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Summary. The functional determinant of elliptic differential operators on the circle
was introduced in [3]. In the present paper, optimisation of this determinant over
essentially bounded functions is studied as an optimal control problem on the special
linear group of real matrices. In the one dimensional case, existence and uniqueness
of maximisers and minimisers is proved.

1.1 Statement of the problem

Following [3] we consider the determinant of a differential operator

A :=

p∑
k=0

AkD
k

defined on RN -valued functions, N a positive integer, where D = −id/dx
is the complex valued derivation operator for such functions (i2 = −1) and
where the Ak : S1 → M(N,R), 0 ≤ k ≤ p, are matrix-valued (square matrices
of order N) functions defined on the circle.5 We are interested in address-
ing optimisation issues for such determinants under suitable restrictions on

5 The fundamental reference for spectral problems on the circle S1 (geometrisation
of the periodic boundary conditions) is [3], more general than [4]. The latter
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the potentials involved. For the rest of the paper, we identify S1 with R/Z
and functions on S1 with one-periodic functions. For Q ∈ M(N,R) we use
the Frobenius norm ∥Q∥ = tr(QTQ)1/2 and recall it derives from the inner
product on M(N,R) given by

⟨Q1, Q2⟩ = tr(QT
1Q2), Q1, Q2 in M(N,R). (1.1)

We will assume that

A = − IdN
d2

dx2
+ V (x), (1.2)

i.e., the maximal order of differentiation p is equal to two, and the operator is
in normal form with A2 = IdN (the identity matrix of order N), A1 = 0 and
A0 = V a Hill potential. Ray and Singer [6] define the functional determinant
of such an operator as

detA := e−ζ′
A(0) (1.3)

where

ζA(s) :=
∑
λj>0

1

λsj
,

the sum being taken over positive eigenvalues of A. The function ζA is well
defined for s with a large enough real part (depending on the eigenvalues
asymptotics), and has a meromorphic extension to the plane that is regular
at s = 0. While (1.3) clearly equals the product of eigenvalues when there
are only finitely many of them, the expression provides a regularisation of the
otherwise divergent product. It is proven in [3] that

detA = (−1)N det(Id2N −R(A)) (1.4)

with R(A) the monodromy operator. More precisely, R(A) is equal to the
fundamental matrix at time 1 of the linear time-varying system on M(2N,R){

Ṙ(x) = AV (x)R(x),
R(0) = Id2N ,

(1.5)

where one sets

AQ :=

[
0 IdN
Q 0

]
, for every Q ∈ M(N,R).

Remark 1. In [3], the potential V appears as −V in (1.5) and we have changed
notations in order to stick with previous optimisation literature [1].

Since its trace is zero, the matrix AV belongs to the lie algebra sl(2N,R) and
(1.5) defines a dynamics on the special linear group SL(2N,R), a Lie group
of dimension 4N2 − 1. This dynamics is bilinear in R and V . We are now in

reference, however, provides much more elementary arguments enabling one to
establish links with the discrete setting.
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position to properly define the optimisation problems discussed in the present
paper.

For every positive M , the set VM of admissible Hill potentials is given by
the measurable functions V so that

VM = {V : [0, 1] → M(N,R) | ess sup
x∈[0,1]

∥V (x)∥ ≤M2}, (1.6)

and we say that a potential V satisfies an L∞-constraint if it belongs to some
VM .

Remark 2. Note that VM is convex and invariant by transposition and con-
jugation by orthogonal matrices, i.e. VU(·) = UT (·)V (·)U(·) belongs to VM

if and only V does, for any measurable SO(N)-valued U(·) defined on [0, 1].
One could have defined equivalently VM with potentials V : R → M(N,R)
periodic of period 1 and satisfying the same L∞ bound. In that case, VM is
clearly invariant by translation of x0 ∈ R, i.e. Vx0

(·) = V (· + x0) belongs to
VM if and only V does.

Remark 3. For q ∈ [1,∞), one could replace the L∞ constraint by the integral
condition ∫ 1

0

∥V (x)∥q dx ≤M2q

which is referred to as an Lq-constraint.

The cost function associated to a potential V is from now on denoted C (V )
and is given by

C (V ) = (−1)N det
(
Id2N −R(1)

)
, (1.7)

where R is defined in (1.5). We will study the following optimisation questions:
for every M > 0,

Max−Det(M) : max
V ∈VM

C (V ) subject to (1.5), (1.8)

Min−Det(M) : min
V ∈VM

C (V ) subject to (1.5). (1.9)

To derive common statements for both optimisation problems, we use Cε to
denote εC where ε = ±1 and in that wayMax-Det becomes the minimisation
of C− while Min-Det is simply the minimisation of C+. That is we study, for
a given M > 0,

Ext−Detε(M) : min
V ∈VM

Cε(V ) subject to (1.5). (1.10)

This problem is a Mayer optimal control problem with state R in SL(2N,R),
potential V (control) valued in a Euclidean ball of M(N,R), and bilinear
dynamics. Control problems on Lie groups were intensively studied by Ivan
Kupka and his collaborators [2], and were foundational for what has ever since
emerged as Geometric control theory.
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We begin our analysis in Section 1.2 by stating the necessary condition
satisfied by optimisers (existence is clear). The problem can be formulated
as an optimal control problem over the set of matrices with a matrix valued
control, so the Pontryagin maximum principle provides the appropriate infor-
mation. We also obtain some additional properties of optimisers Section 1.3.
In Section 1.4 we focus on the one-dimensional case. We prove existence and
uniqueness of maximisers and minimisers for the determinant over a bounded
set in L∞(S1).

1.2 Optimality conditions

In this section, we will derive the equations verified by the minimisers of
Ext−Detε as well as their first properties. From now on, M is an arbitrary
positive number and ε ∈ {−1, 1}. First of all, since VM is non empty and, for
any R ∈ M(2N,R), the set {AV | V ∈ M(N,R), ∥V ∥ ≤M2} is compact and
convex, then Ext−Detε(M) admits minimisers according to Filippov theo-
rem. According to the Pontryagin maximum principle (PMP), a solution R
of Ext−Detε(M) with minimising potential V is necessarily the projection
of an extremal, i.e., an integral curve λ = (R,P ) ∈ M(2N,R)2 of a Hamilto-
nian vector field satisfying certain additional conditions. We hereby present a
definition of extremal adapted to our setting. The fact that this is equivalent
to the standard definition of normal extremal is the subject of Proposition 1
given below.

Definition 1. A curve λ : [0, T ] → M(2N,R)2 is called extremal with respect
to the control V ∈ VM if:

(i) Letting λ = (R,P ), it satisfies

Ṙ(x) = AV (x)R(x), (1.11)

Ṗ (x) = −A T
V (x)P (x). (1.12)

(ii) It holds that R(0) = Id2N and the following transversality condition holds
true6

P (1) = (−1)Nε Com
(
Id2N −R(1)

)
. (1.13)

(iii) Assume moreover that there exists h ∈ R such that a.e. on [0, 1]

h = H
(
R(x), P (x), V (x)

)
= max

∥W∥≤M2
H
(
R(x), P (x),W

)
, (1.14)

where H is the Hamiltonian function defined on M(2N,R)2×M(N,R) by

H
(
R,P,W

)
= ⟨P,AWR⟩ = ⟨A T

WP,R⟩. (1.15)

such an extremal is called strong extremal.
6 We denote Com(M) the comatrix of a square matrix M .
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Remark 4. Note that every potential V admits a unique extremal (which is
possibly strong).

We then get the following.

Proposition 1. Let R : [0, T ] → M(2N,R) be an optimal trajectory of
Ext−Detε(M) with minimising potential V . Then R is the projection on
M(2N,R) of a unique strong extremal λ = (R,P ) : [0, T ] → M(2N,R)2.

Proof. Let V be a minimising potential of Ext−Detε(M) and R the asso-
ciated trajectory by (1.5). Pontryagin maximum principle implies that there
exists a nontrivial pair (p0, P ) where the cost multiplier p0 is a nonpositive
real number and the covector P : [0, 1] → M(2N,R) is a Lipschitz function so
that

1. (R(x), P (x)) ∈ M(2N,R)2 satisfy on [0, 1] the adjoint equations:

Ṙ = ∇PH, (1.16)

Ṗ = −∇RH; (1.17)

2. we have the maximality condition given by (1.14);
3. the following transversality condition holds true: P (1) = p0∇Cε(V ).

In addition, since H does not depend on time, its value in (1.14) does not
depend on time and is denoted by the constant real number h. As

∇PH = AWR, ∇RH = A T
WP, ∇ det(Id2N −R) = −Com(Id2N −R),

the items of Proposition 1 follow at once, except the facts that p0 can be
taken equal to −1 and λ is unique. To establish the first fact, it is enough to
show that p0 cannot be null. To show that, we argue by contradiction and, in
that case, it follows that P (1) = 0. Since (1.19) is linear in P , one gets that
P is identically equal to zero on [0, 1]. This contradicts the non triviality of
the pair (p0, P ) and hence p0 ̸= 0. Regarding the uniqueness of λ, note first
that, given M > 0, trajectories of (1.5) are in one to one correspondence with
potentials in VM , since to each such trajectory, there is a unique potential
V ∈ VM necessarily defined as the lower left N × N block of AV = ṘR−1

(recall that R is absolutely continuous). By Item 3., P (1) is determined by
R(1) and hence P is computed from (1.17). □

To take advantage of the maximisation condition (1.14), after defining
q = PRT , we rewrite Proposition 1 only using q and we deduce at once that

Proposition 2. Assume that a trajectory R of Ext−Detε(M) with potential
V is the projection of an extremal trajectory λ = (R,P ). Define

q = PRT =

[
Z1 ψ
φ Z2

]
, (1.18)

where the various blocs are N ×N matrices. Then the dynamics of q is given,
a.e. on [0, 1], by7

7 We denote [Q1, Q2] = Q1Q2 −Q2Q1 the commutator of matrices.
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q̇(x) =
[
q(x),A T

V (x)

]
, q(1) = (−1)Nε Com

(
Id2N −R(1)

)
RT (1), (1.19)

which yields, for a.e. x ∈ [0, 1],

Ż1 = ψ − V Tφ, (1.20)

φ̇ = Z2 − Z1, (1.21)

ψ̇ = Z1V
T − V TZ2, (1.22)

Ż2 = φV T − ψ. (1.23)

The Hamiltonian function H defined in (1.15) is equal to

H
(
R,P,W

)
= ⟨q,A T

W ⟩ = tr(ψ) + ⟨φ,W ⟩. (1.24)

Moreover, it holds

qT (x) = R(x)qT (1)R−1(x), for every x ∈ [0, 1], (1.25)

φ̈ = −2ψ + V Tφ+ φV T for a.e. x ∈ [0, 1], (1.26)

and in particular q(·) is periodic of period one.
Assume moreover λ = (R,P ) is a strong extremal. If φ(x) ̸= 0, then

V (x) =M2 φ(x)
∥φ(x)∥ and, for every x ∈ [0, 1], it holds

h = tr(ψ) +M2∥φ(x)∥, (1.27)

tr(φ̈) = −2h+ 4M2∥φ(x)∥. (1.28)

Proof. Most the above is immediate except (1.25). The latter follows from the
fact that, for every x ∈ [0, 1],

qT (x) = R(x)R−1(1)qT (1)R(1)R−1(x).

The above equation then yields (1.25) after noticing that R(1) and qT (1) com-
mute. □

From now on, we indifferently call extremal either the pair (R,P ) or the pair
(R, q).

Remark 5. In the light of Item (iii) of the above proposition, one can see that
the potential V is not (immediately) defined at a zero of φ. In the sequel, the
latter function φ is refereed to as the switching function and we single out a
particular instance of zero of φ, namely that of switching time defining such a
point x∗ ∈ (0, 1) for which φ(x∗) = 0 and there exist two sequences (xn)n∈N

and (yn)n∈N of two by two distinct points, both converging to x∗ such that
⟨φ(xn), φ(yn)⟩ < 0 for n ∈ N. Clearly, a zero of φ in (0, 1) which is not a zero
of φ̇ is a switching time.



1 Optimisation of functional determinants on the circle 7

Remark 6. At every R ∈ SL(2N,R), the tangent space is

TR SL(2N,R) = {rR | r ∈ M(2N,R) such that tr(r) = 0}. (1.29)

Using now the inner product introduced in (1.1), one can identify the cotan-
gent space T ∗

R SL(2N,R) as

T ∗
R SL(2N,R) = {q(R−1)T | q ∈ M(2N,R) such that tr(q) = 0}. (1.30)

We next notice that the flow associated with (1.19) is isospectral (cf. for
instance [5]), in particular the trace of q is constant on [0, 1] equal to tr(q(1)).
Define indeed

q̃(x) = q(x)− tr(q(1)

2N
Id2N , P̃ (x) = q̃(x)

(
RT (x)

)−1
, for x ∈ [0, 1].

Clearly the curve λ̃ = (R, P̃ ) takes values in T ∗ SL(2N,R) and is an integral

curve of the Hamiltonian vector field H⃗ associated with H. Finally, when
applying the PMP to R, we claim that λ̃ turns out to be the required extremal
with R as projection onto SL(2N,R): the dynamics of λ̃ has been described

just previously, i.e.,
˙̃
λ = H⃗(λ̃), the maximality condition is exactly (1.14) and

the tranversality condition (1.13) now says that P (1) − p0∇Cε(V ) belongs
to the normal cone at T ∗

R(1) SL(2N,R), where the gradient is projected on

T ∗
R(1) SL(2N,R). Since that normal cone is equal to R(RT (1))−1 and since

one easily shows that p0 = −1, one gets the claim regarding λ̃.

1.3 Invariance and symmetries

We begin by providing the following property regarding translated potentials
ensuring that the problem is well posed for controls defined on S1 ≃ R/Z.
In particular, the uniqueness results of Section 1.4 are stated for controls in
L∞(S1).

Lemma 1. Let R be a trajectory of Ext−Detε(M) associated with potential
V and corresponding extremal (R, q). For x0 ∈ R, consider the potential Vx0

translated from V according to Remark 2. Then Vx0
has same cost as V with

corresponding extremal (Rx0 , qx0) and one gets that

qx0
(x) = q(x+ x0), φx0

(x) = φ(x+ x0), ∀x ∈ R. (1.31)

where φ (φx0
, respectively) denotes the switching function associated with V

(Vx0
, respectively).

Proof. It is immediate to derive that the trajectory Rx0
of (1.5) associated

with Vx0 is given by

Rx0
(x) = R(x+ x0)R(x0)

−1, ∀x ∈ R, (1.32)
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and, by periodicity of V , it follows that

Rx0
(1) = R(x0)R(1)R(x0)

−1. (1.33)

Using the above equation, one gets that

Cε(Vx0) = (−1)Nεdet(Id2N −Rx0(1)) = Cε(V ),

and hence has same cost as V . Let λx0
= (Rx0

, Px0
) be the unique extremal

associated with Rx0 . Then, from (1.25), it holds

qTx0
(x) = Rx0(x)

(
Rx0(1)

)−1
qTx0

(1)Rx0(1)
(
Rx0(x)

)−1
, ∀x ∈ [0, 1],

and, from (1.19), one has

qx0
(1) = (−1)Nε Com

(
Id2N −Rx0

(1)
)
RT

x0
(1)

= (−1)Nε Com
(
Id2N −R(x0)R(1)R(x0)−1

)
RT

x0
(1)

= (−1)Nε
(
R(x0)

T
)−1

Com
(
Id2N −R(1)

)
R(x0)

TR(x0)
−1

=
(
R(x0)

T
)−1

q(1)R(x0)
T .

Using the above equation, (1.32) and (1.33), one gets (1.31). □

We then prove that there always exists potentials V with negative costs,
implying that minimal values for Ext−Detε(M) are always negative, which
in particular, exclude the zero potential from optimality.

Lemma 2. The cost Cε(0) associated with the zero potential is equal to zero.
For every N × N diagonal matrix D = diag(ε1d

2
1, · · · , εNd2N ), where ε2i = 1

and di > 0 for 1 ≤ i ≤ N , let Cε(D) be the cost associated with the constant
potential equal to D. Then

Cε(D) = (−2)NεΠN
i=1

(
1− cεi(di)

)
. (1.34)

Moreover, for every M > 0, D ∈ VM if
∑N

i=1 d
2
i ≤ M2 and then Cε(D) < 0

if one chooses ε1ε = −1, εi = 1 for 2 ≤ i ≤ N and d1 not a multiple of 2π if
ε1 = −1.

Proof. One clearly has that the trajectory R0 of (1.5) associated with the zero
potential is equal to

R0(x) =

[
IdN x IdN
0 IdN

]
for x ∈ [0, 1].

The conclusion follows at once. Using (1.43), one easily deduces the value
resolvent matrix RD associated with D at x = 1,
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RD(1) =

[
diag(cε1(d1), · · · , cεN (dN )) diag(

sε1 (d1)

d1
, · · · , sεN (dN )

dN
)

diag(ε1d1sε1(d1), · · · , εNdNsεN (dN )) diag(cε1(d1), · · · , cεN (dN ))

]
.

(1.35)
An elementary computation yields (1.34) and the lemma follows. □

We now derive basic facts on optimal trajectories.

Lemma 3. Assume that R is an optimal trajectory associated with a min-
imising cost V and let h be the constant value of the Hamiltonian defined in
(1.14). Then the following facts hold true.

(a) The cost Cε(V ) is negative and hence Id2N −R(1) is invertible. Moreover,
the switching function φ is of class C2, the matrix q = RPT defined in
(1.18) is periodic of period one, it holds that

qT (1) = Cε(V )
(
Id2N −R(1)

)−1
R(1) and qT (x) = R(x)qT (1)R−1(x)

(1.36)
for every x ∈ [0, 1], and the following relation holds true

h = 2M2

∫ 1

0

∥φ(x)∥ dx. (1.37)

(b) If h = 0 then there exists an invertible Z∗ ∈ M(N,R) such that

q ≡
[
Z∗ 0
0 Z∗

]
, (1.38)

and (−1)Nε is negative.
(c) If h > 0, then φ has a finite number of zeroes in [0, 1] at which either φ̇

does not vanish or φ̈ is well defined and does not vanish.

Proof. From (1.26) and the expression of V at points where φ does not vanish,
one deduces that φ is of class C2 on [0, 1]. The one periodicity of q is an
immediate consequence of Lemma 2. In that case, one can simplify (1.19) and
(1.25) to get (1.36). The latter equation implies that R(1) and qT (1) commute,
which implies by using (1.36) that q(0) = q(1). Since q is solution of a Cauchy
problem (the ODE q̇ =

[
q,A T

V

]
together with an initial condition), it follows

that q is periodic of period one. Finally, integrating (1.28) between x = 0 and
x = 1 and using the periodicity of tr(φ̇), one gets (1.37). Assume h = 0. From
(1.37), it follows that φ ≡ 0 and then (1.26) implies that ψ ≡ 0 as well. The
rest of the dynamics of q clearly yields that q is constant on [0, 1], verifying
(1.38). By using the latter fact after taking the determinant in (1.36) it follows
that

(detZ∗)
2 = (−1)Nε

[
det

(
Id2N −R(1)

)]2N−1
= Cε(V )2N−1,

and the last part of Item (b) follows. We provide next an argument for Item (c).
Arguing by contradiction, it would follow that there exists a sequence (xk)k∈N
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of two by two distinct times in [0, 1] so that limk→∞ xk = x̄ and φ(xk) = 0
for k ≥ 0. Since φ is of class C1, one has that φ(x̄) = 0 by continuity of φ
and then

0 = lim
k→∞

φ(xk)− φ(x̄)

xk − x̄
= φ̇(x̄).

Since V is bounded, one deduces from (1.26) that φ̈ is twice differentiable at
x = x̄. Moreover, φ̈(x̄) is not zero since, from (1.26), it holds

tr(φ̈(x̄)) = −2h < 0.

By a Taylor expansion at order two, one obtains that there exists an open
interval I centered at x̄ so that φ(x) = 0 for x ∈ I only if x = x̄. That con-
tradicts the existence of the sequence (xk)k∈N. □

We end the section by providing preliminary symmetry properties for a
minimising potential. For that purpose we define the following matrices of
M(2N,R):

J = AId2N
i.e. J =

[
0 IdN

IdN 0

]
, A = A− Id2N

i.e. A =

[
0 IdN

− IdN 0

]
,

U =

[
U 0
0 U

]
, for every U ∈ SO(N), BQ = A T

QT , for every Q ∈ M(N,R).

Note that J2 = ATA = Id2N .

Proposition 3. Let M > 0, V ∈ VM and R the trajectory of (1.5) associated
with V . The following items are equivalent:

(1.) V is a minimising potential for Ext−Detε(M) along (1.5);
(2.) for every U ∈ SO(N), VU = U TVU is a minimising potential for

Ext−Detε(M) along (1.5) with U TRU as associated trajectory;
(3.) V is a minimising potential for Ext−Detε(M) along trajectories of each

of the following four dynamical systems{
Ṡ(x) = BV (x)S(x),
S(0) = IdN ,

{
Ṡ(x) = −BV (x)S(x),
S(0) = IdN ,{

Ṡ(x) = S(x)BV T (x),
S(0) = IdN ,

{
Ṡ(x) = −S(x)AV (x),
S(0) = IdN ,

with JRJ , ATRA, RT and R−1 as associated optimal trajectories respec-
tively and same value of the cost;

(4.) V T is a minimising potential for Ext−Detε(M) along (1.5) with asso-
ciated trajectory AT (RT )−1A.

Proof. Showing the several items is immediate once one notices that

JAQJ = BQ, ATAQA = −BQ, for every Q ∈MN (R).
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As for the equality of the costs, we just check the following

det(Id2N −R−1(1)) = det
(
(R(1)− Id2N )R−1(1)

)
= det(Id2N −R(1)).

□

1.4 One-dimensional case

From now on N = 1, M is still a positive number and

VM = {V : [0, 1] → R | V measurable and ess sup
x∈[0,1]

|V (x)| ≤M2}. (1.39)

From Item (iii) of Proposition 2, it holds that V (x) ∈ {−M2,M2} as soon as
φ(x) ̸= 0 and this motivates the following definition.

Definition 2. Let R be a trajectory of (1.5) associated to some V ∈ VM .
A bang arc γ : I → M(2,R) is a piece of R defined on some non empty
subinterval I ⊂ [0, 1] such that V = νM2 is constant on I, with ν ∈ {−1, 1}.
A trajectory R of (1.5) is said to be bang if it is made of a unique bang arc
and bang-bang if it is the concatenation of bang arcs.

We first examine the Max-Det problem. In dimension N = 1, the cost to
maximise is

CV = −det(I2 −R(1)),

= −(1− trR(1) + detR(1)),

= trR(1)− 2

since the monodromy R(1) belongs to SL(2,R). Maximising CV is so equiva-
lent to maximising the trace of the monodromy

trR(1) = z(1) + y′(1),

where z and y satisfy −w′′ + V (x)w = 0 with respective initial conditions
(z(0), z′(0)) = (1, 0) and (y(0), y′(0)) = (0, 1).

Proposition 4. Let V1 and V2 be two potentials in L1
loc(R+), V1 ≥ |V2| a.e.,

and let y1 and y2 satisfy −y′′i + Vi(x)yi = 0, i = 1, 2. If y1(0) ≥ |y2(0)| and
y′1(0) ≥ |y′2(0)|, then y1(x) ≥ |y2(x)| and y′1(x) ≥ |y′2(x)| for all x ≥ 0.

Proof. (i) First assume V1 and V2 constant, V1 ≡ A and V2 ≡ B with A and
B two reals such that A ≥ |B|. One has

y1(x) = y1(0) cosh(αx) + xy′1(0) sinhc(αx)

where α =
√
A, and where we denote
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sinhc(x) =

{
sinh(x)/x if x ̸= 0,
1 if x = 0.

If B is nonnegative, let β :=
√
B ≤ α; one has

|y2(x)| = |y2(0) cosh(βx) + xy′2(0) sinhc(βx)|
≤ |y2(0)| cosh(βx) + x|y′2(0)| sinhc(βx)
≤ y1(0) cosh(αx) + xy′1(0) sinhc(αx) = y1(x)

for x ≥ 0 since both cosh and sinhc are nondecreasing functions on R+ (and
β ≤ α). Similarly, for x ≥ 0,

|y′2(x)| = |βy2(0) sinh(βx) + y′2(0) cosh(βx)|
≤ αy1(0) sinh(αx) + y′1(0) cosh(αx) = y′1(x).

If B is negative, let β :=
√
−B ≤ α; one has (denoting sinc(x) = sin(x)/x if

x ̸= 0, sinc(0) = 1)

|y2(x)| = |y2(0) cos(βx) + xy′2(0) sinc(βx)|
≤ |y2(0)| cosh(βx) + x|y′2(0)| sinhc(βx)
≤ y1(x)

for x ≥ 0 since | cos | ≤ cosh and | sinc | ≤ sinhc on R+. Similarly, for x ≥ 0,

|y′2(x)| = | − βy2(0) sin(βx) + y′2(0) cos(βx)|
≤ αy1(0) sinh(αx) + y′1(0) cosh(αx).

(ii) Take now some positive x, and assume V1 and V2 are piecewise constant on
[0, x]; there exists a common subdivision 0 = x0 < x1 < ... < xN = x, N ≥ 1,
such that on every [xi, xi+1[ both V1 and V2 are constant, with V1 ≥ |V2|. A
simple recurrence using step (i) allows to conclude that y1(x) ≥ |y2(x)| and
y′1(x) ≥ |y′2(x)|.

(iii) Consider eventually V1 and V2 locally integrable on R+, and fix x > 0.
There exist two sequences (V1,n)n, (V2,n)n of piecewise constant functions
converging in L1(0, x) to V1 and V2, respectively. These sequences can be
chosen such that V1,n ≥ |V2,n|, n ∈ N. Then according to point (ii), for
all n ∈ N, y1,n(x) ≥ |y2,n(x)| and y′1,n(x) ≥ |y′2,n(x)|, where yi,n denotes the
solution associated with Vi,n and fixed initial conditions (yi(0), y

′
i(0)), i = 1, 2.

Since, for any given initial condition (y0, y
′
0), the mapping V 7→ (y(x), y′(x))

(where y is the solution of −y′′+V y = 0, y(0) = y0, y
′(0) = y′0) is continuous

from L1(0, x) to R2 (see, e.g., Proposition 7 in [1]), passing to the limit one
obtains that y1(x) ≥ |y2(x)| and y′1(x) ≥ |y′2(x)|. As x is arbitrary, the desired
conclusion holds. □
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Corollary 1. For V in L∞(0, 1), let y and z denote the solutions of

−y′′ + V (x)y = 0, y(0) = 0, y′(0) = 1,

−z′′ + V (x)z = 0, z(0) = 1, z′(0) = 0.

Then, for any positive bound M , the constant potential V ≡M2 is the unique
function maximising both y(1), y′(1), z(1) and z′(1) over essentially bounded
potentials such that ∥V ∥∞ ≤M2.

Theorem 1. The unique solution of the Max-Det(M) problem in the peri-
odic case is the constant potential equal to M2.

Proof. It is clear from the previous corollary that the constant potential
V ≡ M2 maximises z(1) + y′(1) among essentially bounded potentials such
that ∥V ∥∞ ≤M2. Let V be a measurable function satisfying the same bound
and such that V is strictly inferior toM2 on a positive measure subset of [0, 1];
a direct estimation allows to prove that the associated values of both z(1) and
y′(1) (hence of their sum) are strictly smaller than the values obtained for the
constant potential V ≡M2. □

We eventually handle Min-Det. In particular, we immediately derive the
following result after Lemmas 3 and 2.

Lemma 4. Assume that R is an optimal trajectory associated with a potential
V minimising C1. Then the following cases may occur.

(i) If h = 0, then V is equal to the constant potential V0 ≡ −M2 and φ
never vanishes on on [0, 1]. In that case, the minimal cost is equal to
C1(V0) = −2

(
1− c−(M)

)
;

(ii) if h ̸= 0, then φ has a finite number of zeroes in [0, 1] and V (x) =
M2sgn(φ(x)) outside a finite set made of the zeroes of φ.

Hence, either R is the bang trajectory R0 associated with V0 or it is a bang-
bang trajectory with a finite number of bang arcs.

Proof. From Lemma 2, we know that the minimal value of C1 is negative, and
then, Item (a) of Lemma 3 only leaves the possibility of φ never vanishing on
[0, 1]. Hence V is constant equalM or −M . Since C1(M) > 0, Item (i) follows
at once. Item (ii) is essentially a rewriting of Item (b) of Lemma 3 together
with Item (iii) of Proposition 2. □

In the one-dimensional case, we can actually give a more elementary proof
that minimising potentials are bang-bang with finitely many switchings using
the structure of sl(2,R). Our minimisation problem is a Mayer problem with
linear cost, trR(1) → min, and bilinear dynamics

Ṙ(x) = F0R(x) + V (x)F1R(x)
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with a single input control such that, a.e., |V (x)| ≤M2, and matrices (linear
vector fields)

F0 =

[
0 1
0 0

]
, F1 =

[
0 0
1 0

]
.

Together with their commutator8

F01 := [F0, F1] =

[
1 0
0 −1

]
,

these matrices form an sl2-triple of the dimension three Lie algebra. In par-
ticular, one has

F001 = [F0, F01] = −2F0, F101 = [F1, F01] = 2F1. (1.40)

Denoting Hi := ⟨P, FiR⟩, for i = 0, 1, the Hamiltonian lifts of F0 and F1, the
Hamiltonian is H = H0 + V H1. To analyse the structure of the set of zeroes
of H1 along an extremal, one can compute (with the same notation as before)

Ḣ1 = H01, Ḣ01 = H001 + V H101.

Because of (1.40), Ḧ1 = 2(V H1 −H0) so H1 is C 2 (since V is bounded, V H1

vanishes whenever H1 does) and there are two cases at a switching time: either
H01 is not zero, or H01 is zero and H001 is not (P would otherwise vanish,
which is forbidden, since F0, F1 and F01 form a basis of the Lie algebra). In
both cases, the switching time must be isolated.

We focus now on strong extremals associated with h ̸= 0, and introduce
the following notations: if ν2 = 1, we use cν(t) (respectively sν(t)) to denote
cosh(t) if ν = 1 and cos(t) if ν = −1 (respectively sinh(t) if ν = 1 and sin(t)
if ν = −1). With these conventions, one also has for every x ∈ R that

c2ν(x)− νs2ν(x) = 1, ċν(x) = νsν(x), ṡν(x) = cν(x), (1.41)

cν(2x) = 1 + 2νs2ν(x), sν(2x) = 2νsν(x)cν(x). (1.42)

As a consequence, if d is a positive real number, the solution of the linear
second order equation ÿ = νdy is given by

y(t) = cν(dt)y(0) +
1

d
sν(dt)ẏ(0), t ∈ R. (1.43)

We have the following two intermediate results.

Lemma 5. Let (R, q) be a strong extremal projecting on an optimal trajectory
R which is associated with a potential V minimising C1 with corresponding
h ̸= 0. Assume furthermore that

8 Note that we use the matrix commutator whose sign is opposite to the Lie bracket
of the associated linear vector fields.
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1. V is not identically equal to −M2;
2. x0 < x1 are two consecutive zeroes of φ in [0, 1], i.e., |φ| > 0 on (x0, x1).

Set T := x1 − x0 > 0 and ν = sgn(φ) on (x0, x1). Then both cν(MT ) and
sν(MT ) are non zero and the following holds:

φ(x) =
h

M2cν(MT )
sν(M(x− x0))sν(M(x1 − x)), for x ∈ [x0, x1]. (1.44)

In particular,

φ̇(x0) = −φ̇(x1) = h
sν(MT )

cν(MT )
̸= 0. (1.45)

Proof. In the case N = 1 and using the notations of the lemma, one can
rewrite (1.26) as

φ̈ = 4νM2(φ− νh

2M2
) for x ∈ [x0, x1]. (1.46)

Integrating (1.46) yields that

φ(x) =
νh

2M2

(
1− cν(2M(x− x0))

)
+Bsν(2M(x− x0)), (1.47)

φ̇(x) = 2M2Bcν(2M(x− x0))− hsν(2M(x− x0)), (1.48)

where B is a constant satisfying

− νh

2M2
(1− cν(2MT )) = Bsν(2MT ). (1.49)

From (1.48), one deduces that

φ̇(x0) = 2M2B, φ̇(x1) = 2M2Bcν(2MT )− hsν(2MT ). (1.50)

We prove next that sν(MT ) ̸= 0. Arguing by contradiction, it would first
imply that ν = −1 and then V = −M2, cν(2MT ) = 1, sν(2MT ) = 0 and,
from (1.50), that φ̇(x0) = φ̇(x1) = 2M2B. If B ̸= 0, then sgn(B)φ̇ is positive
in a right neighborhood of x0 while it is negative in a left neighborhood of
x1, implying that φ must vanish inside (x0, x1). This contradicts Item 2., and
therefore one deduces that B = 0 and then φ̈(x0) = φ̈(x1) = −2h, yielding
that h > 0 and x0 and x1 are not switching times. We claim that every
zero of φ is not a switching time and that V ≡ −M2. Indeed, recall that a
zero of φ is isolated and there are a finite number of them. Consider then x2
distinct from x0 and x1. Assume that it is consecutive to x1, i.e. |φ| > 0 on
(x1, x2). Reproducing the reasoning done on [x0, x1] with x1 (respectively x2)
replacing x0 (respectively x1), we conclude from (1.50) that the corresponding
B is equal to zero and from (1.47) that cν′(2M(x2 − x1)) = 1, i.e., ν′ = −1
and sν′(M(x2 − x1)) = 0. Being back to the previous situation, one deduces
that φ̇(x2) = 0. Proceeding in that way step by step, one gets the claim. This
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contradicts Item 1. and finally one has proved that sν(MT ) ̸= 0. From (1.49)
and (1.42), one gets that

B =
h

2M2

cν(MT )

sν(MT )
,

and direct computations finally yield (1.44) and (1.46). □

To state our subsequent results, one needs to define, for every positive real
number M the function FM : [0, 1] → R+ by

FM (x) = x+
π − arctan

(
tanh(Mx)

)
M

· (1.51)

The basic facts on this function are the following:

FM (0) =
π

M
, FM (1) = 1+

π − arctan
(
tanh(M)

)
M

,F ′
M (x) =

2 tanh2(Mx)

1 + tanh2(Mx)
,

(1.52)
for all x ∈ [0, 1]. Hence FM is a C1, strictly increasing bijection from [0, 1] to
[ π
M , FM (1)] and FM (1) > 1. Our second intermediate result goes as follows.

Lemma 6. Let (R, q) be a strong extremal projecting on an optimal trajectory
R which is associated with a potential V minimising C1 with corresponding
h ̸= 0. Assume furthermore that R is not a bang trajectory. Then, up to a
translation, V is periodic of period T1 + T2 so that V = M2 on [0, T1] and
V = −M2 on [T1, T1 + T2] where T1, T2 ∈ (0, 1) so that they satisfy

T2 =
π − arctan

(
tanh(MT1)

)
M

, (1.53)

and there exists a positive integer l such that

FM (T1) = 1/l. (1.54)

Proof. Notice that Rmust have at least two distinct bang arcs and then at least
two switching points. Moreover, all the zeroes of φ must be switching times
according to (1.45). Thanks to Lemma 1, we can assume, up to translating the
potential V , that 0 is a switching time and φ > 0 in a right neighborhood of
zero (since both signs are taken on [0, 1]). Since φ̇(0) ̸= 0, it must be positive
and (1.45) yields that both h and ν are positive. We first claim that x = 1
must be a switching time. For otherwise, φ(1) ̸= 0 and hence V has a constant
sign in a left neighborhood of 1. If V =M2 there, then for a > 0 small enough
one has that φ−a(a) = φ(0) = 0 and φ̇−a(a) = φ̇(0) ̸= 0, i.e., a is a switching
time for V−a. This is in contradiction with the fact that V−a =M in an open
neighborhood of a. If now V = −M2 in a left neighborhood of 1, let xr < 1 be
the largest zero of φ in [0, 1]. It turns out that Vxr changes sign at x = 1− xr
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but this is in contradiction with the fact that φxr
(1 − xr) = φ(1) ̸= 0. We

have proved the claim. Now we show that the last bang must correspond
to V = −M2. Indeed if it were not the case, then Va = M2 in an open
neighborhood of some a > 0 small enough with φa(a) = 0, which is not
possible. It means that R is the concatenation of an even number of bang
arcs, γi, 1 ≤ i ≤ 2l, where on the γ2j−1’s, 1 ≤ j ≤ l, one has V =M2 and on
the γ2j ’s, 1 ≤ j ≤ l, one has V = −M2. Let Ti > 0 be the duration of each
bang arc γi, for 1 ≤ i ≤ 2l, and clearly

2l∑
i=1

Ti = 1. (1.55)

We next prove that T2 = F (T1). Indeed, consider (1.45) written for (x0, x1) =
(0, T1) and then (x0, x1) = (T1, T1 + T2). One deduces that

h tanh(MT1) = φ̇(0) = −φ̇(T1), h tan(MT2) = φ̇(T1) = −φ̇(T1 + T2).
(1.56)

It follows at once that

tanh(MT1) = − tan(MT2) ∈ (0, 1).

It follows that MT2 − kπ ∈ ( 3π4 , π) for some non negative integer k. Then
k = 0 otherwise, using (1.44), φ would have another zero in (T1, T1 + T2),
which is not possible. One deduces (1.53). We finally prove that

T2j−1 = T1, T2j = T2, for 1 ≤ j ≤ l. (1.57)

We only provide an argument for T3 = T1 since the other equalities are de-
duced in an identical manner. For that purpose, consider (1.45) written for
(x0, x1) = (T1 + T2, T1 + T2 + T3). One deduces that

h tanh(MT3) = φ̇(T1 + T2) = −φ̇(T1 + T2 + T3).

Using (1.56), one gets that

tanh(MT3) =
φ̇(T1 + T2)

h
= − tan(MT2) = tanh(MT1),

yielding that T1 = T3 and V is (T1 + T2)-periodic. One deduces (1.54) from
(1.55), which concludes the proof of Lemma 6. □

We are able to state the proposition providing a complete solution to
Min-Det in the case N = 1.

Theorem 2. For every positiveM , the optimal control problem Min-Det(M)
admits a unique minimising potential Vmin in L∞(S1) defined as follows.

(a) IfM ∈ (0, π], Vmin = V0 ≡ −M2 and the minimal value for Min-Det(M)
is equal to C1(V0) = −2

(
1− c−(M)

)
;
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(b) If M > π, Vmin is the potential V1 equal to M2 on [0, t1] and −M2 on
[t1, 1], with FM (t1) = 1 and the minimal value for Min-Det(M) is equal
to C1(V1) = −2

(
1− c−(M(1− t1))c+(t1)

)
.

Proof. If M ≤ π, then FM (x) > 1 for every x ∈ (0, 1] and one deduces
from (1.54) that there is no T1 ∈ (0, 1) satisfying the properties required for
the existence of a an optimal trajectory R which is not a bang trajectory.
Therefore, the only candidate left as minimising potential by Lemma 4 is
V = V0, i.e. Item (a) holds true. Assume now thatM > π. Define the positive
integer L := E(Mπ ) (where E(x) stands for the integer part of the real x), and
the 2L times

tl = F−1
M (1/l), sl = 1/l − tl, 1 ≤ l ≤ L. (1.58)

According to Lemma 6, there exists a bang-bang trajectory Rl with 2l bang
arcs and associated with the periodic potential Vl of period 1/l so that Vl =
M2 on [0, tl] and Vl = −M2 on [tl, tl + sl]. Recall that R0 is the trajectory
of (1.5) associated with V0. Then, one gets from Lemmas 4 and 6 that a
minimising potential Vmin must be equal to Vl for some integer 0 ≤ l ≤ L.
In order to conclude, one is left with the computation of the costs C1(Vl), for
positive integers 1 ≤ l ≤ L. A lengthy but straightforward computation yields
that

Rl(1/l) =

[
c−(Msl)

s−(Msl)
M

−Ms−(Msl) c−(Msl)

] [
c+(Mtl)

s+(Mtl)
M

Ms+(Mtl) c+(Mtl)

]
=

[
c−(Msl)c+(Mtl) + s−(Msl)s+(Mtl)

c−(Msl)s+(Mtl)+s−(Msl)c+(Mtl)

M
M(s−(Msl)c+(Mtl) + c−(Msl)s+(Mtl)) c−(Msl)c+(Mtl) − s−(Msl)s+(Mtl)

]
,

(1.59)

and one has that det(Rl(1/l)) = 1 and

αl = − tr(Rl(1/l))

2
= −c−(Msl)c+(Mtl), 1 ≤ l ≤ L. (1.60)

We use rl,
1
rl

in C to denote the eigenvalues of Rl(1/l). Since Vl is 1/l-periodic,

one gets that Rl(1) = Rl
l(1/l) and hence

C1(Vl) = − det
(
Id2 −Rl

l(1/l)) = (−2)(1−
rll + r−l

l

2
), 1 ≤ l ≤ L. (1.61)

Recall that Msl ∈ ( 3π4 , π) and hence, it holds, for 1 ≤ l ≤ L that

−c−(Msl) = −c−
(
π − arctan

(
tanh(Mtl)

))
= c−

(
arctan

(
tanh(Mtl)

))
=

1√
1 + tanh2(Mtl)

=
c+(Mtl)√

c2+(Mtl) + s2+(MT1)
,

and then
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αl =
c2+(Mtl)√

2c2+(Mtl)− 1
> 1. (1.62)

Let ξl > 0 such that αl = c+(ξl). Since rl and
1
rl

are the roots of the degree

two polynomial X2+2c+(ξl)X+1, one gets that rl = −eξl and finally it holds

C1(Vl) = (−2)
(
1− (−1)lc+(lξl)

)
.

For even l’s, the cost is non negative, implying that Vl cannot be minimising.
For odd l’s, the cost is smaller than −4 and then smaller than C1(V0). It
remains to show that C1(Vl) reaches its minimal value for l = 1. For that,
it is enough to prove that the mapping G : l 7→ lξl is strictly decreasing for
l ∈ [1, L]. Computing, one gets

G′(l) =Mtl

( ξl
Mtl

− c+(Mtl)

s+(Mtl)

FM (Mtl)

tl

)
, l ∈ [1, L].

Since FM (Mtl) > tl, one would have thatG′(l) < 0 if one shows that ξl < Mtl.
In turn, that last inequality is itself equivalent αl < c+(Mtl), inequality which
does hold true by (1.62). This concludes the proof of Theorem 2. □
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