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Abstract. A normal form of the Riemannian metric arising when averaging the coplanar controlled
Kepler equation is given. This metric is parameterized by two scalar invariants which encode its main
properties. The restriction of the metric to S2 is shown to be conformal to the flat metric on an oblate
ellipsoid of revolution, and the associated conjugate locus is observed to be a deformation of the
standard astroid. Though not complete because of a singularity at the origin in the space of ellipses,
the metric has convexity properties that are expressed in terms of the aforementioned invariants, and
related to surjectivity of the exponential mapping. Optimality properties of geodesics of the averaged
controlled Kepler system are finally obtained thanks to the computation of the cut locus of the restric-
tion to the sphere.
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Introduction

The mechanical system we are interested in is the Kepler equation with control appearing
linearly in the right hand side,

q̈ = −q/|q|3 + u,

thus modelling the action of the engine of a spacecraft in a central field, e.g., the Earth grav-
itational field. In such a model, several approximations are made: Essentially, the spacecraft
mass variation – which would reflect fuel consumption – is not taken into account, and higher
order terms of the potential as well as influence of other celestial bodies are neglected. Fix-
ing initial and terminal conditions, one defines an orbit transfer problem between Keplerian
orbits [6]. Though the full model is three-dimensional, we restrict here the discussion to the
coplanar case where the position, q, and the control, u, lie in R2. This is indeed sufficient to
analyze orbit transfers with small change in the inclination (with respect to the equatorial
plane for instance, in the case of Earth orbits). The criterion which is physically important is
the minimization of the consumption. It amounts to minimizing the L1-norm of the control
over a fixed period of time (tf being the transfer time),

∫ tf

0
|u|dt → min.
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This performance index only makes sense provided a constraint on the control is added,

|u| ≤ η.

As before, the finite dimensional norm | · | is a 2-norm, |u| =
√

|u1|2 + |u2|2. In modern
space missions, low propulsion is considered, so η is a first small parameter of the problem.

Using the mechanical energy of the system, E = q̇2/2 − 1/|q|, one defines the elliptic
domain in the (q, q̇)-space,

Q = {E < 0, q ∧ q̇ %= 0}.

On this domain, new coordinates are available, namely those first integrals of the unperturbed
motion that describe the geometry of the osculating orbit which is an ellipse when the
energy is negative. Consider hence the semi-latus rectum of the ellipse, P, together with its
eccentricty vector, (ex , ey ): Adding the longitude, l, to define the position of the spacecraft
on its orbit, the elliptic domain is clearly seen to be fibered over S1 since

Q = {P > 0, |(ex , ey )| < 1, l ∈ S1},

and the dynamics in these orbital elements takes the form of the so-called Gauss equations,

dx/dl = u1F1(l, x)+ u2F2(l, x), l̇ = ω(l, x),

where x = (P, ex , ey ), and where the Fi are vector fields over the space of ellipses, Xe =
{P > 0, |(ex , ey)| < 1}, periodically parameterized by longitude. More precisely,

F1 = (P2/W2)(sin l ∂/∂ex − cos l ∂/∂ey ),

F2 = (P2/W2)[2P/W ∂/∂P

+ (cos l + (ex + cos l)/W) ∂/∂ex + (sin l + (ey + sin l)/W) ∂/∂ey ],

while

ω = W2/P3/2, W = 1+ ex cos l + ey sin l.

In the context of low propulsion, it is natural to consider orbit transfers with many revolutions,
and the inverse of the final longitude (taken as the new independent variable), ε = 1/lf , is
the second small parameter of the system.

Analysis in the minimum time case [5] gives evidence for the existence of conjugate points
where extremals of the system cease to be locally minimizing. A simplified approximation
of the system is then desirable to study optimality properties. A relaxation of the problem
consists in replacing the L1 criterion by an L2 one,

∫ tf

0
|u|2dt =

∫ lf

0
|u|2dl/ω→ min,
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then in dropping the constraint on the control. Minimizing trajectories are projections of
extremals parameterized by Pontryagin maximum principle. Such curves are integrals of
the following Hamiltonian on the cotangent bundle T∗Xe,

H (l, x , p) = (ω/2)(H 2
1 +H 2

2)

where the Hi(l, x , p) = 〈p , Fi(l, x)〉 are Hamiltonian lifts of the vector fields. As in [10],
averaging with respect to longitude is introduced and C 0-approximations of trajectories of
H (l, x , p) on intervals whose length is of order 1/ε are provided by trajectories of

H (x , p) = (2π)−1
∫ 2π

0
H (l, x , p)dl.

Fine numerical simulations [5] actually demonstrate that, for very low propulsion, only the
averaged behaviour of the trajectories is observed. Computing – and using an adapted set
of orbital elements, x = (n, e, θ), where n = [(1 − e2)/P]3/2 is the mean motion and where
(e, θ) are polar coordinates on the Poincaré disk, D – one gets [3]

H = (1/2)[9n1/3p2
n + 5(1 − e2)p2

e/(2n5/3)+ (5 − 4e2)p2
θ/(2n5/3e2)].

Since the averaged Hamiltonian is quadratic in the adjoint variable with full rank, extremals
are interpreted as geodesics of the Riemannian metric

g = dn2/(9n1/3)+ 2n5/3de2/(5(1 − e2))+ 2n5/3e2dθ2/(5 − 4e2).(1)

The singularities are n = 0 and e = 1, while e = 0 is only due to the use of polar coordinates
on D and removed by taking (ex , ey ) instead.

The first section of the paper is devoted to curvature computations. An analytic pro-
longation of the metric is considered, and a normal form is obtained, revealing two scalar
invariants. The first one is related to convexity issues, whereas the second defines the geom-
etry of the restriction of the metric to S2 and counts the number of closed simple geodesics
on the sphere. We prove in the second section that the metric is integrable in the class of
harmonic functions, and provide explicit quadratures in suited coordinates. An estimation
of the length of closed geodesics combined with the curvature evaluation of §1 allows to
compute the injectivity radius of the metric restricted to S2 and to devise a necessary con-
dition for optimality of metrics in the normal form derived. In Kepler’s case, this condition
is not fulfilled and cut points exist for the analytically extended metric. Section 3 deals with
convexity issues.Though the singularity at the origin of the metric results in incompleteness,
convexity may occur and is characterized thanks to the two previously mentioned parame-
ters. The analysis is reduced to a discussion in two-dimensional meridian half-planes, and
related to surjectivity of the exponential mapping. In the last section, we compute the cut
locus of the metric restricted to the sphere and the astroid-like associated conjugate locus.
Both are related to the separating line and conjugate locus of the full three-dimensional
metric.
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1 Curvature of the system

We begin with an analytic prolongation of the metric from the space of ellipses,Xe = R∗
+×D,

which is homeomorphic to the product of the positive real line with one open hemisphere,
to X = R∗

+ × S2, product of the positive real line with the full two-dimensional sphere.
Let r = (2/5)n5/6, and let (θ,ϕ) be the usual angular coordinates on the two-sphere. We

set e = sin ϕ, thus lifting D onto S2, and get the following.

Proposition 1. A normal form of Kepler’s metric (1) is

g = dr2 + (r2/c2)(G(ϕ)dθ2 + dϕ2)

which is analytic on X = R∗
+ × S2 with

G(ϕ) = sin2 ϕ/(1 − (1 − µ2) sin2 ϕ)

and positive c, µ, µ ≤ 1. In Kepler’s case, c =
√

2/5 and µ = 1/
√

5.

The singularitiesϕ = 0 (π) at the poles are simply due to the choice of coordinates on S2,
and r = 0 is the only singularity left since e = 1 is absorbed as the equator, ϕ = π/2.

The restriction of the metric to {r = c} , S2 is g2 = G(ϕ)dθ2 + dϕ2, and we denote
similarly the resulting normal forms of Hamiltonians:

H = p2
r /2+ (c2/r2)H 2, H 2 = (1/2)(p2

θ/G(ϕ)+ p2
ϕ).(2)

An analytic metric on the two-sphere of revolution [9, 14] like g2 turns to be isometric to
f (z)g0, where g0 = sin2 ϕdθ2+dϕ2 is the restriction of the flat metric to S2 and f a positive
function of the vertical coordinate z (see [2]). A more specific construction is available here.

Proposition 2. The metric g2 is conformal to the flat metric restricted to an oblate ellipsoid
of revolution with unit semi-major axis and semi-minor axis µ.

Proof. We have indeed

g2 = G(ϕ)dθ2 + dϕ2 = g1/(1 − (1 − µ2) sin2 ϕ),

where g1 = sin2 ϕ dθ2 + (1 − (1 −µ2) sin2 ϕ)dϕ2 is the restriction of the flat three-dimen-
sional metric to the ellipsoid parameterized by

x = sinϕ cos θ, y = sin ϕ sin θ, z = µ cosϕ,

whence the result.

Accordingly, there is a natural homotopy from g2 to the flat metric on S2, having the parameter
µ varying up to µ = 1 (since g2|µ=1 = g1|µ=1 = g0). This resemblance with the ellipsoid
of revolution defined by µ is crucial to understand the cut and conjugate loci computations
of §4.
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When r → ∞, the semi-major axis coordinate a = (5r/2)−4/5 tends to zero, the collision
point in the space of ellipses. We analyse the effect of the collision on the curvature.

Let V be the span of ∂/∂θ and ∂/∂ϕ. The sectional curvature KV of g is R2323/|∂/∂θ ∧
∂/∂ϕ|2 where R is the Riemannian curvature tensor and R2323 = R(∂/∂θ, ∂/∂ϕ, ∂/∂θ, ∂/∂ϕ).

Lemma 1. The metric g is flat if and only if KV is zero.

Proof. The condition is clearly necessary. It is also sufficient since, because of the normal
form of the metric, four out of five components of the curvature tensor are zero. The fifth is
precisely the sectional curvature KV .

Proposition 3. The sectional curvature of g in Kepler’s case is

KV = (1 − 24 cos2 ϕ− 16 cos4 ϕ)/(r2(1+ 4 cos2 ϕ)2) → 0, r → ∞,

and the metric is asymptotically flattened by the collision.

We show in §4 that the analysis of optimality of the geodesic flow of g is deduced from
the properties of the restriction to S2. We immediately compute the Gauss curvature of g2,
K = −(d2

√
G/dϕ2)/

√
G.

Proposition 4. The Gauss curvature of g2 is

K = (µ2 − 2(1 − µ2) cos2 ϕ)/(1 − (1 − µ2) sin2 ϕ)2.

The curvature reaches its maximum, K = 1/µ2, along the equator.

By the Rauch theorem, the first conjugate time along any geodesic on S2 is then bounded
below by µπ, and this bound is optimal since it is reached on the equator ϕ = π/2 where
the curvature is constant. In particular, the injectivity radius, i(S2), which is the infimum
of distances of points to their respective cut loci (see §4), is known [8] to be reached – the
manifold is compact – either at a conjugate point, or at the half of a simple closed geodesic.
The task of computing periodic geodesics on the sphere is completed in next section, thus
providing a first necessary condition for global optimality of g thanks to the estimation of
this injectivity radius.

2 Integrability

The unperturbed Kepler motion is classically integrable, and so remains the averaged con-
trolled one, independently of the choice of parameters c, µ in (2).

Proposition 5. The coordinate θ is cyclic, and H , H 2, pθ are three independent first integrals
in involution. On S2, the linear first integral pθ verifies the Clairaut relation [2, 7], pθ =
cos(φ)

√
G(ϕ), where φ is the angle of the geodesic with a parallel.
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s1 s2 s1s2

Figure 1 Action of the Klein group on geodesics.

The geodesic flow on X = R∗
+ × S2 is thus Liouville-integrable, which we can also check

by a direct computation of r on the level set H = 1/2 (parameterization of geodesics by arc
length).

Lemma 2. The coordinate r2 is a degree two polynomial depending only on r0 and pr 0,
r2 = t2 + 2r0pr 0t + r2

0.

The integration is then performed using the time change dτ = c2dt/r2, and one readily gets

τ (t, r0, pr 0) = c2(arctan(t/(r0 cosα0)+ tanα0) − α0)/(r0 cosα0)(3)

with pr 0 = sinα0. Whenever pr 0 = ±1, the angles θ and ϕ are constant on H = 1/2,
and we set τ = 0. Parameterizing again extremals by arc length on {r = c} , S2, we
set H 2 = 1/2 and proceed to the integration of g2, first underlying the symmetries of the
system.

Since θ is cyclic, we can normalize θ0 to zero, and the action of the two reflections
s1 : pθ .→ −pθ , s2 : pϕ .→ −pϕ on the Hamiltonian H 2 is clear: s1 defines an axial
symmetry in the (θ,ϕ)-plane with respect to (Oϕ), while s2 is a central symmetry (θ,ϕ) .→
(2θc − θ,π − ϕ), θc depending on the geodesic. These two reflections generate the Klein
group, V , Z/2Z × Z/2Z, which defines an Abelian discrete group of symmetries of H 2,
see Fig. 1.

Proposition 6. Geodesics on H 2 = 1/2 are parameterized by pθ , and the coordinateϕ is T -

periodic with T = 4π/a and a = 2
√

1+ (1 − µ2)p2
θ . On a quarter of period [t1, t1+T/4],

for pϕ0 nonnegative,

θ = sign(pθ)
[
arctan(tan(a(t − t1)/2)/

√
b)
]t

0
− (1 − µ2)pθ t,(4)

ϕ = arcsin
√

(1+ b)/2 − (1 − b) cos(a(t − t1))/2,(5)

with t1 = −π/(2a)− arcsin((2 sin2 ϕ0 − 1 − b)/(1 − b))/a and b = p2
θ/(1+ (1 −µ2)p2

θ).
The quadratures are extended by analyticity on the whole period, and obtained for negative
pϕ0 using a −2t1 time translation on ϕ and θ̇,

ϕ|pϕ0<0(t) = ϕ|−pϕ0
(t + 2t1), θ|pϕ0<0(t) = θ|−pϕ0

(t + 2t1) − θ|−pϕ0
(2t1).
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Remark. Inner symmetries on each geodesic imply that, for pϕ0 nonnegative, ϕ(t) =
π − ϕ(2(t1 + T/4) − t) on [t1 + T/4, t1 + T/2], and ϕ(t) = ϕ(2(t1 + T/2) − t) on
[t1 + T/2, t1 + T ]. Similar relations hold for θ, since θ̇ = pθ/G(ϕ) is periodic.

Corollary 1. The metric g is integrable in the class of harmonic functions.

When pϕ0 = 0, we get the equator if ϕ0 = π/2, the so-called pseudo-equators otherwise.

Corollary 2. All geodesics with the exception of meridians, θ = cst, are pseudo-equators.

Proof. Excluding meridians, on H 2 = 1/2 one always has 0 < p2
θ ≤ G(ϕ0) ≤ 1/µ2, and

there is ϕ′
0 in [0,π/2] such that p2

θ = G(ϕ′
0). The geodesic is a pseudo-equator for the new

initial condition ϕ′
0.

According to Proposition 6, θ̇ is periodic, and the variation of θ which is nondecreasing over
a period (we restrict ourselves to pθ ≥ 0 by symmetry) is

∆θ = 2π(1 − (1 − µ2)e0)(6)

for a pseudo-equator of initial condition e0 = sin ϕ0 > 0. This expression is also valid for
meridians passing through the solvable singularity e0 = 0. Indeed, there are jumps in θ at
the poles generating the whole family of meridians: θ(ϕ = 0+) = cst, θ(ϕ = π) = cst+π,
θ(ϕ = 2π) = 2π, for a total variation ∆θ = 2π. As ∆θ/(2π) ≤ 1, closed geodesics –
including meridians – are at least one period long. For pseudo-equators of initial condition

e0 in ]0, 1] or meridians (e0 = 0), T = 2π
√

1 − (1 − µ2)e2
0 by Proposition 6, so that the

half-length of any closed geodesic is bounded below by µπ.

Theorem 1. The injectivity radius of the metric g restricted to {r = c} , S2 is i(S2) = µπ.
A necessary condition for global optimality of g on X = R∗

+ × S2 is c/µ ≤ 1.

Proof. According to the discussion at the end of §1, i(S2) ≤ µπ, whence the equality given
the lower bound of the half-length of closed geodesics. Let us show that g is not globally
optimal if c > µ.The timeσ on the level set H 2 = 1/2 is given by (3), up to a renormalization
by H 2|H=1/2, that is

σ(t, r0, pr 0) = c(arctan(t/(r0 cosα0)+ tanα0) − α0).(7)

Then

sup
|pr 0|<1

sup
t≥0
σ(t, r0, pr 0) = cπ,(8)

this bound not being reached on any geodesic. Let now γ be a geodesic of length µπ on
S2 with one cut point. Since µπ < cπ, this geodesic is the projection on S2 of a geodesic
on X (see Lemma 4 in §4) which cannot be globally minimizing because of the cut point
on γ.
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Remark. For the condition to be also sufficient, we would need the metric on X to be com-
plete so as to use the standard structure result on the cut locus (decomposed into conjugate
points and points on the separating line, see §4). This is not the case, as will be stated in §3.
The limit case is the flat case, c = µ = 1 and X , R3 − {0} where global optimality holds.

Corollary 3. The metric is not globally optimal on X in Kepler’s case (c/µ =
√

2 > 1).

As θ̇ and ϕ share the same period, closed geodesics on S2 are characterized by the fact that
∆θ/(2π) be rational (except for the equator, e0 = 1, which is the only geodesic with constant
ϕ). Conversely, a geodesic which is a pseudo-equator for e0 such that the quotient is irrational
densely fills the strip [ϕ0,π−ϕ0] on the sphere. In Kepler’s case where µ2 is rational, there
is one closed geodesic passing through every rational e0 since∆θ/(2π) = 1 − (1 − µ2)e0.
It is known [13] that there exist at least three simple closed geodesics, and there are actually
infinitely many of them – the meridians – because of the symmetry of revolution. We thus
discuss the existence of simple closed geodesics modulo rotations on θ.

Proposition 7. There are exactly [1/µ2] simple closed geodesics modulo rotations around
the poles on (S2, g2).

Remark. The invariant µ thus measures the number of simple closed geodesics on the
sphere. The result degenerates for µ = 1, all great circles being meridians for appropriate
axes on the flat two-sphere.

Proof. For closed geodesics, ∆θ/(2π) is rational,

1 − (1 − µ2)e0 = p/q,

and simple ones are obtained for p = 1. Then e0 = (q − p)/(q(1 − µ2))|p=1 ≤ 1, so
1 ≤ q ≤ 1/µ2.

In Kepler’s case, 1/µ2 = 5 and there are five classes of simple closed geodesics (see Fig. 2)
among which meridians and pseudo-equator for e0 = 5/6 have π-rational lengths (2π
and 4π, respectively). In fact, it appears that the existence of closed geodesics with length
in πQ is expressed in terms of a standard Diophantine equation, the Pell equation [16].
When µ2 is indeed rational, such closed geodesics are obtained finding a rational e0 such

that T/(2π) =
√

1 − (1 − µ2)e2
0 belongs to Q, that is solving the quadratic Diophantine

equation

a2 − (1 − µ2)b2 = c2.(9)

This equation is a generalized Pell equation, parameterized by c. In Kepler’s case, (9) takes
the form 5a2 − 4b2 = 5c2 (with e0 = b/a), which is reduced to the standard equation

x2 − Dy2 = 25c2,(10)
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e0 = 0, L = 2π e0 = 5/8, L = π
√

11 e0 = 5/6, L = 4π

e0 = 15/16, L = π
√

19 e0 = 1, L = 2π
√

5 e0 = 20/21, L = 22π

Figure 2 Closed geodesics in Kepler’s case. The first five are the simple ones.

where D = 20 is not a perfect square, and where a = x/5 when 5 divides x . For c = 4, (10)
has obvious solution (x , y) = (30, 5). The general solution (xn , yn) is then obtained solving
the unitary Pell equation x2 − 20y2 = 1 whose particular solution (x , y) = (9, 2) acts as a
generator: xn = 30rn ± 100sn and yn = 30sn ± 5rn with

rn = [(9+ 4
√

5)n + (9 − 4
√

5)n]/2,

sn = [(9+ 4
√

5)n − (9 − 4
√

5)n]/(4
√

5).

To (x , y) = (30, 5) is associated the solution (a, b) = (6, 5) of the original equation (9),
defining the (simple) closed geodesic passing through e0 = 5/6 of Kepler’s case. Infinitely
many closed geodesic with π-rational length are designed so, e.g., e0 = 20/21 with c = 11
(see Fig. 2), etc.

Remark. In Kepler’s case, meridians are the shortest closed geodesics. Indeed, the length of

a closed geodesic such that ∆θ/(2π) = p/q is 2πq
√

1 − (1 − µ2)e2
0, not less than 2πµq.

If closed geodesics shorter than meridians exist, it is necessarily for q ≤ 1/µ. This implies
q = 1 or 2 in Kepler’s case (1/µ =

√
5 < 3), that is e0 = 0 (meridians, precisely) for

q = p = 1, or e0 = 5/8 for q = 2, p = 1, which has length π
√

11 > 2π, since p has to be
chosen such that 1 ≤ p ≤ q, p ∧ q = 1.

3 Convexity properties

The meridian half-planes of X are the subsets θ = cst. They are all isometric to X0 = {θ =
0}, and the metric g has a flat restriction on them [3]: g|X0 = dr2 + (r2/c2)dϕ2, that is

g|X0 = dr2 + r2dψ2(11)
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settingψ = ϕ/c,ϕ in ]−π/2,π/2[ (upper half-plane). The metric (11) is in polar form, and
flat coordinates are x = r sinψ, z = r cosψ. This reduction is important in Kepler’s case
since such half-planes correspond to transfers towards circular orbits (where the transver-
sality condition of Pontryagin maximum principle reads pθ = 0, that is θ = cst). This is
used in practice to initialize the computation of transfers towards the geostationary orbit.

The effect of the singularity r = 0 is clear in this context.

Proposition 8. The manifold (X , g) is not complete.

Proof. The separatricesϕ = cst, that isψ = cst in polar coordinates on X0, define geodesics
on X which reach the singularity r = 0 in finite time.

Regarding the weaker property of (geodesic) convexity, the following holds.

Proposition 9. A necessary condition for convexity of the manifold (X , g) is cµ > 1.

Proof. The diameter of (S2, g2) is the half-length of the longest simple closed geodesic
which is clearly the equator: diam(S2) = π/µ. According to (8), the time σ on the sphere
is bounded over by cπ. The supremum not being reached, the condition is necessary (no
geodesic in X can reach a point that projects onto a point of S2 further than cπ).

Remark. Given two points on X whose projections on the sphere are closer than cπ from
each other, Lemma 4 combined with Propositions 11, 12 of §4 ensures the existence of a
geodesic between them without conjugate point or point on the separating line. The sphere
is indeed compact, so complete, and one just has to lift a minimizing geodesic onto X thanks
to the aforementioned lemma. This is not sufficient however to guarantee global optimality
of the lifted geodesic since cut points not of the two previous kinds may exist because of
incompleteness of the metric on X . It should moreover be noted that the two necessary
conditions on global optimality (Theorem 1) and convexity are incompatible. In the limit
flat case c = µ = 1, X , R3 − {0} which is clearly not convex.

Corollary 4. The metric is not geodesically convex on X in Kepler’s case (cµ =
√

2/5 ≤ 1).

The non-convexity is well depicted in meridian half-planes. In flat coordinates indeed, it is
obvious that a geodesic with initial angle ψ0 cannot reach a point with angle beyond π+ψ0
because of the singularity r = 0 when c < 1 (see Fig. 4). Such a pair of points actually
projects onto points on S2 further than cπ, and the analysis in X0 is sufficient as is now
stated.

While optimality properties are related to infinitesimal or global injectivity of the ex-
ponential mapping, existence is connected to the presently discussed convexity issues, that
is to surjectivity of the exponential. The geodesic flow on the Riemannian manifold X is
obtained through the exponential mapping, defined for small times on the whole cotangent
space at the initial point, expx0,t : T∗

x0
X → X , by

expx0,t(p0) = Π ◦ exp t
−→
H (x0, p0),
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where exp t
−→
H is the one-parameter subgroup generated by the Hamiltonian, and

Π : T∗X → X the canonical projection. By homogeneity, we restrict ourselves to the
level set H = 1/2, parameterizing geodesics by arc length, or consider alternatively
expx0

= expx0,t=1 which, according to Hopf-Rinow, is only defined on an open subset
of the cotangent bundle since the manifold is not complete. The same construction holds on
the complete manifold S2, and for y0 on the sphere, we set

Λt = exp t
−→
H 2(Λ0),

whereΛ0 = T∗
y0

S2∩{H 2 = 1/2} , S(T∗
y0

S2). BothΛ0 andΛt are Legendrian submanifolds
of the fibered space of oriented contact elements [1] which is homeomorphic to the spherical
cotangent bundle, S(T∗S2). The wavefront at time t is the projection W(y0, t) = Π(Λt). Its
singularities run along the caustic of the Lagrangian submanifold L = expy0

t
−→
H 2(T∗

y0
S2),

that is the set of singular values ofΠ restricted to L.
According to Proposition 9, the surjectivity default of expx0

is described by the wavefront
W(y0, cπ), where y0 is the projection of x0 on S2 (see Fig. 3). The following lemma allows
us to reduce the study to meridian half-planes.

Lemma 3. The longest geodesic from any point on S2 to the equator is the negative half-
meridian, pϕ = −1.

Proof. The quadrature (5) tells us that, for nonnegative pϕ0, the equator is reached at time
t = t1+T/4. By symmetry, it takes t = −t1 +T/4 to reach the equator on a geodesic such
that −1 < pϕ0 < 0 (−2t1 > 0 translation). This time increases towards π/2 + ϕ0 which
is precisely the time required to reach ϕ = π/2 on the negative half-meridian defined on
H 2 = 1/2 by pϕ0 = −1.

The picture in meridian half-planes thus characterizes surjectivity, as in Fig. 4.

Proposition 10. Given x0 in X , the exponential mapping expx0
is surjective if and only if

ϕ0 < π(c − 1/2).

4 Optimality results

The cut point on a geodesic is the first point where the geodesic ceases to be minimizing,
and the first conjugate point is the point where moreover local optimality with respect
to neighbouring trajectories is lost [12]. The conjugate locus is the set of first conjugate
points on geodesics issuing from one given point. Jacobi’s theorem, which extends to the
more general framework of optimal control, asserts that the conjugate locus is a subset
of the caustic, subset formed by the first singular values of the exponential mapping. On
a complete Riemannian manifold, cut points are either conjugate points, or points on the
separating line where two minimizing geodesics intersect [8]. We are thus conducted to
examine immersivity and injectivity properties of the exponential mapping. To this end, we
begin with a preliminary lifting lemma.
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Figure 3 Above, wavefront on the sphere for initial condition e0 = 9.5e − 1 and time t = cπ in
Kepler’s case (c =

√
2/5).The exponentialmapping is surjective if and only e0 < arcsin(π(c−1/2)) ,

4.29e−1. Below, projection of this wavefront on the Poincaré disc, D. The apparent contour describes
the default of surjectivity in the space of ellipses, Xe = R∗

+×D, that is before the analytic prolongation

to X = R∗
+ × S2.

Lemma 4. Through two points on X which project on S2 onto points whose distance is less
than cπ passes one geodesic.

Proof. If the two points project onto the same one on the sphere, they lie on a separatrix
in some meridian half-plane, and the result is trivial. Otherwise, let σ denote the distance
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x

z

π/(2c)

π(1 − 1/(2c))

ψ0

ψ0 − π

Figure 4 Geodesics in meridian half-planes issuing from a point such that ψ0 ≥ π(1 − 1/(2c)) –
that is ϕ0 ≥ π(c − 1/2) – cannot reach points in the sector defined by ψ ≤ ψ0 − π, and surjectivity
is lost.

between them, 0 < σ < cπ. On the compact manifold (S2, g2), there is a (minimizing)
geodesic of such length joining these points, which is lifted to a (non necessarily minimizing)
geodesic in X provided the following system admits at least one solution (pr 0, t) in the set
] − 1, 1[×R∗

+ (see Lemma 2 and (7)),

pr 0 = ((r2
2 − r2

1) − t2)/(2r1t),(12)
t = r1 sin(σ/c)/ cos(arcsin(pr 0)+ σ/c),(13)

where r1 and r2 are the r-coordinates of the two points on X . The (possibly degenerate)
hyperbola (12) always intersects the second curve in the prescribed domain. Indeed, at
t = r1, the point (r1, −1) belongs to the second curve and is below pr 0(t = r1) = (r2

2 −
2r2

1)/(2r2
1) > −1. Conversely, when t → ∞, pr 0 → −∞ for the first curve whereas the

second one has an horizontal asymptote defined by pr 0 = cos(σ/c). The two curves must
therefore cross somewhere in ] − 1, 1[×R∗

+.

Given x0 in X , we denote Cut(x0), C(x0) and L(x0), the cut locus, conjugate locus and
separating line of x0, respectively. The same notation is used for y0 in S2, and we also
denote Bo(y0,σ) the open metric ball of center y0 and radius σ which is the union of
wavefronts from y0 and times less than σ. Let x0 be a fixed point in X , and y0 its projection
on the sphere.

Proposition 11. A point belongs to the conjugate locus C(x0) if and only if it projects onto
a point in C(y0) ∩ Bo(y0, cπ).

Proof. If x belongs to C(x0), x cannot be on a separatrix in a meridian half-plane starting
from x0 since a direct Jacobi field computation proves that separatrices are without conjugate
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points. As a result, x projects onto a point y of S2 at distance 0 < σ < cπ from y0. Now,
the exponential on X is obtained from the one on the sphere. Namely,

expx0,t(p0) = (r(t, r0, pr 0), expy0,σ(t,r0,pr 0)((pθ0, pϕ0)/
√

2H 2))

where
√

2H 2 = (r0/c)
√

1 − pr
2
0. A simple rank computation shows that, for positive t

and σ = σ(t, r0, pr 0), expx0,t is singular if and only if expy0,σ is singular, too. Thus, y is
a conjugate point, and even the first one on the corresponding geodesic (there would be a
conjugate point before x , otherwise). Conversely, if y belongs to C(y0) ∩ Bo(y0, cπ), there
is a geodesic of length 0 < σ < cπ joining y0 and y on which y is the first conjugate point.
This geodesic is lifted to a geodesic in X between x0 and x thanks to Lemma 4. The previous
rank computation entails that x is a conjugate point of this geodesic, and that there cannot be
conjugate points before since this would contradict the fact that y belongs to the conjugate
locus.

Proposition 12. A point in the separating line L(x0) projects onto a point in L(y0) ∩
Bo(y0, cπ).

Proof. If x belongs to L(x0), there are two minimizing geodesics issuing from x0, γ1 and
γ2, intersecting at a positive time t. Then r1(t) = r2(t), which implies r1 ≡ r2 by virtue
of Lemma 2 (parabolas of same curvature intersecting at two distinct points are identical).
The two geodesics share the same pr 0 and project so onto geodesics of same length on
the sphere, 0 < σ(t, r0, pr 0) < cπ. These two geodesics are necessarily minimizing up to
the projection y in Bo(y0, cπ) of x on S2. There would be otherwise a cut point before y,
say, on the projection of γ1. Since S2 endowed with the metric g2 is complete, such a point
would be either a conjugate point, or a point on the separating line of y0. In the first case,
Proposition 11 implies that y ′ would be lifted to a conjugate point in X along γ1, prior to x ,
thus contradicting optimality of the geodesic up to x . In the second case, there would be a
third minimizing geodesic starting from y0 on the sphere, intersecting the projection of γ1
at y ′, lengths being the same at the intersection. This new geodesic would clearly be lifted to
a geodesic in X intersecting γ1 strictly before x , lengths being again the same, contradicting
optimality of γ1 anew.

On (S2, g2), cut loci are obtained as the closure of separating lines. Since the metric is
analytic, the cut locus of any point is a finite tree whose extremities are singularities of
the conjugate locus [11, 15, 17]. We now give a complete description of these sets which
turn to be completely similar to the cut loci on an oblate ellipsoid of revolution (see §1,
Proposition 2).

Proposition 13. The cut locus of point of eccentricity e0 = sinϕ0 on the sphere is the line
[θl , 2π − θl], with θl = π(1 − (1 − µ2)e0), included in the antipodal parallel of the point,

ϕl = π− ϕ0. The distance from the point to its cut locus is tl = π
√

1 − (1 − µ2)e2
0 , and is

reached at the cut point on the corresponding pseudo-equator.
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Proof. In accordance with discrete symmetries discussed in §2, intersecting geodesics of
same length are obtained using s1 or s2. Clearly, intersections generated by s2 come prior
to those generated by s1 (whose length is not less than T/2, T being the period). These
intersections are located in the antipodal parallel, and a direct computation on the quadratures
of Proposition 6 shows that the two geodesics defined on H 2 = 1/2 by a fixed pθ and ±pϕ0

intersect at tl = T/2 = π/
√

1+ (1 − µ2)p2
θ . To conclude, it is sufficient to check that

these two geodesics actually do not intersect before. This is obvious since the second one
is obtained by a −2t1 translation of the first, with −2t1 ≤ T/2, and since ϕ is monotonic
on the half-period [t1, t1 + T/2] for nonnegative pϕ0. The closure of the separating line is
obtained letting p2

θ tend to G(ϕ0) (letting pθ tend to 0, one gets for tl = π the intersection
of half-meridians oppositely orientated located at θ = π which defines the center of the

locus), that is for the associated pseudo-equator, so that tl = π
√

1 − (1 − µ2)e2
0, θl =

π(1 − (1 − µ2)e0).

As a result, we retrieve again the estimation of the injectivity radius of Theorem 1. Indeed,

i(S2) = inf
ϕ0
π

√
1 − (1 − µ2) sin2 ϕ0 = µπ,

reached on the equator where the cut point is a conjugate point. This is in fact the case for
any initial point, as a consequence of the following description of the conjugate locus.

Proposition 14. Conjugate times on a geodesic issuing from ϕ0 defined on H 2 = 1/2 by
0 < p2

θ < G(ϕ0) and positive pϕ0 are solution to

(cosϕ0/(sin2 ϕ0 −b)1/2 −a3(1−b)(1−µ2)t/8) sin(a(t− t1))−cos(a(t− t1)) = 1(14)

with a, b and t1 functions of pθ as defined by Proposition 6. The distance from any point to
its cut locus is attained by a conjugate point on the corresponding pseudo-equator.

Proof. The constant adjoint state pθ parameterizes Λ0 , S(T∗
y0

S2) whenever pϕ is nonzero.
A straightforward differentiationof the quadratures with respect to pθ in such cases gives the
result. Letting p2

θ tend to G(ϕ0), (14) degenerates in sin(at) = 0 whose first admissible zero
is T/2, which is thus the cut and first conjugate point on the associated pseudo-equator.

An example of cut and conjugate loci is represented Fig. 5 in Kepler’s case. The conjugate
locus is a deformation of the locus obtained for the oblate ellipsoid of revolution to which
(S2, g2) is conformal. Its astroidal structure (i.e. with four cusps, two equatorial and two
meridional) is studied in [4] where sufficient conditions to have such a conjugate locus and
a simple antipodal cut are given in terms of properties of the function∆θ defined by (6).

Corollary 5. A necessary and sufficient condition for a geodesic issuing from a point on
X with eccentricity e0 not to have conjugate points or points on the separating line is
e0 ≤

√
(1 − c2)/(1 − µ2). In Kepler’s case, the condition is ϕ0 ≤ π/3.
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Figure 5 Wavefront, conjugate and cut loci for e0 = 9.5e − 1. The bifurcation of the wavefront is
observed on (S2, g2) – realized as the oblate ellipsoid to which it is conformal – , and the swallowtail
singularities appearing run along the caustic containing the conjugate locus. The inclusion of the cut
locus in the antipodal parallel is clearly illustrated in (θ,ϕ) coordinates.

Proof. Simply write that the distance from the projection of the point on S2 to its cut locus
(see Proposition 13) is not less than cπ.

We end the paper going back to the original non-extended averaged metric (1) on the space
of ellipses, Xe = R∗

+ × D. The last result essentially asserts that Kepler’s geodesics may
only lose optimality because of completeness – that is existence – issues.
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Theorem 2. Conjugate loci and separating lines of the averaged Kepler metric on the space
of ellipses are always empty.

Proof. According to the previous analysis, conjugate points or points on the separating line
define cut points when projected to the sphere. Now, cut loci on S2 are included in antipodal
parallels, so that cut points can only be reached by crossing the equator, that is the boundary
e = 1 of Xe. There are no such geodesics in the space of ellipses.
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[13] Klingenberg W. P. A.: Poincaré’s closed geodesic on a convex surface. Trans. Amer. Math. Soc.

356 (2004), 2545–2556
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