x(0) = 0 will form the tangent
space. By Lemma 5.1, making a variation p + ∏p in the fiber at x0, we get a Ja-
cobi field with ±x(t) = 0 so that the rank of d¶(z(t)) cannot be more than n°1.

In order to derive second order optimality conditions, we make the following
additional generic assumptions on the reference extremal.

(A2) The singularity of the endpoint mapping E
x0,t

at u is of codimension one, for
all 0 < t ∑ T .
(A3) We are not in the exceptional case, that is, H

r

6= 0 along the extremal.

Definition 5.2. We define the exponential mapping by

exp
x0

(t, p0) = x(t, x0, p0).

It is defined for small enough nonnegative t. We can assume that p0 belongs to
Sn°1.

Definition 5.3. Let z = (x, p) be the reference extremal defined on [0, T ]. Under
our assumptions, the time 0 < t

c

∑ T is called conjugate if the mapping exp
x0

(t
c

, .)
is not an immersion at p0. The associated point x(t

c

) is said to be conjugate to x0.
We denote by t1c

the first conjugate time.

The following result is fundamental (see [21]).

Theorem 5.1. Under our assumptions, the extremities being fixed, the reference
trajectory is locally time optimal (for the L1-topology on the set of controls) up to
the first conjugate time.

The exponential mapping at time t is an immersion if and only if the rank of the
derivative of exp

x0
(t, .) with respect to p0 is n° 1.

Test 1. Consider the vector space of dimension n°1 generated by the Jacobi fields
J

i

= (±x
i

, ±p
i

), i = 1, . . . , n° 1, which are vertical at t = 0: the ±x
i

(0) are zero and
the ±p

i

(0) are normalized by the condition

hp0, ±pi

(0)i = 0.

A conjugate time corresponds to a Jacobi field J in this subspace which is vertical
at 0 and t

c

> 0:
rank(±x1(tc), . . . , ±xn°1(tc)) < n° 1. (22)
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If we augment the previous family of vectors by the dynamics, an equivalent test is
to search for t

c

such that

±x1(tc) ^ · · · ^ ±x
n°1(tc) ^ ẋ(t

c

) = 0. (23)

Remark 5.1. In the exceptional case, H
r

= 0 and ẋ belongs to the vector space
spanned by ±x1, . . . , ±xn°1 and (23) is identically zero. Moreover, even the test
(22) will not provide the first point where the trajectory loses its optimality (see
[7, 13]). The exceptional case will be discussed at the end of the section for single-
input a±ne systems.

Consider the reference extremal z for times t smaller than the first conjugate
time, t < t1c

, starting from z(0) = (x0, ?). Then, the reference trajectory x can
be imbedded in the central field with origin x0, consisting of extremal trajectories
starting from x0, which will cover a C 0-neighbourhood of x. By standard arguments,
x is optimal with respect to all trajectories with same extremities contained in this
neighbourhood. Besides, the shooting mapping

S(t, p0) = exp
x0

(t, p0)° x1

where x1 is the target is smooth and of full rank. This is a necessary condition to
compute numerically the trajectory by means of Newton-like algorithms.

Consider now the more general problem where the final target is a submanifold
M1. By virtue of the maximum principle, the reference extremal has to satisfy the
transversality condition z(T ) 2 M?

1 .

Definition 5.4. Let z = (x, p) be the reference extremal defined on [0, T ], z(T ) in
M?

1 . We say that t
f

> 0 is a focal time if there exists a Jacobi field J = (±x, ±p)
such that ±x(0) = 0 and J(t

f

) is tangent to M?
1 ,

J(t
f

) 2 T
z(tf )M

?
1 .

Test 1’. The computation is the same as for conjugate points but we integrate
backwards in time. Consider the vector space of dimension n° 1 generated by the
Jacobi fields J

i

= (±x
i

, ±p
i

), i = 1, . . . , n°1, such that J
i

(0) 2 T
z(tf )M

?
1 and ±p

i

(0)
are normalized by the condition

hp(t
f

), ±p
i

(0)i = 0.

The time t
f

is a focal time whenever

rank(±x1(°t
f

), . . . , ±x
n°1(°t

f

)) < n° 1.

A direct application of the previous results is to consider the time optimal control
of an SR-system with drift (see §4)

ẋ = F0 +
mX

i=1

u
i

F
i

, x 2 Rn,

mX

i=1

|u
i

|

2
∑ 1.

We proceed as follows. To introduce H
r

we restrict our analysis to the extremals
of order zero defined in §4. Thus, H

r

is the smooth Hamiltonian function (13)
defined outside the switching surface ß = {H

i

= 0, i = 1, . . . ,m}. Let z be a
reference extremal of order zero, it is a singularity of the endpoint mapping where
u 2 Sm°1 and our algorithm applies. In particular, (A2) means that on each
subinterval [0, t] of [0, T ] the singularity is of codimension one. This condition is
checked in the algorithm because if the codimension is more than one at t, exp

x0
(t, .)
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Table 1. Physical constants.

Variable Value
µ 5165.8620912 Mm3

·h°2

Ø 1.42e° 2 Mm°1
·h

m0 1500 kg
Fmax 3 N

cannot be an immersion. Hence, this approach can be implemented without any
preliminary computations in the SR-case with drift. It is also worth noting that
if the extremal flow only has ¶-singularities, the singularity resolution of §3 still
allows us to implement the method.

5.2. Application to the orbital transfer. The system is written in the 3D radial-
orthoradial frame, mass variation included,

ẋ = F0 +
1
m

(u
r

F
r

+ uorFor + u
c

F
c

),

ṁ = °Ø|u|.

Since the terminal mass is free, we have p
m

= 0 by transversality. Practically,
the final longitude is free as well, so that p

l

= 0 at the final time. For geometric
purposes, we will assume l fixed at terminal time. Now, we integrate backwards
the variational equation with initial conditions ±x(0) = 0, ±p

m

(0) = 0, up to a first
focal point such that ±x = 0, ±m = 0. Observe that since ±ṁ = 0, then ±m ¥ 0
and a focal point is also a conjugate point. As a matter of fact, if ±m ¥ 0, the
variational equation satisfied by p is the same as in the constant mass case with the
mass explicited as a function of time. Finally, the algorithm to test second order
conditions for the 3D and mass-varying system consists in computing the five Jacobi
fields J

i

, i = 1, . . . , 5, for the time dependent system

ẋ = F0 +
1

m(t)
(u

r

F
r

+ uorFor + u
c

F
c

),

ṗ = °p

µ
@F0

@x
+

1
m(t)

µ
u

r

@F
r

@x
+ uor

@For

@x
+ u

c

@F
c

@x

∂∂
,

with initial conditions ±x
i

(0) = 0 and ±p
i

(0) normalized, and m(t) = m0 ° ØFmaxt.
The physical constants and the boundary conditions are summarized in Table 1 and
Table 2, respectively.

The boundary conditions are chosen as follows. The physical problem is to trans-
fer the system from the initial orbit to the geostationary orbit whose parameters are
in Table 2. From the controllability result, there exists a trajectory of the system
satifying these conditions with fixed longitude (taken as an angle). We compute
such an extremal curve, steering the satellite to the geostationary orbit. It is then
prolongated, in order to compute (if they exist) conjugate times.

In order to generate the boundary value problem as well as the Jacobi equation,
first and second order derivatives of the Hamiltonian H

r

associated with smooth
extremals of order zero are computed by automatic diÆerentiation [1]. Extremals
are approximated using a shooting technique. Though we are quite close to a
¶-singularity located around the pericenter, the numerical integration is easy. Re-
garding conjugate times, the numerical procedure is to detect a change of sign
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Table 2. Boundary conditions.

Variable Initial cond. Final cond.
P 11.625 Mm 42.165 Mm
e
x

0.75 0
e
y

0 0
h

x

0.0612 0
h

y

0 0
l º rad 103 rad

in ±x1(t) ^ · · · ^ ±x5(t) ^ ẋ(t). The result is checked by evaluating the rank of
±x1(t), . . . , ±x5(t) using a singular value decomposition (see fig. 1).

Given a reference extremal trajectory starting from x0, the first point where the
extremal ceases to be (globally) optimal is the cut point. The set of such points
for every extremal is the cut locus, C(x0). An ultimate goal in optimal control
is to compute the cut loci. Two relevant analogies for the analysis of the orbit
transfer problem are, on the one hand an analytic Riemannian problem on S2, the
flat torus T2 on the other hand. On S2, the cut locus is a tree, and extremities
of the branches are conjugate points. Other cut points are points where several
minimizing geodesics meet. Moreover, conjugate point extremities of the cut are
cusps of the conjugate locus. On the torus, the problem is flat and there exists no
conjugate point. However, imbedding the torus into [0, 1]2, every geodesic starting
from the center of the square is minimizing until it meets a side of the square where
two minimizing geodesics (four, in the case of a corner) meet. On top of that, any
point can be connected to the origin by infinitely many non minimizing geodesics
with increasing rotation counts on the torus. In orbital transfer, we can expect
similar phenomenons, mixing both cases. Indeed, one can observe on numerical
simulations that

– there are conjugate points;
– when fixing the final longitude, there are minimizing curves, but many ex-

tremals with a greater cumulated longitude also satisfy the other boundary
conditions.

The second observation is the consequence of the topology of the elliptic domain
which is fibered by elliptic orbits of Kepler equation.

5.3. Second order conditions in the singular case for single-input a±ne
systems. In order to investigate the second order conditions in orbit transfer with
thrust oriented in a single direction, we consider a single-input a±ne system

ẋ = F0 + uF1,

where F0, F1 are smooth vector fields of Rn and u is valued in R. Optimal trajecto-
ries are singular, but we cannot apply the previous algorithms to check second order
conditions because the strong Legendre condition is not satisfied any more. Our
aim is to apply the theoretical framework of [7] so as to get su±cient conditions,
together with algorithms from [13, 6]. We first introduce some generic conditions
along the reference extremal.

Let x be the reference singular trajectory on [0, T ], and let u be the associated
control. First of all, it is convenient to apply a feedback transformation to normalize
the control to u ¥ 0. We make the following assumptions.
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Figure 1. A 3 Newton transfer. The minimum time is about 12
days. There are approximatively 15 revolutions around the Earth.
On the top, the optimal trajectory (with projections in the equa-
torial plane and a perpendicular plane to illustrate how the incli-
nation is corrected). Bottom left, the determinant, bottom right,
the smallest singular value of the Jacobi fields associated to the
extremal. The positivity after t = 0 ensures local optimality of the
trajectory.
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roughly, 3.5 times the minimum time. There, two conjugate times
are detected. The optimality is lost about three times the minimum
time.
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(A1) The reference trajectory is smooth and injective.
(A2) For every t 2 [0, T ], span{adkF0.F1(x(t)) | k = 0, . . . , n° 2} has codimension
one. As a result, this vector subspace is the Pontryagin cone K(t) for positive t.
The adjoint p(t) is unique up to a constant and oriented with the convention H ∏ 0
of the maximum principle.
(A3) The vector field ad2F1.F0 does not belong to span{adkF0.F1 | k = 0, . . . , n°2}
along the reference trajectory.
According to §2, theses conditions imply that the reference singular extremal z is
of order two and solution of

ż =
°!

H
s

(z) (24)

on {H1 = {H0, H1} = 0} with

H
s

= H0 + u
s

H1,

u
s

= °

{H0, {H0,H1}}

{H1, {H0,H1}}
·

(A4) If n = 2, F0 and F1 are independent along the reference trajectory. If n ∏ 3,
F0 does not belong to span{adkF0.F1(x(t)) | k = 0, . . . , n ° 3} along the reference
trajectory.

We recall the following result from [7].

Theorem 5.2. Under our assumptions, let x be the reference singular trajectory
defined on [0, T ]. In the hyperbolic and exceptional ( resp. elliptic) case, the trajec-
tory is locally time minimizing ( resp. maximizing) with respect to all trajectories
with same extremities and contained in a C 0-neighbourhood of x, up to the first
conjugate time t1c

.

We describe now the algorithms to compute the conjugate points in these cases.
Contrary to [7] where they are presented using a preliminary integral transforma-
tion, we shall lay here the emphasis on an intrinsic description coming from [13].
Nevertheless, since it is crucial in the understanding of the method, we still begin
by recalling the Goh transform.

Since, by assumption, F1 is transverse to the trajectory, we can identify F1 with
@/@x

n

in a tubular neighbourhood of x and the system is decomposed into

ėx = F (ex, x
n

),
ẋ

n

= g(ex, x
n

) + u,

where ex = (x1, . . . , xn°1).

Definition 5.5. The integral (or Goh) transformation consists in choosing v =
x

n

as the new control, considering thus the reduced system ėx = F (ex, x
n

) with
associated Hamiltonian

eH = hep, F (ex, v)i, v 2 R.

The connection between the two systems is the following (see [7]).
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Lemma 5.2. The triple (x, p, u) is an extremal if and only if (ex, ep, x
n

) is an extremal
of the reduced system. Moreover, there holds, along (x(t), p(t)),

d

dt

@H

@u
= °

@ eH
@x

n

,

@

@u

d2

dt2
@H

@u
= °

@2 eH
@x2

n

·

As a consequence, the strict Legendre-Clebsch condition is equivalent to the
strong Legendre condition on the reduced system.

In the elliptic and hyperbolic cases, we present two algorithms: one based on the
Goh transform, the other being intrinsic.

Test 1. Having performed the integral transformation, we are in the regular case
of §5.1 and we consider the reduced system

ėx =
@ eH
@ep ,

ėp = °

@ eH
@ex ·

Let eJ1, . . . , eJ
n°2 be the n ° 2 Jacobi fields, eJ

i

= (±ex
i

, ±ep
i

), vertical at t = 0 and
with ±ep(0) normalized as before. Then, t

c

is a conjugate time if

rank(±ex1(tc), . . . , ±ex
n°2(tc)) < n° 2.

Test 2. It is intrinsic and does not use the Goh transform. Actually, we consider
the Jacobi fields associated with the variational equation of (24) together with the
constraints H1 = {H0,H1} = 0 linearized at z(0),

dH1 = d{H0,H1} = 0. (25)

The set of ±z(0) = (±x(0), ±p(0)) where ±p(0) is still normalized by hp(0), ±p(0)i = 0,
where, moreover, we add the condition ±x(0) 2 RF1(x(0)), and where (25) holds,
form a linear subspace of dimension n° 2. If J1, . . . , Jn°2 are the Jacobi fields for
these initial conditions, t

c

is a conjugate time if

rank(±x1(tc), . . . , ±xn°2(tc), F1(x(t
c

))) < n° 1.

Under our assumptions, this is equivalent to

±x1(tc) ^ · · · ^ ±x
n°2(tc) ^ F1(x(t

c

)) ^ F0(x(t
c

)) = 0.

Remark 5.2. Observe that we replace the verticality condition ±x = 0 by a verticality
condition for the reduced system, ±x 2 RF1.

In the exceptional case, the result is not straightforward, even with the theoreti-
cal result of [7]. The test is presented without the integral transformation in order
to be implemented numerically.

Test 3. Since extremals are restricted to the level set H0 = 0, we consider the
n ° 3 Jacobi fields that solve the variational equation of (24) with the augmented
linearized constraints

dH0 = dH1 = d{H0, H1} = 0. (26)
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The corresponding set of ±z(0) = (±x(0), ±p(0)) where ±p(0) is normalized as before,
±x(0) is in RF1(x(0)), and where (26) holds, is of dimension n° 3. Accordingly, t

c

is a conjugate time whenever

rank(±x1(tc), . . . , ±xn°3(tc), F1(x(t
c

)), F0(x(t
c

))) < n° 1. (27)

Eventually, under our assumptions, this is equivalent to

±x1(tc) ^ · · · ^ ±x
n°3(tc) ^ F1(x(t

c

)) ^ F0(x(t
c

)) ^ ad2F1.F0(x(t
c

)) = 0. (28)

Remark 5.3. This is intricate but, geometrically, a conjugate point in this case
corresponds to the existence of a Jacobi field which is tangent to the level {H0 = 0}
with the terminal focal condition ±x 2 span({F1, F0}).

We end the last section with the application of such a computation to the orbit
transfer problem. More precisely, we consider the single-input case of §3.5 with
the thrust oriented along For. In the exceptional case, the control is the feedback
control (10) and since n = 4, according to (28) we only have one Jacobi field to
compute. The physical values for the computation are those of table 1. Since we
have a 2D-constant mass model, we do not use Ø or h, though, and we change l0
not to start from the pericenter or the apogee (see fig. 3).

6. Conclusion. The contribution of this article is twofold. First of all, we make
a geometric analysis of the controllability properties of the system, studying the
role of each controller in the tangent-normal frame and in the radial-orthoradial
frame. This is a preliminary step to study the time optimal control problem, in
which we have technical limitations on the control. Besides, our analysis allows
to construct control laws, using for instance a path planning method, completing
existing control methods based on stabilization (see [11, 12]). Secondly, we analyze
the time optimal problem. We give a geometric model of a singularity observed
in the problem (see [14]), called º-singularity, and our resolution allows to handle
this problem numerically, and proves optimality. Another contribution is to give
second-order optimality conditions, which complete previous results (see [9, 14]).
Combined with numerical simulations, this allows to compute the optimal solution
to transfer in minimal time our system to a geostationary orbit. Moreover, our work
is a first step in the analysis of optimal trajectories for every terminal condition,
computing the conjugate locus and the cut locus. Another possible future work
is the investigation of the general optimal control problem with low propulsion, in
which the cost is a compromise between minimizing time and maximizing the final
mass.

Acknowledgments. This work received partial financial support from the French
Space Agency through contract 02/CNES/0257/00-DPI 500. Codes to compute the
trajectories and the second order tests presented respectively in §5.2 and §5.3 are
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[3] B. Bonnard, J.-B. Caillau and E. Trélat, Second order optimality conditions and applications

in optimal control, Preprint, Univ. Paris Sud, 2005. Submitted.



GEOMETRIC OPTIMAL CONTROL OF ELLIPTIC KEPLERIAN ORBITS 955

0 1 2 3 4 5 6 7
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

q1

q 2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
−2

−1

0

1

2
x 10−4

t

ar
cs

h 3 d
et

(δ
 x

)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0

1

2

3

4
x 10−4

t

σ
n−

1

Figure 3. Exceptional trajectory. The initial cumulated longitude
is l0 = °0.01 and we tend to a collision (see the orbit on the left).
A conjugate point is detected (tcc ' 5.1e ° 2) by checking the
associated determinant (28) as well as the rank in (27) (see the two
subplots on the right).

[4] B. Bonnard and M. Chyba. Singular trajectories and their role in control theory. Number 40
in Math. and Applications. Springer Verlag, 2003.
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[9] J.-B. Caillau. Contribution à l’étude du contrôle en temps minimal des transferts orbitaux.

PhD thesis, ENSEEIHT, Institut National Polytechnique, Toulouse, 2000.
[10] J.-B. Caillau and J. Noailles Coplanar control of a satellite around the Earth, ESAIM COCV,

6 (2001), 239–258.
[11] D. E. Chang, D. F. Chichka, and J. E. Marsden. Lyapunov-based transfer between Keplerian

orbits, Discrete Cont. Dyn. Syst. Series B, 2 (2002), 57–67.
[12] J.-M. Coron and L. Praly. Transfert orbital à l’aide de moteurs ioniques. Technical report
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