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Abstract
We survey the main numerical techniques for finite-dimensional nonlinear optimal con-
trol. The chapter is written as a guide to practitioners who wish to get rapidly acquainted
with the main numerical methods used to efficiently solve an optimal control problem.
We consider two classical examples, simple but significant enough to be enriched and
generalized to other settings: Zermelo and Goddard problems. We provide sample of the
codes used to solve them and make these codes available online. We discuss direct and
indirect methods, Hamilton–Jacobi approach, ending with optimistic planning. The ex-
amples illustrate the pros and cons of each method, and we show how these approaches
can be combined into powerful tools for the numerical solution of optimal control prob-
lems for ordinary differential equations.
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1 Introduction and statement of the problem

1.1 Brief overview

Optimal control theory has been widely developed since many decades. The
theoretical and numerical achievements, motivated by a body of diverse appli-
cations in various domains, provide valuable insights into the nature of optimal
controls and the corresponding optimal trajectories. In this chapter our objective
is to provide practitioners with a guide to the most powerful but however easy-
to-use methods and algorithms to solve efficiently a given nonlinear optimal
control problem in finite dimension.

The most intuitive and popular numerical methods for solving an optimal
control problem, called direct methods, consist of first discretizing then opti-
mizing. Such approaches have been investigated in a number of contributions
(see, e.g., Betts, 2020). From the theoretical point of view, the efficiency of
these methods has been established for some classes of control problems (see
Bonnans and Laurent-Varin, 2006; Gong et al., 2008; Hager, 2000; Ross and
Fahroo, 2003; Sanz-Serna, 2016). From the numerical point of view, the di-
rect approach benefits from the tremendous advances in numerical optimization
methods achieved in the last decades. As shown in Section 2, the direct approach
is extremely easy to implement for general control problems with constraints
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on both the control variable and the state variable. However, in general, direct
methods may provide only locally optimal solutions and may require a fair ini-
tialization of the iterative process in optimization algorithms. Also, they may
lack numerical accuracy, and may become computationally demanding in high
dimension.

A major breakthrough in optimal control theory were achieved in the 1950s
by Pontryagin’s research group, who successfully generalized and extended to
a general nonlinear optimal control setting the classical Euler-Lagrange and
Weierstrass conditions of the Calculus of Variations. The early optimality condi-
tions, called Pontryagin Maximum principle (in short, PMP), were subsequently
strengthened and extended using methods of convex and nonsmooth analysis,
or methods of differential geometry (see Pontryagin et al., 1964). The PMP in-
spired effective computational schemes, like the shooting method presented in
Section 3. As illustrated on some classical examples, the shooting method pro-
vides very accurate numerical solutions. The major drawback of this method is
that it requires an a priori knowledge of the structure of the solution, as well as a
good approximation of the adjoint state. In addition, shooting methods are diffi-
cult to implement in state-constrained problems, in particular for a large number
of state constraints.

Another major advance in optimal control was achieved in the 1950s by
Richard Bellman, who provided a description of how the minimum cost depends
on initial conditions, as the solution to the so-called Hamilton–Jacobi–Bellman
(HJB) partial differential equation. Whenever applicable, the Hamilton–Jacobi
approach yields a global solution to the optimal control problem, and provides
the optimal control in a feedback form, suitable for many engineering appli-
cations. Despite these advantages, this approach suffers from the difficulty of
computing the solution to the Hamilton–Jacobi equation in higher dimensions.
The numerical simulations presented in Section 4 show that the approximation
of the HJB equation, even on coarse grids, provides solutions which depict well
the qualitative structure of the optimal trajectories and may thus be used to guess
the structure of optimal solutions. However, if an accurate computation of the
optimal trajectories is required, the use of fine grids causes a strong increase in
computational complexity.

More recently, other global methods have been developed for control prob-
lems, such as the optimistic planning (OP) algorithms introduced in Section 5.
These methods are based on a discretization of the control space and do not re-
quire any discretization of the state space. As a consequence, OP methods are
particularly efficient in control problems with a low-dimensional control space;
moreover, this approach seems also well suited for problems where the dynam-
ics and the cost are given by learning models. A preliminary analysis of the
complexity of OP methods is now well established, but further developments
are expected to make them more accurate, to possibly integrate the knowledge
of the structure of trajectories, and also for a more efficient implementation.



562 Handbook of Numerical Analysis

Throughout the chapter we consider two well known but representative op-
timal control examples, the Zermelo and the Goddard problem: both are quite
simple but can be extended towards more intricate models. We use these two
examples to illustrate the numerical methods and show how they can be rapidly
and efficiently implemented, with up-to-date existing solvers. We argue that the
various approaches are complementary rather than in competition, and can be
suitably combined to exploit their peculiarities. For instance, HJB approach and
direct methods can be used to obtain a rough estimate of adjoint state and cost,
which could provide a good initial guess for the more accurate shooting method.
Moreover, HJB solvers may allow to rule out local minima as it will be illus-
trated on the Zermelo problem with obstacle.

We hope that the codes that we provide, which are also available on the web,
can serve as templates to readers interested in adapting them to their specific
setting.

Notations

Throughout the chapter, R denotes the set of real numbers, 〈·, ·〉 and ‖ · ‖ denote
respectively the Euclidean inner product and the norm on R

N (for any N ≥
1), BN = {x ∈ R

N : ‖x‖ ≤ 1} is the closed unit ball (also denoted B if there
is no ambiguity) and B(x; r) = x + rB. For any set S ⊆ R

N ,
◦
S, S, ∂S, coS

denote its interior, closure, boundary, and convex envelope, respectively. For
any a, b ∈ R, we define a

∨
b := max(a, b). Similarly, for a1, · · · , am ∈ R, we

define
∨m

i=1 ai := max(a1, · · · , am). The notation W 1,1([a, b]) stands for the
usual Sobolev space {f ∈ L1([a, b]), f ′ ∈ L1([a, b])}. Finally, the abbreviation
“w.r.t.” stands for “with respect to”, and “a.e.” means “almost everywhere”.

1.2 Formulation of the optimal control problem

Let d, r ∈ N
∗, let T > 0 be a fixed final time horizon and let U be a compact

subset of Rr (with r ≥ 1). We consider the finite-dimensional control system in
R

d (for 0 ≤ t < T )

ẋ(s) = f (s,x(s),u(s)), a.e. s ∈ (t, T ), (1)

where the control input u : [0, T ] −→ R
r (r ≥ 1) is a measurable function such

that u(s) ∈ U for almost every s ∈ [0, T ]. Throughout the paper, we assume that

(H0) U is a compact subset of Rr .

We denote by U the set of all admissible controls

U := {u : [0, T ] −→ R
r measurable, and u(s) ∈ U a.e.}.
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The dynamics f : [0, T ] ×Rd × U →Rd satisfies:

(H1a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) f is continuous on [0, T ] ×R
d × U ;

(ii) x → f (s, x,u) is locally Lipschitz continuous
in the following sense:

∀R > 0, ∃kR ≥ 0, ∀(x, y) ∈ (Bd(0;R))2,

∀(s, u) ∈ [0, T ] × U

‖f (s, x,u) − f (s, y,u)‖ ≤ kR‖x − y‖;
(iii) ∃cf > 0 such that ‖f (s, x,u)‖ ≤ cf (1 + ‖x‖)

∀(s, x,u) ∈ [0, T ] ×R
d × U.

The assumptions (ii)-(iii) of (H1a) guarantee, for every u ∈ U and (t, x) ∈
[0, T ] × R

d , the existence of an absolutely continuous curve x : [t, T ] → R
N

which satisfies (1) and the initial condition x(t) = x. By the Gronwall lemma,

1 + ‖x(s)‖ ≤ (1 + ‖x‖)ecf (s−t) ∀s ∈ [t, T ]. (2)

Given any t ∈ [0, T ] and any x ∈R
d , the set of all admissible pairs control-and-

trajectories starting at x at time t is denoted by

X[t,T ](x) := {(x,u) ∈ W 1,1(t, T ) × U | (x,u) satisfies (1) with x(t) = x}.
Throughout the chapter, we consider the (Bolza) optimal control problem⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

minimize ϕ(x(T )) +
∫ T

t

�(s,x(s),u(s)) ds,

(x,u) ∈X[t,T ](x),

g(x(s)) ≤ 0 for s ∈ [t, T ],
gf (x(T )) ≤ 0,

(3)

with the convention that inf∅ = +∞. The distributed cost � : [0, T ]×R
d ×U →

R, the final cost ϕ : Rd → R, and the constraint functions g and gf are given
functions satisfying:

(H1b)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) � is continuous on [0, T ] ×R
d × U ;

(ii) x → �(s, x,u) is locally Lipschitz continuous
in the following sense:

∀R > 0, ∃kR ≥ 0, ∀(x, y) ∈ (Bd(0;R))2,

∀(s, u) ∈ [0, T ] × U

|�(s, x,u) − �(s, y,u)| ≤ kR‖x − y‖;
(iii) ∃c� > 0 such that |�(s, x,u)| ≤ c�(1 + ‖x‖)

∀(s, x,u) ∈ [0, T ] ×R
d × U.
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(H2) ϕ : Rd → R is locally Lipschitz continuous and there exists a constant
cϕ ≥ 0 such that

|ϕ(y)| ≤ cϕ(1 + ‖y‖).
(H3) The constraint functions g : Rd →R

mg and gf : Rd → R
mf are locally

Lipschitz continuous (with mg,mf ≥ 1) and there exists a constant cg ≥ 0 such
that, for every y ∈ R

d ,

‖g(y)‖ + ‖gf (y)‖ ≤ cg(1 + ‖y‖).
The so-called augmented control system

ẋ(s) = f (x,x(s),u(s)) a.e. s ∈ (t, T ), (4a)

ż(s) = −�(s,x(s),u(s)) a.e. s ∈ (t, T ), (4b)

is usually considered in optimal control theory to recast the Bolza problem in
the Mayer form ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
minimize ϕ(x(T )) − z(T ),

(x,u) ∈X[t,T ](x0),

g(x(s)) ≤ 0 for s ∈ [t, T ],
gf (x(T )) ≤ 0.

(5)

In what follows, we will sometimes assume that the augmented dynamics
satisfies the following assumption (convex epigraph):

(H4) For any s ∈ [0, T ] and every x ∈R
d ,

{(
f (s, x,u)

−�(s, x,u) + η

)
, u ∈ U, −c�(1 + ‖x‖) + �(s, x,u) ≤ η ≤ 0

}

is a convex set.

Remark 1.1. Note that if � ≡ 0 (Mayer problem), (H4) reduces to

f (s, x,U) convex for all (s, x) ∈ [0, T ] ×R
d .

Remark 1.2. For 0 ≤ a < b ≤ T and (x, z) ∈ R
d × R, consider the set of all

trajectories satisfying (4) on the time interval [a, b], for a control input u ∈ U ,
and starting at a position (x, z) at time a:

S[a,b](x, z) := {(x, z) ∈ W 1,1([a, b]) | ∃u ∈ U such that (x, z,u) satisfies (4),

with x(a) = x, z(a) = z}.
Under assumptions (H0), (H1a), (H1b), by (2), the set S[a,b](x, z) is bounded
in W 1,1([a, b]). Moreover, if (H4) is satisfied then S[a,b](x, z) is a compact set
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in W 1,1([a, b]) endowed with the C0([a, b])-topology (see Aubin and Cellina,
1984, Theorem 1.4.1). Therefore, if there exists a trajectory x ∈ S[0,T ](x0,0)

that satisfies the constraints g(x(s)) ≤ 0 for all s ∈ [t, T ] and g(x(T )) ≤ 0, then
the control problem (5) has an optimal solution.

1.3 Examples

In this section, we present two well-known examples that we are going to
consider throughout. In our opinion, they illustrate nicely the most classical
difficulties encountered in theoretical and numerical optimal control, and lend
themselves to a number of more complicated variants. They are expected to
serve as “templates” to the reader who aims at getting acquainted with the main
issues in numerical optimal control.

Example 1: Zermelo problem

A boat with coordinates x(t) = (x1(t),x2(t)) navigates through a canal R ×
[a, b], starting at x(0) = x = (x1, x2), and wants to reach an island C with min-
imal cost. The cost function may be an energy, the final time, etc. The control
system is

ẋ1(t) = v(t) cos(u(t)) + h(x(t)), (6a)

ẋ2(t) = v(t) sin(u(t)), (6b)

where u(t) ∈ [0,2π] is the first control (angle), v(t) ∈ [0,Vmax] is a second
control (speed of the boat), and h(x(t)) is the current drift (along the x1-axis).
Because of the drift term (which can be greater than Vmax), the system may not
be controllable. Consider a target C := B(c, r0) that is a ball with radius r0 ≥ 0
and centered at a given point c located in the canal. The target represented by a
function gf defined by gf (x) := ‖x − c‖ − r0 as

x ∈ C ⇐⇒ gf (x) ≤ 0.

Consider also a set of constraints K := {x ∈ R
2, g(x) ≤ 0} where g is a given

function that is nonpositive in a region where the boat can move and g is positive
in the location of the obstacles that the boat should avoid. In this example, the
cost function could be the time, or the energy, required to steer the boat from a
given position x to the target C.

The Zermelo problem has several variants depending on the choice of the
dynamic h, on the expression of the constraints, as well as on the values of the
different parameters entering the model (a, b, and Vmax). In the next sections,
we will consider different settings to better illustrate the pros and cons of each
numerical method.
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Example 2: Goddard problem

We consider the optimal control problem associated with a vertical ascension
flight of a rocket, known as Goddard problem. The dynamics of the rocket is
defined with three state variables: r , the altitude, v the relative speed and m,
the total mass. In general, a dimensionless version for the motion equations is
considered in the literature:

ṙ(t) = v(t) (7a)

v̇(t) = 1

m
(Tmax u(t) − D(r(t),v(t))) − 1

r(t)2
(7b)

ṁ(t) = −Tmax bu(t) (7c)

where D(r, v) is the drag force and Tmax ·u is the thrust force. The dimensionless
initial state of the rocket is given by r(0) = 1, v(0) = 0, m(0) = 1. Here r(0) = 1
corresponds to the Earth’s ground level and m = 1 to the initial total mass of the
rocket. The motion of the rocket is controlled by the thrust factor u(s) ∈ [0,1]
so that the thrust force is on the interval Tmax ·u(t) ∈ [0, Tmax]. The drag force is
a nonlinear function of r and v. Its expression depends on the choice of a model
for the atmosphere and on the structure of the rocket: D(r, v) = CDρ(r)|v|v,
where CD is the drag coefficient of the rocket and ρ is the atmospheric density.
In this section we consider the case of constant drag coefficient (it depends in
general on the Mach number) and exponential model of the atmospheric density:

D(r, v) = CD v2 e−β (r−1) ∀r ≥ 1, v ≥ 0.

This definition of the rocket’s model has been widely studied in the literature.
We take CD = 310.0, β = 500.0, Tmax = 3.5, b = 2.0, as in Tsiotras and Kelley
(1992) and other references. The corresponding model is then an approximation
of real flight conditions for some rockets. The optimal control problem consists
of maximizing the final altitude r(tf ) at free final time tf > 0 under a final
constraint on the fuel consumption, and a pointwise constraint on the velocity.
Finally, the optimal control problem is formulated as follows

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

minimize

(
− r(tf )

)
,

(r,v,m) satisfies (7a)–(7c) with r(0) = 1, v(0) = 0, m(0) = 1,

v(s) ≤ vmax a.e. on (0, tf )

m∗ − m(tf ) ≤ 0.

(8)

In the numerical simulations that will be presented in the next sections, the limit
of fuel consumption is m∗ = 0.6 and the maximum velocity is vmax = 0.1.
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2 Direct methods: nonlinear programming

2.1 Principle

We call direct methods all numerical methods consisting of numerically solving
the optimal control problem as follows: without applying a priori any first-order
necessary condition for optimality, we choose a discretization for the state and
for the control, we choose a numerical scheme to discretize the control system
(differential equation) and the cost functional (integral quadrature), so that the
discretized optimal control problem is expressed as a family of nonlinear opti-
mization problems in finite dimension, indexed by a discretization parameter N ,
of the form

min
Z∈C

F(Z) (9)

where Z = (x1, . . . , xN ,u1, . . . , uN) and

C = {Z | gi(Z) = 0, i ∈ 1, . . . , r, gj (Z) ≤ 0, j ∈ r + 1, . . . ,m}. (10)

This is a classical optimization problem under constraints in finite dimension,
with a dimension growing as the discretization is refined. Of course, there exist
an infinite number of variants to discretize the problem and ending up with a
problem of the form (9). We discuss hereafter several classes of discretizations.
Once this transcription has been done, one can then implement a number of
various optimization routines to solve (9).

Let us first explain hereafter one of the simplest possible discretizations.
Consider the optimal control problem (3) with t = 0 as initial time. Consider
a subdivision 0 = t0 < t1 < · · · < tN = T of the interval [0, T ]. Controls are
discretized on U -valued piecewise constant functions on this subdivision. To
discretize the control system, we choose the explicit Euler method: setting hi =
ti+1 − ti , we have xi+1 = xi +hif (ti , xi, ui) for i = 0, . . . ,N − 1. To discretize
the integral cost, we choose the left rectangle method (which is equivalent to
the explicit Euler method for the augmented system). We obtain the nonlinear
programming problem (x0 being known)

minC(x1, . . . , xN ,u0, . . . , uN−1),

xi+1 = xi + hif (ti , xi, ui), ui ∈ U,

g(xi+1) ≤ 0, i = 0, . . . ,N − 1,

gf (xN) ≤ 0.

We note that this approach is flexible and robust insofar it is not much sensitive
to the model (contrarily to the shooting method, described further): it is very
easy to add various constraints to the optimal control problem. This is why di-
rect methods are often privileged when the model is not completely fixed. The
resulting numerical simulations often give an interesting feedback that may lead
to change or adapt the optimal control model under consideration.
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2.2 Practical numerical implementation

The numerical implementation of such a nonlinear programming problem is
standard and can be done in a number of ways, for instance using a penalty
method or a sequential quadratic programming (SQP) method or dual methods
(like Uzawa’s). A survey on the use of direct methods in optimal control, with a
special interest to applications in aerospace, can be found in Betts (2020).

From the point of view of practical implementation, in the last years much
progress has been done in the direction of combining automatic differentiation
softwares (such as the modeling language AMPL, see Fourer et al. (2002), or
CasADi, see Andersson et al. (2018)) with expert optimization routines (such as
the open-source package Ipopt, see Wächter and Biegler (2006), providing an
interior point optimization algorithm for large-scale differential algebraic sys-
tems combined with a filter line-search method). With such tools, it has become
very simple to implement with only few lines of code difficult (nonacademic)
optimal control problems, with success and within a reasonable time of compu-
tation. Websites such as NEOS (http://www.neos-server.org/neos/solvers/index.
html) propose to launch online such kinds of computation: codes can be writ-
ten in a modeling language such as Fourer et al. (2002) (or others) and can be
combined with many optimization routines (specialized either for linear prob-
lems, nonlinear, mixed, discrete, etc). The advantage of using NEOS is that one
has nothing to install on his own machine, and moreover one can test a large
number of possible optimization routines.

Note that there exist a large number (open-source or not) of automatic dif-
ferentiation softwares and of optimization routines. It is not our aim to provide
a list of them, since they are easy to find on the web. Note also that AMPL, which
is very easy and friendly to use, is however not free of charge (although the
license is not expensive) and that CasADi offers a very good and efficient free
alternative, see https://web.casadi.org.

2.3 Variants

As alluded above, there exist many possible approaches to discretize an optimal
control problem, see Betts (2020) where the important sparsity issues are also
discussed. Among those various approaches, we quote the following.

Collocation methods consist of choosing specific points or nodes on every
subinterval of a given subdivision of the time interval. Such methods approxi-
mate the trajectories and the controls by polynomials on each subinterval. The
collocation conditions state that the derivatives of the approximated state match
with the dynamics at each node.

Spectral and pseudospectral methods are another class in which the above
nodes are chosen as the zeros of specific polynomials such as Gauss-Legendre
or Gauss-Lobatto polynomials. Such polynomials are used as a basis to approx-
imate trajectories and controls in appropriate approximation spaces. Since they
share nice orthogonality properties, the collocation conditions turn into con-

http://www.neos-server.org/neos/solvers/index.html
http://www.neos-server.org/neos/solvers/index.html
https://web.casadi.org
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straints that are easily tractable for numerical purposes. We refer the reader to
Elnagar and Kazemi (1998); Gong et al. (2008); Ross and Fahroo (2003) and to
the references therein for more details.

There exist also some probabilistic approaches, such as the method described
in Lasserre et al. (2008) which consists of first relaxing the optimal control prob-
lem in measure spaces and then of seeking the optimal control as an occupation
measure, which is approximated by a finite number of its moments (see Lasserre,
2010). This approach relies on algebraic geometry tools and reduces the opti-
mal control problem to some finite dimensional optimization problem involving
linear matrix inequalities (LMI). On this topic involving Sums-of-Square (SoS)
considerations, we refer the reader to another chapter of the Handbook (Lasserre
and Henrion, 2022).

Remark 2.1. Direct methods are characterized by first discretizing and then
optimizing, i.e., optimality conditions are applied in a second step to the dis-
cretized model; in contrast to this approach, indirect methods (to be discussed
in the next section) consist of applying first optimality conditions (the Pon-
tryagin Maximum Principle) and then discretizing the resulting boundary value
problem. While the latter method clearly falls in the classical Lax scheme, “con-
sistency plus stability imply convergence”, there is a serious gap there in the
direct approaches: to ensure convergence using the Lax scheme, one would a
priori need a uniform (with respect to N ) consistency property, which fails in
general because the optimal control problem is an optimization problem in in-
finite dimensions. Surprisingly simple examples of divergence are provided in
Hager (2000). In this same paper, it is shown that convergence is obtained for
“smooth enough” optimal control problems without any final state constraint,
discretized with Runge–Kutta methods with positive coefficients. We also refer
to Bonnans and Laurent-Varin (2006); Sanz-Serna (2016) for further comments
and considerations on symplectic integrators. Convergence has also been estab-
lished for classes of Legendre pseudospectral methods (see Elnagar and Kazemi,
1998; Gong et al., 2008; Ross and Fahroo, 2003).

2.4 Goddard problem by a direct approach

To illustrate the method, we present a treatment of the Goddard case presented
Section 1.3 using the Crank-Nicolson scheme. This scheme, which is dual to the
midpoint rule (in the sense defined in Hairer et al., 2006), has the advantage of
using only gridpoints (contrary to the midpoint scheme). It is very easy to imple-
ment and the code below is a basic “do it yourself” direct solver that can easily
be adapted to other problems. We use the nice JuMP interface in julia to define
the discretization of the problem and call the celebrated interior point solver
Ipopt previously mentioned. The symbolic-numeric framework put forward by
Julia allows to efficiently and transparently use AD (automatic differentiation
/ differentiable programming) and sparse linear algebra (which is important for
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structured constraints stemming from one-step like methods to discretize the dy-
namics). In the spirit of reproducible research (Buckheit and Donoho, 1995), the
code itself is available and executable online on the gallery of the ct:control
toolbox project.1 Discretizing the dynamics boils down to the following lines
(note that nonlinear expressions encoding the right-hand side are first defined):

# Dynamics
@NLexpressions(sys, begin

# D = Cd v^2 exp(-β(r-1))
D[i = 1:N+1], Cd * v[i]^2 * exp(-β * (r[i] - 1.0))
# r’= v
dr[i = 1:N+1], v[i]
# v’ = (Tmax.u-D)/m - 1/r^2
dv[i = 1:N+1], (Tmax*u[i]-D[i])/m[i] - 1/r[i]^2
# m’ = -b.Tmax.u
dm[i = 1:N+1], -b*Tmax*u[i]

end)

# Crank-Nicolson scheme
@NLconstraints(sys, begin

con_dr[i = 1:N], r[i+1] == r[i] + Δt * (dr[i] + dr[i+1])/2.0
con_dv[i = 1:N], v[i+1] == v[i] + Δt * (dv[i] + dv[i+1])/2.0
con_dm[i = 1:N], m[i+1] == m[i] + Δt * (dm[i] + dm[i+1])/2.0

end)

Note that the constraints have been labeled so that the corresponding Lagrange
multipliers can be retrieved. They are indeed approximations of the costate of
the continuous problem and will be used as such to initialize successfully a
subsequent shooting method (see Section 3).

A strong benefit of direct methods is that state constraints are very easy to
handle. We may for instance add a state constraint on the velocity (note that
some other constraints have been added, directly when defining the unknowns
of the problem, to improve convergence of the solver; what would be a compli-
cation for indirect methods is actually an asset here):

# As final time is free, time step Δt is unknown
@variables(sys, begin

0.0 ≤ Δt
r[1:N+1] ≥ r0
0 ≤ v[1:N+1] ≤ vmax
mf ≤ m[1:N+1] ≤ m0
0.0 ≤ u[1:N+1] ≤ 1.0

end)

1 https://ct.gitlabpages.inria.fr/gallery.

https://ct.gitlabpages.inria.fr/gallery
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FIGURE 1 Goddard problem: result of the direct code (Crank-Nicolson scheme), states and La-
grange multipliers associated with the equality constraints that discretize the dynamics. These
multipliers approximate the adjoint states and will be used as such to initialize an indirect method.
A boundary arc is observed as the state constraint on the velocity is saturated.

Boundary constraints are obviously added in the same way, and for N = 100
gridpoints we get the results given on Figs. 1 and 2. The resulting optimiza-
tion problem solved has about 400 variables (the state is of dimension 3 and the
control is scalar) and 300 equality constraints (the discretized dynamics), plus
box constraints. One could use a finer grid (up to the price of a larger problem),
but the result we obtain turns to be precise enough to trigger convergence of
much more accurate solver by shooting in the next section. The bang-singular-
constrained-bang structure of the solution has indeed been captured by the direct
solver, and this is essentially all we need to resort to indirect methods to com-
plete the computation.

3 Indirect approaches: the shooting method

3.1 Pontryagin maximum principle

In all this section, we assume that hypotheses (H0)–(H3) are satisfied, and that
the functions ϕ, f , � and gf are of class C1 w.r.t. the space variable x. Consider
the optimal control problem (3) with t = 0 as initial time, and with g = 0, i.e.,
for the moment, with no state constraint. Recall that the end-point mapping of
the system is defined by E(x0, T ,u) = x(x0, T ,u), where t �→ x(x0, t,u) is the
trajectory solution of the control system, corresponding to the control u, such
that x(x0,0,u) = x0. The end-point mapping is well defined and C1 for u be-
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FIGURE 2 Goddard problem: result of the direct code, control values. A structure with four dif-
ferent subarcs is observed. A simple inspection indicates a concatenation of a bang arc (u � 1),
possibly of a singular arc interior to the control bounds (u ∈ (0,1)), of a boundary arc due to the
state constraint on the velocity, and of a final bang arc (u � 0). This structure information, of com-
binatorial nature, is obtained here without any a priori knowledge on the solution. It is the key to
define an appropriate shooting function and solve very accurately the problem thanks to an indirect
method.

longing to a neighborhood in L∞([0, T ],Rr ) of the reference control (and Ck

whenever the dynamics are Ck). Denoting by C the cost functional, the optimal
control problem can be written as the infinite dimensional minimization prob-
lem of minimizing C over the considered set of controls, under the constraint
gf (E(x0, T ,u)) ≤ 0 on the final state.

We first assume that we are in the simple case where the initial point x0 is
fixed, the final point x1 is fixed, the final time T is fixed, U = R

r and there are
no state constraints along the trajectory. Then, the optimal control problem is
exactly equivalent to the optimization problem

min
E(x0,T ,u)=x1

C(T ,u). (11)

If u is optimal, then there must exist Lagrange multipliers (ψ,ψ0) ∈ (Rd ×R
)\

{0} such that

ψ · dEx0,T (u) = −ψ0dCT (u). (12)

Defining the Lagrangian LT (u,ψ,ψ0) = ψEx0,T (u)+ψ0CT (u), the first-order
condition (12) is written as

∂LT

∂u
(u,ψ,ψ0) = 0. (13)
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The Pontryagin maximum principle (PMP), recalled hereafter, is a far-reaching
statement of these conditions (see Pontryagin et al., 1964, see also Lee and
Markus, 1967). We recall here the statement of the PMP in the case without
pointwise state constraints (that is for g = 0).

Theorem 3.1. If the trajectory x, associated to the optimal control u on [0, T ],
is optimal, then it must be the projection of an extremal (x,p,p0, u) (called
extremal lift), where p0 ≤ 0 and p : [0, T ] → R

d is an absolutely continuous
mapping called adjoint vector, with (p,p0) �= (0,0), such that

ẋ(t) = ∂H

∂p
(t,x(t),p(t),p0,u(t)), ṗ(t) = −∂H

∂x
(t,x(t),p(t),p0,u(t)),

almost everywhere on [0, T ], where H(t, x,p,p0, u) = 〈p,f (t, x,u)〉 +
p0�(t, x,u) is the Hamiltonian, and the condition

H(t,x(t),p(t),p0,u(t)) = max
v∈U

H(t,x(t),p(t),p0, v) (14)

holds almost everywhere on [0, T ]. If moreover the final time T is not fixed, then

max
v∈U

H(T ,x(T ),p(T ),p0, v) = 0. (15)

Additionally, if gf (x(T )) = 0, then the adjoint vector can be built in order to
satisfy the transversality condition

p(T ) − p0∇ϕ(x(T )) ⊥ kerdgf (x(T )), (16)

where dgf (x) stands for the Jacobian of gf at point x.

The adjoint vector of the Pontryagin maximum principle can be constructed
so that, up to a scaling, (p(T ),p0) = (ψ,ψ0) from (12). In particular, the La-
grange multiplier ψ is unique (up to a multiplicative scalar) if and only if the
trajectory x admits a unique extremal lift (up to scaling). The scalar p0 is a La-
grange multiplier associated with the cost. When p0 < 0, the extremal is said
to be normal, and in this case, since the Lagrange multiplier is defined up to
scaling, it is usual to normalize it so that p0 = −1. When p0 = 0, the extremal
is said to be abnormal. In many situations, where some qualification conditions
hold, abnormal extremals do not exist in the problem under consideration, but
in general it is difficult to guess whether, given some initial and final condi-
tions, these qualification conditions hold or not. In lack of control constraints,
i.e., when U = R

r , abnormal extremals project exactly onto singular trajecto-
ries. Recall that a couple (x,u) defined on [0, T ] is said to be singular when the
linearized control system along it is not controllable in time T ; equivalently, in
terms of the end-point mapping, the Fréchet differential dEx0,T is not surjec-
tive. In the normal case, ψ = p(T ) coincides (up to a scaling) with the gradient
of the value function (solution of the Hamilton–Jacobi equation). This point is
further discussed in Section 4.4.
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Remark 3.1. Generically, the solution of the optimal control problem is unique,
and moreover it has a unique extremal lift. This well known fact is related to the
differentiability properties of the value function (see for instance Aubin and
Frankowska, 1990; Clarke and Vinter, 1987, and see Cannarsa and Sinestrari,
2004; Rifford and Trélat, 2005, 2009; Stefani, 1991, for results on the size of
the set where the value function is differentiable).

Remark 3.2. The fact that p0 ≤ 0 is a convention due to Pontryagin, which
leads to the maximum principle. The choice p0 ≥ 0 would lead to a minimum
condition, instead. The component p0 appears in the transversality condition
(16). Note that, if the final point x(T ) is let free (i.e., there is no gf ) then this
condition leads to p(T ) = p0∇ϕ(x(T )), and then necessarily p0 �= 0 and we
can normalize to p0 = −1.

Remark 3.3. When there are some state constraints g(x(t)) ≤ 0 along the tra-
jectory, the Pontryagin maximum principle is modified as follows. We keep the
same definition for the Hamiltonian H . If x is optimal then there must exist
p0 ≤ 0, an absolutely continuous adjoint vector p(·) and a nonnegative Radon
measure μ, the triple (p,p0,μ) being nontrivial, such that the adjoint equation
is

ṗ(t) = −∂H

∂x
(t,x(t),q(t),p0,u(t))

almost everywhere, with

q(t) = p(t) +
∫

[0,t)

∂g

∂x
(x(s)) dμ(s),

(the interval being closed when t = T ) and the maximization condition becomes

H(t,x(t),q(t),p0,u(t)) = max
v∈U

H(t,x(t),q(t),p0, v)

almost everywhere. Finally, in the transversality condition on the final adjoint
vector, one replaces p(T ) with q(T ). Note that, taking q as a new adjoint, we
have dq(t) = dp(t) + ∂g

∂x
(x(t)) dμ(t) and, since ṗ = − ∂H

∂x
and provided μ is

absolutely continuous w.r.t. Lebesgue measure, one has

q̇ = −q
∂f

∂x
− p0 ∂f 0

∂x
+ ν

∂g

∂x

for some nonnegative ν (dμ = νdt). This is the formulation that one can also
find in the existing literature (possibly with an opposite sign for the state con-
straint, and obvious changes in the previous expressions).

3.2 Shooting method

To compute optimal trajectories thanks to the Pontryagin Maximum Principle,
the first step is to make explicit the maximization condition, at least when this
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is possible (otherwise this can be done numerically). A usual assumption, often

satisfied, is the strict Legendre assumption, requiring that ∂2H
∂u2 (t, x,p,p0, u)

is negative definite along the reference extremal. Under this assumption, an
implicit function argument gives, locally, a control expressed as a function of
the state and of the adjoint. Let us assume, in what follows, that we are in
the normal case, p0 = −1. Plugging the resulting expression of the control in
the Hamiltonian equations, and defining the reduced (normal) Hamiltonian by
Hr(t, x,p) = H(t, x,p,−1, u(x,p)), we obtain that every normal extremal is
solution of the reduced Hamiltonian system

ẋ(t) = ∂Hr

∂p
(t,x(t),p(t)), ṗ(t) = −∂Hr

∂x
(t,x(t),p(t)). (17)

Definition 3.1. Denoting by (x(t, x0,p0),p(t, x0,p0)) the solution of (17)
starting at (x0,p0) for t = 0, the exponential mapping is defined by
expx0

(t,p0) = x(t, x0,p0).

The exponential mapping parametrizes the normal extremal flow. The ab-
normal extremal flow can be parametrized as well, provided an appropriate
Legendre assumption holds in the abnormal case.

Remark 3.4. Let us give an example where the Hessian of the Hamiltonian
is degenerate: the minimal time problem for single-input control affine sys-
tems ẋ(t) = F0(x(t)) + u(t)F1(x(t)) without constraints on controls. In that
case, the maximization condition implies that the bracket 〈p(t),F1(x(t))〉 van-
ishes along the extremals, and the optimal control u is singular. To com-
pute it, we perform two successive derivations in time of the latter rela-
tion, obtaining 〈p(t), [F0,F1](x(t))〉 = 0 and 〈p(t), [F0, [F0,F1]](x(t))〉 +
u(t)〈p(t), [F1, [F0,F1]](x(t))〉 = 0, where [·, ·] is the Lie bracket of vector
fields. We thus retrieve the control as a function of x and p, provided that

〈p(t), [F1, [F0,F1]](x(t))〉 > 0,

which is the so-called strong generalized Legendre–Clebsch condition (see, e.g.,
Bonnard and Chyba, 2003). Actually, under generic conditions on the vector
fields, the above computation can always be performed (see Chitour et al., 2006,
2008). See Goddard example in this section for an example of this computation.

Remark 3.5. When an abnormal flow can be well defined, we then have to deal
with two extremal flows (and two exponential mappings). In general, however,
the abnormal flow “does not fill much space”. For example, in Agrachev (2009);
Rifford and Trélat (2009) it is proved that for control-affine systems without
drift (satisfying the Hörmander assumption), with quadratic cost, the image of
the abnormal exponential mapping has an empty interior in the state space, and
is even of zero Lebesgue measure under some additional assumptions.
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Remark 3.6. The Pontryagin Maximum Principle is a first-order necessary con-
dition for optimality, asserting that if a trajectory is optimal then it should be
sought among projections of extremals joining the initial point to the final target.
This yields the shooting method that is described hereafter. But, before coming
to the description of that method, it is interesting to observe that, conversely,
the projection of a given extremal may not be (locally or globally) optimal. This
important observation has led to develop second-order optimality conditions in
optimal control.

In terms of the Lagrangian (in the simplified setting), considering the intrin-
sic second order derivative QT of the Lagrangian, given by

QT = ∂2LT

∂2u
(u,ψ,ψ0)|ker

∂LT
∂u

,

a second-order necessary condition for optimality is that QT be nonpositive, and
a second-order sufficient condition for local optimality is that QT be negative
definite. Such conditions admit a number of generalizations for optimal con-
trol problems involving control and/or state constraints. It happens that, given a
fixed extremal starting at (x0,p0), in the simplified context and under appropri-
ate generic assumptions, the quadratic form QT is not degenerate (i.e., its kernel
is trivial) if and only if the exponential mapping expx0

(tc, ·) is not an immersion
at p0 (that is, its differential is not injective). This result, coming from sym-
plectic considerations and generalizing the Riccati theory (see Agrachev and
Sachkov, 2004; Bonnard et al., 2006), yields to algorithms for computing the
first conjugate time along a given extremal (see Bonnard et al., 2007, for a sur-
vey). By definition, the first conjugate time along an extremal is the first time
tc at which the quadratic form Qtc has a nontrivial kernel. This means that the
trajectory x(·) under consideration is locally optimal (in L∞ topology) on [0, t]
if and only if t < tc. Computing a first conjugate time amounts to computing the
first time at which some determinant along the extremal vanishes. More gener-
ally, the fact that the exponential mapping is not an immersion can be translated
in terms of Jacobi fields, like in Riemannian geometry.

Let us now describe the contents of the shooting method. The Pontryagin
Maximum Principle states that every optimal trajectory is the projection of an
extremal. After making explicit the maximization condition, the problem is re-
duced (for instance, in the normal case) to an extremal system of the form
ż(t) = F(t, z(t)), where z(t) = (x(t),p(t)), and initial, final, transversality con-
ditions, are written as R(z(0), z(T )) = 0. We thus end up with a boundary value
problem (BVP) of the form

ż(t) = F(t, z(t)), R(z(0), z(T )) = 0. (18)

Denote by z(t, z0) the solution of the Cauchy problem ż(t) = F(t, z(t)), z(0) =
z0, and set G(z0) = R(z0, z(T , z0)). The boundary value problem (18) is then
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equivalent to solving G(z0) = 0, i.e., to finding a zero of the function G. By
definition, the (single) shooting method consists of implementing a Newton-like
method to find a zero of G.

The feasibility of the shooting method relies on the fact that the Jacobian
of the mapping G is nonzero. According to the above remark, in the simplified
case, this determinant is nonzero, i.e., the (single) shooting method is well-posed
at time T , locally around p0, if and only if the exponential mapping expx0

(t, ·)
is an immersion at p0, that is, if and only if T is not a conjugate time. Although
this result admits generalizations to a number of contexts (see, e.g., Bonnans
and Hermant, 2007, 2009), there still misses a complete conjugate time theory
involving state and control constraints, in which the trajectories may have bang,
singular, boundary arcs.

The single shooting method can be refined to the multiple shooting method,
in which one may add a number of intermediate nodes, thus incorporating new
(matching) conditions in the shooting function G. This can be useful for in-
stance to face numerical instability issues, or to implement the shooting method
in bang-bang situations where one knows in advance the number of switchings.
Efficient shooting methods are available in the HamPath package,2 now encap-
sulated in the Python package nutopy of the ct: control toolbox project.3

These open-source packages also contain implementations of conjugate time
computations and of several homotopy routines that are particularly useful in a
number of contexts (see Trélat, 2012, for a survey on the use of continuation
methods in optimal control).

Remark 3.7. Numerically, the shooting method is the combination of a numer-
ical integration of a differential equation with a Newton method for finding a
zero of a map (the shooting function). It thus inherits of the main features of a
Newton method: when it converges, the convergence is extremely fast and the
result is very accurate. However, it may be difficult to initialize successfully:
finding a good initial guess for z0, in the above notations, may be a real chal-
lenge. To face with this difficulty, several possible remedies are known, such as
the following, surveyed in Trélat (2012) (see also the references therein):

• Since direct methods are less sensitive to the initialization, it is often success-
ful to first run a direct approach (even with a quite rough mesh) so that, it can
obtain its convergence, then the corresponding optimal solution and Lagrange
multiplier can be used as an approximation of the searched extremal.

• Continuation and homotopy methods can be combined with the shooting
method (and also, by the way, with direct methods): when a given problem
happens to be difficult to solve, or quite ill-posed, because of some too re-
stricted parameters or because of too constraining terms in the dynamics, one
can try to relax the optimal control problem by adding some continuation pa-
rameters in front of those terms, then run a series of shooting methods with

2 https://www.hampath.org.
3 https://ct.gitlabpages.inria.fr/gallery.

https://www.hampath.org
https://ct.gitlabpages.inria.fr/gallery
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the continuation parameters ranging iteratively from 0 to 1 (with adaptive
steps if necessary).

• Geometric control gives useful information on the local or global structure of
the optimal controls. For instance, one can guess in advance the number of
switchings in a bang-bang strategy under some appropriate assumptions. This
knowledge can then be combined with the Pontryagin maximum principle in
order to drastically reduce the complexity of the shooting problem.

Much more could be said on these classical issues, but since they have already
been surveyed in Trélat (2012) we do not elaborate more. We next describe
another powerful remedy that has emerged recently, although it relies on an old
concept.

3.3 Turnpike property

Assume that f and � do not depend on time. In few words, the turnpike property
stipulates that, for optimal control problems in large time, under mild assump-
tions it is expected that the optimal solution, the optimal control and the asso-
ciated adjoint remain essentially close to static values, except at the beginning
and at the end of the time interval. Moreover, these static values correspond to
the optimal solution of a static optimization problem. The idea is very easy to
understand. When the time T is large, setting ε = 1/T and τ = t/T = εt , the
optimal control problem consists of determining a trajectory y(τ) = x(t) and a
control v(τ) = u(t) solution of εy′(τ ) = f (y(τ), v(τ )) and minimizing the cost∫ 1

0 �(y(τ ), v(τ )) dτ , under various constraints. At the formal level, we see that,
when ε → 0, at the limit we find the static optimization problem consisting of
minimizing �(y, v) under the constraint f (y, v) = 0, i.e., under the constraint of
being an equilibrium of the controlled dynamics.

To give a more precise insight, let us establish the so-called exponential turn-
pike phenomenon in the linear-quadratic case. Let x0, x1, x̂ ∈R

d and û ∈R
r be

fixed. We consider the optimal control problem in fixed final time T > 0:

min
∫ T

0

(
(x(t) − x̂)�Q(x(t) − x̂) + (u(t) − û)�R(u(t) − û)

)
dt

ẋ(t) = Ax(t) + Bu(t)

x(0) = x0, x(T ) = x1

(19)

where x(t) ∈ R
d and u(t) ∈ R

r , and where Q et R are real-valued symmet-
ric positive definite matrices. By strict convexity, there exists a unique op-
timal solution (xT ,uT (·)) of (19). We assume that the pair (A,B) satisfies
the Kalman condition. The Hamiltonian of the problem is H(x,p,p0, u) =
〈p,Ax〉 + 〈p,Bu〉 + p0((x − x̂)�Q(x − x̂) + (u − û)�R(u − û)). Let us
prove that p0 �= 0. By contradiction, if p0 = 0 then the condition ∂H

∂u
= 0

yields 〈p(t),B〉 = 0, and by successive derivations and using the fact that
ṗ(t) = −A�p(t), we obtain 〈p(t),AkB〉 = 0, which raises a contradiction with
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the Kalman condition since p(t) �= 0. We choose then to normalize the adjoint
so that p0 = −1/2. The condition ∂H

∂u
= 0 yields uT (t) = û + R−1B�pT (t),

and the extremal system is

ẋT (t) = AxT (t) + BR−1B�pT (t) + Bû

ṗT (t) = QxT (t) − A�pT (t) − Qx̂,

i.e.,

d

dt

(
xT (t)

pT (t)

)
= M

(
xT (t)

pT (t)

)
+
(

Bû

−Qx̂

)
,

where

M =
(

A BR−1B�

Q −A�.

)
.

Besides, the static optimization problem is

min
(x,u)∈Rd×Rr , Ax+Bu=0

(
(x − x̂)�Q(x − x̂) + (u − û)�R(u − û)

)
.

This strictly convex problem has a unique solution (x̄, ū), associated with a nor-
mal Lagrange multiplier (p̄,−1) (the problem is qualified because ker(A�) ∩
ker(B�) = {0}, as a consequence of the Kalman condition). According to the
Lagrange multiplier rule, which is here a necessary and sufficient condition for
optimality, there exists p̄ ∈ R

d \ {0} such that ū = û + R−1B∗p̄ and

Ax̄ + BR−1B∗p̄ + Bû = 0

Qx̄ − A∗p̄ − Qx̂ = 0,
(20)

i.e.,

M

(
x̄

p̄

)
+
(

Bû

−Qx̂

)
=
(

0
0

)
.

We have the following exponential turnpike property.

Proposition 3.1. There exist constants C > 0 and ν > 0, not depending on T ,
such that

‖xT (t)− x̄‖+‖uT (t)− ū‖+‖pT (t)− p̄‖ ≤ C(e−νt +e−ν(T −t)) ∀t ∈ [0, T ].
(21)

Proof. Using the above optimality systems, we have

d

dt

(
xT (t) − x̄

pT (t) − p̄

)
= M

(
xT (t) − x̄

pT (t) − p̄

)
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In order to prove (21), the crucial observation is that the matrix M , which is
Hamiltonian, is hyperbolic, i.e., all its eigenvalues have a nonzero real part (ac-
tually, the number of unstable modes is equal to the number of stable modes).
To prove this hyperbolicity property, we start by noting that, as a consequence
of the Kalman condition on (A,B), we have

ker(A� − ξIn) ∩ ker(B�) = {0} ∀ξ ∈C. (22)

It follows that the matrix M has no purely imaginary eigenvalue. Indeed, let

(z1, z2) ∈C
n ×C

n and let μ ∈ R be such that (M − iμ)

(
z1
z2

)
= 0. Then,

(A − iμ)z1 + BR−1B�z2 = 0

Qz1 − (A� + iμ)z2 = 0,

hence z1 = Q−1(A� + iμ)z2 and thus (A − iμ)Q−1(A� + iμ)z1 +
BR−1B�z2 = 0. Multiplying to the left by z̄�

2 , we obtain ‖Q−1/2(A� +
iμ)z2‖2 + ‖R−1/2B�z2‖2 = 0 and hence (A� + iμ)z2 = 0 and B�z2 = 0. We
infer that z2 = 0 by using (22). The claim is proved.

Since M is hyperbolic, there exists a real-valued square matrix P of size 2n

such that

P −1MP =
(

M1 0
0 M2

)

where all eigenvalues of the matrix M1 have a negative real part, and all eigen-

values of M2 have a positive real part. Now, setting

(
xT − x̄

pT − p̄

)
= P

(
v

w

)
, the

extremal system gives

d

dt

(
v(t)

w(t)

)
= P −1MP

(
v(t)

w(t)

)

so v̇(t) = M1v(t) and w(t) = M2w(t). All eigenvalues of M1 have a negative
real part, hence there exist constants C1 > 0 and ν1 > 0, not depending on T ,
such that ‖v(t)‖ ≤ C1e

−ν1t . For w(t), we reverse time and we apply the same ar-
gument, hence ‖w(t)‖ ≤ C2e

−ν2(T −t). Finally, (21) follows by noting that xT (t)

et pT (t) are linear combinations of v(t) and w(t).

The exponential turnpike property (21) says that, except near t = 0 and t =
T , the optimal state, control and adjoint are exponentially close to static values,
themselves corresponding to the solution of the associated static optimization
problem. In Trélat and Zuazua (2015), the proof of the above proposition is a
bit different and relies on the use of the Riccati theory: actually, the matrix P is
built by considering the minimal and maximal solutions of the Riccati algebraic
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equation, which gives an interpretation of the constants C and ν in terms of
these matrices. Anyway, the argument remains very easy and it withstands a
number of generalizations: to infinite dimension, to nonlinear dynamics, and
also to situations where the turnpike is not restricted, as above, to a singleton
but may even consist of a nontrivial set of trajectories (an example being the
periodic turnpike). We refer to the chapter (Faulwasser and Grüne, 2022) of the
Volume 23 of the present Handbook, for a recent survey on the turnpike property
in optimal control, containing a number of references and commenting also on
the important related notion of dissipativity. What we want to point out here
is that, when the turnpike property is satisfied, we can use it to successfully
initialize a variant of the shooting method.

Remark 3.8 (Variant of the shooting method). In the turnpike context, we know
that, in the middle of the trajectory, xT (T /2) and pT (T /2) are exponentially
close to x̄ and p̄. In such conditions, if this is feasible, it is convenient to first
compute the solution of the static problem, then to implement a variant of the
shooting method by initializing it “in the middle”, as follows. Using the no-
tations of the previous section, the unknown is now z(T /2) ∈ R

2d , which is
initialized at (x̄, p̄), the steady-state solution of the static optimal control prob-
lem. Then, integrating backwards the extremal system over [0, T /2], we com-
pute z(0); integrating forward the extremal system over [T/2, T ], we compute
z(T ). Finally, the unknown z(T /2) is tuned so that G(z(0), z(T )) = 0, thanks
to a Newton method. It has been observed in Trélat and Zuazua (2015) that this
variant of the single shooting method is very efficient.

3.4 Solving the Zermelo problem by the shooting method

We consider the navigation problem of Zermelo presented in Section 1.3, with
a = 0 and b = 1. We take Vmax = 1, yf = (20,1), h(y2) = 3 + 0.2y2(1 − y2),
where the target is the point yf (a slightly simpler problem than the general pre-
viously presented), while the initial point is y0 = (0,0). We treat the minimum
time case so that the velocity can be set to Vmax and the only control is the angle.
An obstacle is inserted along the unconstrained optimal trajectory:

(y1 − y1,f /2)2

a2
1

+ (y2 − y2,f /2.5)2

a2
2

≤ 1

with a1 = 2 and a2 = 0.1. We use a logarithmic barrier to penalize internally the
state constraint and we consider the augmented cost

T − α

∫ 1

0
ln

(
(y1(t) − y1,f /2)2

a2
1

+ (y2(t) − y2,f /2.5)2

a2
2

− 1

)
dt → min .

For a detailed study of internal penalization, we refer to Malisani et al. (2014).
For the computation below, α is set to 10−3. To obtain more accurate results, one
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FIGURE 3 Zermelo problem with obstacle: result of the shooting method. The state, costate and
control are portrayed for the two solutions (penalization parameter α = 10−3). The first solution (in
blue) is slightly shorter (T � 4.98) than the second one (yellow, T � 4.99).

could perform a numerical continuation on the penalty parameter α as is cus-
tomary for interior methods (Noceal and Wright, 2006). We apply the maximum
principle which leads to the (normal) maximized Hamiltonian

H(y,p) = Vmax

√
p2

1 + p2
2 + p1h(y2)

+ α ln

(
(y1 − y1,f /2)2

a2
1

+ (y2 − y2,f /2.5)2

a2
2

− 1

)
− 1. (23)

The shooting problem then consists in finding the initial value p(0) ∈ R
2 so that,

integrating the flow of the maximized Hamiltonian, the target yf is reached.
Moreover, the equation H = 0 is added to accommodate the fact that the final
time T is free. Depending on the initialization of the shooting method, two so-
lutions are obtained, see Fig. 3. One of them is clearly a local minimizer as one
can check comparing the numerical final times. An interesting approach in such
a situation is to rely on an HJB solver (see Section 4) to retrieve an initial guess
of the adjoint state (and of the final time) that avoid strict local minima. It can
indeed be checked numerically that the HJB solution on the previous data allows
shooting to converge towards the global minimizer on the internally penalized
problem. This illustrates how one can leverage the strengths of both HJB and
shooting: while HJB might not be able to produce a high precision numerical
control, it will allow to select a proxy for the adjoint of the global minimum
and for the associated value, good enough to ensure convergence of the shoot-
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ing method (the difficult issue for indirect methods) towards a precise numerical
solution.

Remark 3.9. A refinement of this computation could involve a continuation
(or differential homotopy) on the size of the obstacle. Path following methods
would indeed allow to track the two branches associated with the global and
strictly local minimum, then to decide which one is optimal for each size of the
obstacle by comparing the associated final times.

Another relevant observation on this problem is related to the turnpike prop-
erty described in Section 3.3. Although, the problem is not linear-quadratic, one
can easily guess the role played by this property for “large” (in terms of y1)
final conditions. We keep the same data for Vmax and for the current, remove
the obstacle, and now target yf = (200,1). For such a distant target, one ex-
pects the optimal control to use the “fast lane” so that, most of the time, y2
remains close to 1/2 where the current h is maximum. So the guess would
be that, for a large part of the trajectory, y2 � 1/2, u2 = ẏ2 � 0, u1 � 1, and
T � (y1,f −y1,0)/(1+h(1/2)). The maximized (normal) Hamiltonian is (com-
pare (23))

H(y,p) = Vmax

√
p2

1 + p2
2 + p1h(y2) − 1,

so that, on H = 0, p � (1/(1 + h(1/2,0)). These approximations can be used
to initialize the variant of the shooting method described in Remark 3.8. It is
straightforwardly implemented in Julia according to4

# Regular maximized Hamiltonians and associated flow
H(y, p, u) = -1.0 + Vmax*p’*u + p[1]*h(y[2])
ur(p) = p / sqrt(p[1]^2+p[2]^2)
Hr(y, p) = H(y, p, ur(p))
fr = Flow(Hr)

# Shooting function
function shoot(y1, p1, tf)

yy0, p0 = fr(tf/2.0, y1, p1, t0)
yyf, pf = fr(tf/2.0, y1, p1, tf)
s = zeros(eltype(y1), 5)
s[1:2] = yy0-y0
s[3:4] = (yyf-yf) ./ yf
s[5] = Hr(y1, p1)

return s

end

4 The code is available and executable online at https://ct.gitlabpages.inria.fr/gallery.

https://ct.gitlabpages.inria.fr/gallery
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FIGURE 4 Zermelo problem, turnpike property: result of the variant of the shooting method. The
state and control are portrayed, illustrating that most of the time is spent close to y2 = 1/2 where
the current is maximum. Accordingly, u2 � 0 on the corresponding control subarc.

The structure of the optimal solution is as expected, see Fig. 4.

Remark 3.10. Further analysis is required to tackle the case of “strong” cur-
rents. When there exist zones where the drift cannot be compensated by the
control, abnormal trajectories come into play and discontinuities of the value
function (minimum time) are observed. See Bonnard et al. (2022) for a detailed
treatment of such cases.

3.5 Solving the Goddard problem by the shooting method

We chain the result of Section 2.4, obtained by a direct method, with a shoot-
ing method. The previous numerical solution, although not very accurate, has
captured the structure of the solution (more precisely, of what one may hope to
be a local minimizer, at least). This knowledge allows us to define the appro-
priate shooting function, namely one that combines four arcs (bang-singular-
constrained-bang), each one being the flow of a relevant Hamiltonian. One can
then leverage the accurate knowledge (including the Hamiltonian character)
gained on each subarc by means of Pontryagin maximum principle to obtain
a very accurate solver. In general, knowing the structure alone is not enough to
actually solve the problem. One also needs a good initial guess for the zero of
the shooting function, which turns to be also provided by the previous direct
solver. In order to set up our shooting, we rely on the maximum principle and
observe that the control can be either bang, singular of boundary. Indeed, system
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(7a)–(7c) is affine in the control and can be written according to

ẋ(t) = F0(x(t)) + u(t)F1(x(t)), u(t) ∈ [0,1],
with x = (r,v,m) ∈ R

3 and vector fields that we shall define in Julia, complet-
ing the code started Section 2.4:

# Dynamics
function F0(x)

r, v, m = x
D = Cd * v^2 * exp(-β*(r-1.0))
F = [ v, -D/m-1.0/r^2, 0.0 ]
return F

end

function F1(x)
r, v, m = x
F = [ 0.0, Tmax/m, -b*Tmax ]
return F

end

In order to deal with the state constraint g(x(t)) := vmax − v(t) ≥ 0, we follow
Remark 3.3 (note that we use the opposite sign for the constraint) and introduce
the Hamiltonian (where the constraint has been directly adjoined, see Hartl et
al., 1995)

H(x,p,u,μ) = H0(x,p) + uH1(x,p) + μg(x),

where Hi(x,p) := 〈p,Fi(x)〉 are the Hamiltonian lifts of the aforementioned
fields. The maximization condition implies that u is bang (0 or 1) whenever
H1 is not zero. Besides, whenever the state constraint is not active, the as-
sociated nonnegative multiplier μ vanishes (complementarity condition). As a
result, bang arcs are obtained by computing the flow of either H0 (case H1 < 0,
u = 0) or H0 + H1 (case H1 > 0, u = 1). Conversely, when H1 vanishes iden-
tically, assuming the state constraint is not active, as indicated in Remark 3.4
one can differentiate a.e. two times H1 to retrieve the singular control provided
the length three Poisson bracket H101 := {H1, {H0,H1}} is not zero (singular of
order one; see, e.g., Bonnard and Chyba, 2003):

us(x,p) = −H001

H101
·

(Same notation used for H001.) Plugging this dynamic feedback control into the
original Hamiltonian (with μ = 0) defines the singular Hamiltonian

Hs(x,p) := H(x,p,us(x,p),μ = 0)
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whose flow coincides with the extremal flow on �′ := {H1 = H01 = 0} (see,
e.g., Agrachev and Sachkov, 2004). Along a boundary arc where the state con-
straint is activated, if the control is interior (u(t) ∈ (0,1)), H1 must also vanish.
Moreover, if the constraint is of order one (that is if the control appears when
the equality g(x(t)) = 0 is differentiated once) which gives in this case (Lie
derivative of the constraint along F1) F1 · g �= 0, the interiority of the bound-
ary control implies that the contact with the constraint is transverse at the exit
time t3 (where, in our case, a bang arc u = 0 is joined): ġ(t3+) �= 0, and there
is no jump on the adjoint (Hartl et al., 1995). Denoting t2 the entry point, on
(t1, t2) one retrieves the boundary control by differentiating once g(x(t)) = 0
as 0 = ġ = F0 · g + uF1 · g, which implies that ub(x) = −F0·g

F1·g under the two
previous assumptions. Similarly, differentiating once H1 = 0 allows to compute
the multiplier μ as 0 = Ḣ1 = {H0 + uH1 + μg,H1} = H01 − μF1 · g, so that
μb(x,p) = H01

F1·g . The relevant flow is an integral curve of the boundary Hamil-
tonian

Hb(x,p) := H(x,p,ub(x),μb(x,p)).

All in all, the symbolic-numeric framework allows to define everything in terms
of the vector fields and of the constraint:

# Computation of singular control of order 1
H0(x, p) = p’ * F0(x)
H1(x, p) = p’ * F1(x)
H01 = Poisson(H0, H1)
H001 = Poisson(H0, H01)
H101 = Poisson(H1, H01)
us(x, p) = -H001(x, p)/H101(x, p)

# Computation of boundary control
g(x) = vmax-x[2] # vmax - v ≥ 0
ub(x) = -Lie(F0, g)(x) / Lie(F1, g)(x)
μb(x, p) = H01(x, p) / Lie(F1, g)(x)

# Hamiltonians (regular, singular, boundary) and associated flows
H(x, p, u, μ) = H0(x, p) + u*H1(x, p) + μ*g(x)
Hr(x, p) = H(x, p, 1.0, 0.0)
Hs(x, p) = H(x, p, us(x, p), 0.0)
Hb(x, p) = H(x, p, ub(x), μb(x, p))

Then, to integrate the Hamiltonians to obtain the flows and define the shooting
function in terms of the initial adjoint p0, the entry point of the singular arc t1,
the entry point of the boundary arc t2, the exit point t3, and the free final time T :

f0 = Flow(H0)
fr = Flow(Hr)
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fs = Flow(Hs)
fb = Flow(Hb)

# Shooting function
function shoot(p0, t1, t2, t3, tf)

x1, p1 = fr(t0, x0, p0, t1)
x2, p2 = fs(t1, x1, p1, t2)
x3, p3 = fb(t2, x2, p2, t3)
xf, pf = f0(t3, x3, p3, tf)
s = zeros(eltype(p0), 7)
s[1:2] = pf[1:2] - [ 1.0, 0.0 ]
s[3] = xf[3] - mf
s[4] = H1(x1, p1)
s[5] = H01(x1, p1)
s[6] = g(x2)
s[7] = H0(xf, pf)

return s
end

It is straightforward to retrieve initial guesses for these unknowns from the di-
rect code solution, most notably by retrieving the Lagrange multipliers from the
optimizer through JuMP interface (note the minus sign to accommodate the con-
vention on the adjoint state in contrast with the one on Lagrange multipliers):

p=-[[dual(con_dr[i]),dual(con_dv[i]),dual(con_dm[i])] for i in1:N]

Moreover, in view of these results, the constraint on the final mass is assumed
to be active (which is in accordance with the final zero bang arc). Automatic
differentiation can also be used to compute the derivative of the shooting func-
tion (several Julia backends to do this are available and include differentiating
properly calls to ODE solvers). See Figs. 5 and 6 for the associated numerical
simulations, while the code itself is available and executable online.5

4 Hamilton–Jacobi–Bellman approach

The systematic study of optimal control problems dates back to the late 1950s,
and one major tool is Dynamical Programming and Hamilton–Jacobi–Bellman
(HJB) approach. This approach describes the optimal control problem via the
so-called value function V : [0, T ] × R

d −→ R, which associates to any initial
condition the optimal value of the control problem, and is defined accordingly
as

5 https://ct.gitlabpages.inria.fr/gallery.

https://ct.gitlabpages.inria.fr/gallery
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FIGURE 5 Goddard problem: result of the shooting method, states and costates. The values are in
line with those obtained by the direct method. They are computed by concatenating the integration
of the four Hamiltonian flows involved.

FIGURE 6 Goddard problem: result of the shooting method, control and state constraint multiplier.
The bang-singular-constrained-bang structure of the control is very accurately determined, while the
state constraint multiplier is positive only along the boundary arc.
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V(t, x) := inf

{
ϕ(x(T )) +

∫ T

t

�(s,x(s),u(s))ds

∣∣∣∣
(x,u) ∈ X[t,T ](x), g(x(s)) ≤ 0 for all τ ∈ [s, T ], and gf (x(T )) ≤ 0

}
.

(24)

It is known that the value function V can be characterized as the unique solu-
tion, in a suitably weak sense, of a Hamilton–Jacobi type equation (Bardi and
Capuzzo-Dolcetta, 2008). Starting from the knowledge of the value function,
which is typically obtained via numerical approximation, it is possible to recon-
struct the optimal solution in feedback form, i.e., with an optimal control given
as a function of the current state.

4.1 Unconstrained Bolza control problems

In this section we present first some classical results of HJB approach when the
optimal control problems are free of state constraints (i.e., g = gf ≡ 0). The
control problem is described by the unconstrained value function

V(t, x) = inf

{
ϕ(x(T )) +

∫ T

t

�(s,x(s),u(s))ds

∣∣∣∣(x,u) ∈X[t,T ](x)

}
. (25)

When (H4) is satisfied, the control problem admits a solution. The Gronwall
estimate on the trajectories and the Lipschitz regularity of the cost functions en-
sure that the value function, although in general nondifferentiable, enjoys itself
a Lipschitz continuity property.

Proposition 4.1. Under (H0)–(H2), the value function V is locally Lipschitz
continuous.

To deal with the lack of smoothness, two important tools have been devel-
oped: the theory of viscosity solutions and the nonsmooth analysis. The theory
of viscosity solutions for nonlinear Hamilton–Jacobi equations, introduced in
the early 1980s by Crandall and Lions (1981, 1983) and Crandall et al. (1984),
allows to define generalized solutions to broad classes of nonlinear partial differ-
ential equations, including the HJB equations of optimal control problems. We
refer also to the books by Barles (1994); Bardi and Capuzzo-Dolcetta (2008) for
a more complete introduction to this theory. Another important tool is the non-
smooth analysis, which addresses to differential analysis for nonsmooth func-
tions. We refer the reader to Aubin and Cellina (1984); Clarke (2013); Clarke et
al. (1998); Vinter (2000) for an introduction of the theory and its applications.
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4.1.1 Dynamic programming and Hamilton–Jacobi–Bellman
equation

The fundamental idea of Dynamic Programming is that the value function V
satisfies a functional equation, often called the Dynamic Programming Principle
(DPP).

Proposition 4.2 (Dynamic Programming Principle). Assume (H0)–(H2), and
denote by xu(s) the solution of (1) for a given control u, and such that xu(t) = x.
Then, for all x ∈ R

d , t ∈ [0, T ] and h ∈ [0, T − t], the value function V satisfies
the equality

V(t, x) = inf
u∈U

{∫ t+h

t

�(s,xu(s),u(s))ds + V(t + h,xu(t + h))

}
. (26)

This principle provides two properties, called sub- and superoptimality,
which are defined as follows. For any function V : [0, T ] ×R

d →R,

1. we say that V satisfies the superoptimality principle if for any t ∈ [0, T ],
x ∈ R

d , there exists (xu,u) ∈ X[t,T ](x) such that

V (t, x) ≥ V (t +h,xu(t +h))+
∫ t+h

t

�(s,xu(s),u(s)) ds, ∀h ∈ [0, T − t];

2. we say that V satisfies the suboptimality principle if for any t ∈ [0, T ], x ∈
R

d , and (xu,u) ∈X[t,T ](x),

V (t, x) ≤ V (t +h,xu(t +h))+
∫ t+h

t

�(s,xu(s),u(s)) ds, ∀h ∈ [0, T − t].

In principle, once chosen a “small” time increment h, the DPP allows to compute
the value function at the point (t, x) by splitting the trajectories at time t + h

and starting with the position of the trajectory yt,x at time t + h. As it will be
seen later on, it is possible to construct numerical schemes based on this idea to
compute an approximation of the value function.

Under the assumption of differentiability for the function V , we can derive
from the DPP its infinitesimal version, the Hamilton–Jacobi–Bellman equation

− Vt (t, x) + H(t, x,DV(t, x)) = 0 for (t, x) ∈ (0, T ) ×R
d, (27a)

V(T , x) = ϕ(x) for x ∈ R
d, (27b)

where the Hamiltonian is given by

H(t, x, q) = sup
u∈U

{− f (t, x,u) · q − �(t, x,u)
}
. (28)

In general, as mentioned before, neither V is differentiable, nor the nonlinear
equation (27) is expected to admit a classical solution. These problems are cir-
cumvented by the theory of viscosity solutions and the nonsmooth analysis, see
Clarke et al. (1998); Bardi and Capuzzo-Dolcetta (2008); Vinter (2000).
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4.1.2 Theory of viscosity solutions for Hamilton–Jacobi–Bellman
equations

First, we recall the definition of viscosity solution for HJB equations (see Cran-
dall and Lions, 1981, 1983; Barles, 1994; Bardi and Capuzzo-Dolcetta, 2008).

Definition 4.1 (Viscosity solution). Let V : [0, T ] ×R
d −→ R.

(i) We say that V is a viscosity supersolution if V is lower semicontinuous
(lsc) and for any φ ∈ C1((0, T ) × R

d) and (t0, x0) ∈ (0, T ) × R
d local

minimum point of V − φ, we have

−φt (t0, x0) + H(t0, x0,Dφ(t0, x0)) ≥ 0.

(ii) We say that V is a viscosity subsolution if V is upper semicontinuous (usc)
and for any φ ∈ C1((0, T )×R

d) and (t0, x0) ∈ (0, T )×R
d local maximum

point of V − φ, we have

−φt (t0, x0) + H(t0, x0,Dφ(t0, x0)) ≤ 0.

(iii) We say that V is a viscosity solution if it is both a viscosity supersolution
and a viscosity subsolution and the final condition is satisfied:

V (T , x) = ϕ(x) in R
d .

Remark 4.1. There are also some equivalent definitions which are more local
using the super- and subdifferentials, this meaning that the differentials of the
test functions can be replaced by some weak differentials of the viscosity solu-
tion. See Barles (1994); Bardi and Capuzzo-Dolcetta (2008) for the definition
using the Dini-differentials and Clarke et al. (1998) for the definition using the
proximal differentials.

Theorem 4.1. Suppose that (H0)–(H2) hold. Then the value function V is the
unique viscosity solution of (27) in the sense of Definition 4.1.

The first statement of this theorem is that V is a viscosity solution of (27).
The proof of this claim relies on the regularity of the value function (continu-
ity) and on the dynamic programming principle (Bardi and Capuzzo-Dolcetta,
2008). The theorem also claims that the value function is the unique solution of
(27). This is the consequence of the following equivalences that can be estab-
lished by nonsmooth analysis (see Clarke, 2013; Vinter, 2000, for the proof):{

V : [0, T ] ×R
d is usc,

V satisfies the suboptimality principle

⇐⇒ V is a viscosity subsolution of (27a),{
V : [0, T ] ×R

d is lsc,
V satisfies the superoptimality principle

⇐⇒ V is a viscosity supersolution of (27a).
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From the point of view of PDEs and viscosity theory, one can also obtain unique-
ness by using a general theorem on the comparison principle which can be stated
as follows.

Theorem 4.2. Let V1 be a subsolution of (27) and V2 be a supersolution of (27)
with V1(T , x) ≤ ϕ(x) ≤ V2(T , x) for x ∈ R

d . Then for any t ∈ [0, T ], x ∈R
d ,

V1(t, x) ≤ V2(t, x).

The classical proof of the comparison principle is based on the variable dou-
bling technique. We refer to Crandall and Lions (1981, 1983); Barles (1994);
Bardi and Capuzzo-Dolcetta (2008) for more details.

4.2 Other unconstrained control problems and their HJB
formulation

In addition to the Bolza problem, which has been taken here as a model, various
other formulations have been considered for optimal control problems, in par-
ticular without a final time, or in which the final time is itself a parameter to be
optimally chosen. We briefly review some of these formulations, while a more
extensive discussion can be found, for example, in Bardi and Capuzzo-Dolcetta
(2008).

Minmax control problems

In this class of control problems, the cost is not defined in integral form. More
precisely, the control problem reads as

V#(t, x) := min
{
ϕ(x(T ))

∨
max

s∈[t,T ]�(s,x(s))

∣∣∣(x,u) ∈ X[t,T ](x)
}
.

Here, the cost function is the maximum between the final cost and a maximum
running cost along the trajectory. Relation between minmax control problems
and state constrained control problems have been noticed and exploited to de-
rive necessary conditions of optimal trajectories, see Vinter (2000, Chapter 9).
In Hamilton–Jacobi approach, minmax control problems have been also ana-
lyzed in Barron (1999). It has been shown that the value function is Lipschitz
continuous and can be characterized by the HJB variational inequality

min
(
∂tV#(t, x) + H #(t, x,DV#(t, x)),V#(t, x) − �(t, x)

)= 0

on [0, T ) ×R
d , (29a)

V#(T , x) = ϕ(x) ∨ �(T ,x) for x ∈ R
d . (29b)

In this inequality, the running cost function plays the role of an “obstacle”. The
value function satisfies V#(t, x) ≥ �(t, x). It is also a supersolution of the equa-
tion:

∂tv(t, x) + H #(t, x,Dxv(t, x)) = 0 on [0, T ) ×R
d . (30)
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However, V# is a subsolution of (30) only in open sets where V# < �.

Infinite horizon

Infinite horizon problems are intended to model optimal control strategies in the
long-time behavior. Assume that both the dynamics f and the running cost � do
not depend on time, so that

ẋ(s) = f (x(s),u(s)), (31)

with the initial condition x(0) = x. The discounted infinite horizon cost func-
tional is defined as

J (x,u) =
∫ ∞

0
�(x(s),u(s))e−λsds,

where, in addition to the basic assumptions, we require that λ > 0, and, for
simplicity, that � is uniformly bounded. According to the definition of the cost
functional, it is possible to define a value function, which will depend in this
case on x alone:

V∞(x) := inf

{
J (x,u)

∣∣∣∣(x,u) ∈X[0,∞)(x)

}
.

The value function can still be characterized as the viscosity solution of a (sta-
tionary) Hamilton–Jacobi–Bellman equation, which takes the form

λV∞(x) + H(x,DV∞(x)) = 0, (32)

in which x ∈ R
d , and the Hamiltonian function H is defined by (28). As for the

regularity of the value function, the basic assumptions imply uniform continuity
of the value function. Hölder regularity of V∞ holds under the assumptions of
boundedness for �, and global Lipschitz continuity for both � and f ; in addi-
tion, V∞ is itself globally Lipschitz continuous if λ is larger than the Lipschitz
constant of f (see Bardi and Capuzzo-Dolcetta, 2008).

Free final time

In free final time problems, also termed as optimal stopping time problems, the
endtime θ of the control interval is itself a free parameter to be chosen in an
optimal way. In the simplest case, the dynamics is set in the form (31) and the
cost functional in the form

J (x, (u, θ)) =
∫ θ

0
�(x(s),u(s))e−λsds + e−λθϕ(x(θ)).

Accordingly, the value function is defined as

Vf (x) := inf

{
J (x, (u, θ))

∣∣∣∣(x,u) ∈X[0,∞)(x), θ ≥ 0

}
.
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In this case, the HJB equation is stationary, but comes in the form of an obstacle
problem:

max
(
λVf (x) + H(x,DVf (x)),Vf (x) − ϕ(x)

)= 0.

The state space is then split in two (possibly overlapping) sets: in the first one
the first argument of the max vanishes, so that

λVf (x) + H(x,DVf (x)) = 0,

and the optimal control requires to keep the system evolving; in the second set
the second argument of the max vanishes, and therefore

Vf (x) = ϕ(x).

As soon as the state of the system enters this set, the optimal strategy requires to
stop the system, paying the stopping cost ϕ(x(θ)). Under the basic assumptions,
the value function is uniformly continuous (see Bardi and Capuzzo-Dolcetta,
2008).

Minimum time

For simplicity, we assume again in this paragraph that the dynamics does not
depend explicitly on time, that is f (s, x,u) = f (x,u). For minimum time func-
tion with time-dependent dynamics, we refer to Bokanowski et al. (2009) and
the references therein.

In minimum time problems, the goal is to drive the state of the system, in the
shortest time, to the final closed set C := {x ∈Rd, gf (x) ≤ 0} (called the target).
In general, the possibility of driving the state to the target in finite time may not
be ensured for each initial state; this leads to define the so-called backward
reachable set R as the set of initial states x which can be driven to the target in
finite time. The minimum time control problem is formulated as

T (x) := inf
{
t

∣∣∣gf (x(t)) (x,u) ∈X[0,∞)(x)
}
, (33)

with the convention that T (x) = +∞ when there is no trajectory that starts from
x and reaches the target in finite time. It is not difficult to show that the value
function satisfies a dynamic programming principle (DPP) in the form

T (x) = inf
{
T (x(h)) + h, (x,u) ∈X[0,∞)(x)

}
.

When the backward reachable set is open and the minimum time function is
continuous, then the DPP leads to a characterization of T by the HJB equation

sup
u∈U

{− f (x,u) · DT (x)
}= 1,
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complemented with the boundary condition

T (x) = 0 for x ∈ C and lim
x→z

T (x) = +∞ for z ∈ ∂R.

The drawback of this formulation is that the reachable set should be known in
advance. An alternative formulation makes use of the so-called Kružkov trans-
formation

V(x) =
{

1 if T (x) = +∞
1 − e−T (x) else,

which solves (yet when the time function T is continuous) an auxiliary infinite
horizon problem of the form (32), with λ = 1, � ≡ 1, and the boundary condition

V(x) = 0 for x ∈ C.

In this case, the reachable set is obtained as a byproduct of the computation of
the value function V , as

R= {x ∈R
d | V(x) < 1

}
.

Continuity of the function T is closely related to controllability properties sat-
isfied by the system in a neighborhood of C and more precisely, to the so-called
Small-Time Local Controllability, see Bardi and Capuzzo-Dolcetta (2008, Chap-
ter IV). When the target is smooth enough (for instance, assume here that
gf : Rd → R is C2) with a compact boundary, a necessary condition for the
continuity of the minimum time function is given by the condition

min
u∈U

f (x,u) · ∇gf (x) ≤ 0. (34)

This condition is restrictive and excludes a large class of systems with drift. An
equivalent condition to the Lipschitz continuity of the minimal time function is
the Petrov condition

min
u∈U

f (x,u) · ∇gf (x) < 0, (35)

which is even more restrictive than (34). From a geometrical point of view,
Petrov condition states that at every point of a neighborhood of the target there
exists an admissible control such that the corresponding trajectory points to-
wards the target.

In general, when gf satisfies assumption (H3), the set C is closed and the
controllability conditions (34)–(35) might not be satisfied. A practical approach
to compute the minimum time function and the corresponding optimal trajecto-
ries is based on the level set method, introduced by Osher and Sethian (1988).
Consider the final cost function as

�(x) := max
(
g1,f (x), · · · , gmf ,f (x)

)
for x ∈ R

d,
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where (g1,f , · · · , gmf ,f ) are the components of the function gf . The level set
approach consists of considering the value function V associated to the Mayer
problem with final cost �, defined by

V (t, x) := min{�(x(t)), (x,u) ∈X[0,t](x)}. (36)

The value function V can be characterized by an HJB equation as in The-
orem 4.1. This function is Lipschitz continuous, while the minimum time
function may be discontinuous. Besides, one can notice immediately that if
V (t, x) ≤ 0, then there exists an admissible pair (x,u) ∈ X[0,t](x) such that
�(xu

x (t)), which means that (x,u) satisfies the final constraint. More precisely,
the set of positions from where it is possible to reach the target at time t is given
by

R(t) := {x ∈ R
d | ∃(x,u) ∈ X[0,t](x), gf (x(t)) ≤ 0} = {x ∈ R

d | V (t, x) ≤ 0}.

Therefore, the value function V gives valuable information on the minimum
time function and the corresponding trajectories, without any controllability as-
sumption.

Theorem 4.3. Suppose that (H0)–(H3) hold. Let V be the value function asso-
ciated to problem (36). Then, for every x ∈ R

d ,

T (x) := min{t | V (t, x) ≤ 0}. (37)

Furthermore, for x ∈ R
d , any optimal trajectory for the minimal time problem

(33) is also an optimal trajectory of the control problem (36) where t is fixed to
the minimum time given by (37).

The level set approach provides an effective way to compute the minimum
time to reach a target without assuming any specific regularity. Moreover, it
has been shown that the level set method can be generalized to minimum time
problems with state constraints (for instance, the case when the trajectory should
avoid some obstacles, see Example 1). In this case, the minimum time function
is defined as

T (x) := inf
{
t

∣∣∣ ∃(x,u) ∈X[0,∞)(x) with gf (x(t)) ≤ 0,

and g(x(s)) ≤ 0 on [0, t]
}
.

To use the level set approach in this context, the definition of the value function
should be adapted and defined as

V (t, x) := min

{
�(x(t))

∨
max

s∈[0,t]�(x(s)) | (x,u) ∈X[0,t](x)

}
,
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with �(x):=max(g1(x), . . . , gmg (x)) and �(x):=max(gf,1(x), . . . , gf,mf
(x))

for every x ∈ R
d . Here, the value function V is again Lipschitz continuous,

while the minimum time function may be discontinuous. Besides, if V (t, x) ≤ 0,
then there exists an admissible pair (x,u) ∈ X[0,t](x) such that �(x(t)) ≤ 0 and
maxs∈[0,t] �(x(s)) ≤ 0, which means that (x,u) satisfies the final and pointwise
state constraints. With this new definition of the value function V , the state-
ment of Theorem 4.3 remains valid in the case with obstacles. In particular, the
minimum time value and the corresponding optimal trajectories can be obtained
from the value function V without assuming any controllability hypothesis. Fi-
nally, notice that the value function V corresponds to a minmax problem, and
its characterization is given by the HJB inequality (29).

4.3 Constrained Bolza problems

In this section, we consider a control problem with state constraints. We de-
note by K the set of constraints K := {x ∈ R

d, g(x) ≤ 0}, and define the set of
admissible trajectories by

X
g
[t,T ](x) := {(x,u) ∈X[t,T ](x) | g(x(s)) ≤ 0 for s ∈ [t, T ]}.

We adopt the convention V(t, x) = +∞, when the set of admissible trajectories
is empty, i.e., Xg

[t,T ](x) = ∅. Similarly to the unconstrained case, the value func-
tion V satisfies a dynamic programming principle that can be stated as follows.

i) For all x ∈K,

V(T , x) = ϕ(x).

ii) Dynamic programming principle: for all x ∈ K, τ ∈ [0, T ] and h ∈ [0, T −
τ ], we have:

V(t, x) = inf
(x,u)∈Xg

[t,T ](x)

V(t + h,x(t + h)) +
∫ t+h

t

�(s,x(s),u(s)) ds. (38)

4.3.1 Inward pointing condition
To analyze the properties of the value function V , it is important first to under-
stand the structure of the set the admissible trajectories. This structure depends
on an interplay between the dynamics of the state equation and the set of con-
straints K. Assume in this section that g : Rd → R is C1,1 function, and its
zero-level set is suitably smooth. Consider the following controllability assump-
tion:

(HK1) Inward pointing qualification (IPQ) condition: For every R > 0, there
exists β > 0 and ρ > 0 such that for every t ∈ [0, T ],

min
u∈U

f (t, y,u) · ∇g(y) < −β, ∀y ∈ ∂K ∩B(0,R). (39)
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The IPQ condition states that the set of constraints K has a smooth structure
and that on each point of the boundary K it is possible to find an admissible
control that allows the trajectory to stay in the set K. So, the IPQ condition
implies that the set K is weakly invariant. Moreover, the IPQ condition guar-
antees even a nicer property, called (NFT) Neighboring feasible trajectories
principle, whose proof can be found in Bettiol et al. (2010, Theorem 2.1).

Lemma 4.1. Assume (HK1). Let (t0, x0) ∈ [0, T ] × K and let (y,v) ∈
X[t0,T (x0). There exists a constant C and a feasible pair (x,u) ∈ X[t0,T ](x0)

such that

x(t) ∈ K, ∀ t ∈ [t0, T ], ‖y − x‖W 1,1([t0,T ];Rd ) ≤ Cg+(y(·)),
where g+(y(·)) = max

t∈[t0,T ]{max(g(y(t)),0)}.
The NFT property states the existence of an admissible control-trajectory

pair satisfying the state constraints, close to an admissible pair that violates the
state constraints. This property is the key point to ensure continuity of the value
function and to provide a characterization of the value function in terms of vis-
cosity solutions of the relevant HJB equation on K (see Soner, 1986).

Theorem 4.4. Assume (HK1). Then, the value function V(·, ·) is uniformly
continuous and bounded on [0, T ] × K. Moreover, it is the unique constrained
viscosity solution of the following HJB equation:

− ∂tV(t, x) + H(t, x,DxV(t, x)) ≥ 0 on [0, T [×K, (40a)

− ∂tV(t, x) + H(t, x,DxV(t, x)) ≤ 0 on [0, T [× ◦
K, (40b)

V(T , x) = ϕ(x), (40c)

with V(t, x) = +∞ for every x ∈R
d \K.

It should be noticed that the HJB equation in the above theorem provides
only partial information on the boundary of K. Moreover, the function V takes
infinite values outside K (i.e., V(t, x) = +∞ for every x /∈ K). These two facts
make the approximation of V on K very challenging and require some penaliza-
tion techniques.

Finally, let us mention that the IPQ condition (HK1) can be weakened a
bit and generalized to the case with several constraints as in Frankowska and
Mazzola (2013). In Colombo et al. (2021), a “higher order” inward pointing
condition involving Lie brackets of the dynamics’ vector fields is also analyzed.

4.3.2 Case of state constraints without controllability
assumptions

As we mentioned in the previous section, the Lipschitz regularity of the value
function requires an interplay between the dynamics f and the set of con-
straints K. When the controllability condition (HK1) is not satisfied, the value
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function may be discontinuous and its characterization by a HJB equation be-
comes very delicate. In this section, we introduce an alternative formulation of
state-constrained control problems, in case the controllability assumption is not
satisfied.

We set G(y) := max(g1(y), · · · , gmg (y)) and Gf (y) := max(gf,1(y), · · · ,

gf,mf
(y)) for every y ∈ R

d . We introduce an auxiliary control problem and its
associated value function W defined by

W(t, x, z) := inf
y=(x,ζ )∈S[t,T ](x,z)

(
ϕ(x(T )) − ζ(T )

) ∨
max

θ∈(t,T )
G(x(θ))

∨
Gf (x(T )) (41)

for x ∈ R
d , z ∈ R, t ∈ [0, T ], a ∨ b := max(a, b), and where the set of trajecto-

ries S[t,T ](x, z) is defined in Remark 1.2. In this auxiliary control problem, the
term maxθ∈[t,T ] g

(
x(θ)

)
is an exact penalization of the state constraints. Here,

we shall use the problem (41) to characterize the epigraph of the value function
ϑ without requiring any additional controllability assumption.

Theorem 4.5. Assume that (H0)–(H4) are satisfied. Then, for any t ∈ [0, T ] and
(x, z) ∈ R

d ×R,

(i)

V(t, x) − z ≤ 0 ⇐⇒ W(t, x, z) ≤ 0.

(ii) In addition, the function V is characterized by W through the relation

V(t, x) = min

{
z ∈R, W(t, x, z) ≤ 0

}
. (42)

Proof. (i) Let us assume that V(t, x) ≤ z. So there exists a sequence (xn,un)n∈N
of admissible pairs in X[t,T ](x), such that

lim
n→+∞

∫ T

t

�(s,xn(s),un(s)) ds + ϕ(xn(T )) − z = V(t, x) − z ≤ 0.

By admissibility, we have for each n ≥ 0, maxθ∈[t,T ] G(xn(θ)) ≤ 0 and
Gf (xn(T )) ≤ 0. Hence,

W(t, x, z) ≤ lim inf
n→∞

[(∫ T

t

�(s,xn(s),un(s)) ds + ϕ(yn(T )) − z

)

∨
max

θ∈[t,T ]G(xn(θ))
∨

Gf (xn(T ))

]

≤ 0.
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Conversely, let us assume that W(t, x, z) ≤ 0. We know that S[t,T ](ξ) is a com-
pact set in C0([t, T ]), therefore the infimum in W(t, x, z) is achieved by some
trajectory x ∈ S[t, T ]((x, z)) (with an associated control u ∈ U). Moreover,

0 ≥ W(t, x, z) =
(∫ T

t

�(s,x(s),u(s)) ds + ϕ(x(T )) − z

)
∨

max
θ∈[t,T ]G(y(θ))

∨
Gf (x(T )).

On the one hand, maxθ∈[t,T ] G(x(θ))
∨

Gf (x(T )) ≤ 0 and x satisfies the state
constraints, and on the other hand,

V(t, x) − z ≤
∫ T

t

�(s,x(s),u(s)) ds + ϕ(x(T )) − z ≤ 0

which is the desired result. Finally, statement (ii) is an immediate consequence
of (i).

Remark 4.2. Should the convexity assumption (H4) not be satisfied, the state-
ments of the above theorem may not hold. Indeed, in general we have

inf{z ∈ R,W(t, x, z) ≤ 0} ≤ V(t, x) ≤ inf{z ∈ R,W(t, x, z) < 0}.

The auxiliary control problem suggests a reformulation of the state-
constrained optimal control problem in an augmented state space. In this new
formulation, the constraints are integrated into the functional to be minimized.
The value function W is Lipschitz continuous and it can be characterized by an
HJB equation without any additional controllability assumption.

Theorem 4.6. Assume that (H0)–(H3) are satisfied. Then, the auxiliary value
function is Lipschitz continuous and it is the unique viscosity solution of the HJB
equation

min
(

− ∂tW(t, x, z) + H(t, x,DxW(t, x, z),DzW(t, x, z)),

W(t, x, z) − G(x)
)

= 0, on [0, T [×R
d ×R,

W(T , x, z) =
(

ϕ(x) − z

)∨
G(x)

∨
Gf (x), on R

d ×R,

where the Hamiltonian H is defined by

H(t, x,p, q) = max
u∈U

(− f (t, x,u) · p − �(t, x,u)q
)

for every (t, x,p, q) ∈ [0, T ] ×R
d ×R

d ×R.
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We point out that any optimal trajectory for the original problem is also a
solution of the auxiliary problem when z = z̄ := V(t, x). Conversely, any solu-
tion of the auxiliary problem with z = z̄ is an optimal solution of the original
state-constrained problem. As a consequence, the auxiliary problem provides
the value of the original state-constrained control problem and also allows to
reconstruct the optimal trajectories (see Altarovici et al., 2013; Assellaou et al.,
2018).

4.4 Relationship between HJB and PMP

To explain the relationship between HJB and PMP, we first recall a classical re-
sult (see for example Fleming and Rishel, 2012), valid under the very restrictive
assumption that V ∈ C2.

Theorem 4.7. Consider the optimal control problem (3) with g = 0 and gf = 0
(no state constraint), under the assumptions (H0)–(H1a)–(H1b). Assume more-
over that f and � are continuously differentiable with respect to the space vari-
able, that V ∈ C2([0, T ] × R

d), and that there exists an optimal pair (x∗,u∗).
Then, the vector p(t) defined by

p(t) := −DV(t,x∗(t)) (43)

satisfies the Pontryagin maximum principle.

While this relatively simple result works under unrealistically strong as-
sumptions, more recent theory (Vinter, 1988) justifies the PMP–HJB relation-
ship (in a suitably weakened form) under general assumptions. In the case of
Mayer problems with a locally Lipschitz continuous cost, the sensitivity re-
lations have also been studied in Clarke and Vinter (1987); Vinter (1988). In
these results, the value function is only required to be Lipschitz continuous in
a neighborhood of the optimal trajectory. The final cost is not differentiable
and therefore, the costate function is not necessarily unique. In this context the
sensitivity relations assert that there exists p verifying the PMP, the terminal
conditions

− p(0) ∈ ∂xV(0,x∗(0)), −p(T ) ∈ ∂xV(T ,x∗(T )), (44a)

and both a partial sensitivity relation

− p(t) ∈ ∂xV(t,x∗(t)), a.e. on (0, T ), (44b)

and a global sensitivity relation

(H(t,x∗(t),p(t)),−p(t)) ∈ ∂V(t,x∗(t)), for all t ∈ [0, T ]. (44c)

These relations extend (43) by using the generalized gradient of the value func-
tion (which is well defined for locally Lipschitz continuous functions). The set
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of conditions (44) is in essence a strengthened necessary condition, asserting
that it is possible to choose a costate trajectory to satisfy the sensitivity rela-
tions.

The relation (44a) can be simply derived by noting that the optimal solution
(x∗,u∗) is also solution of the free initial state problem

min
{
ϕ(x(T )) +

∫ T

0
�(t,x(t),u(t)) dt − V(0,x(0))

∣∣∣ ẋ(s) = f (s,x(s),u(s))

on (0, T )
}
.

Applying necessary optimality conditions to this problem yields a costate arc
p0. Relation (44a) turns out to be nothing else than the transversality conditions
at the endpoints. With the same reasoning, we can notice that (x∗,u∗) is also
solution of the free initial state problem on [t, T ] for every 0 ≤ t ≤ T

min
{
ϕ(x(T )) +

∫ T

0
�(t,x(t),u(t)) dt − V(t,x(t))

∣∣∣ ẋ(s) = f (s,x(s),u(s))

on (0, T )
}
.

Here again, the optimality condition applied to the free initial point asserts
the existence of an adjoint arc pt (which depends on the initial time t). The
left-endpoint transversality condition yields the relation pt (t) ∈ ∂V(t,x∗(t)).
When the final cost function is C1-regular, the costate p0 restricted to [t, T ] is
the unique solution to the costate equation on this interval satisfying the right
transversality condition. It follows that p0(t) coincides with pt (t); the proof
of (44b) is then completed. This analysis breaks down when the final cost ϕ is
nonsmooth. Indeed, in that case, costate trajectory may not be unique. An ex-
ample is given in Clarke and Vinter (1987, Section 4) showing that, in some
cases, there are a number of possible choices of costate trajectories associated
with the same optimal control problem, but not all of them satisfy the sensitivity
relations.

The original proof of the sensitivity relations (44) is given in Clarke and
Vinter (1987); Vinter (1988, 2000). In the case when the control problem is in
presence of state constraints, the sensitivity relations can be expressed in term
of relations between the adjoint vector (p,p0) and the value function W of
the auxiliary control problem, defined in Section 4.3.2, see Bokanowski et al.
(2021); Hermosilla and Zidani (2023).

4.5 Numerical methods for HJB

In order to present the general theory for the approximation of viscosity solu-
tions of HJB equations, we refer to an abstract forward problem
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{
vt + H(t, x,Dv) = 0 (t, x) ∈ (0, T ] ×R

d ,

v(0, x) = v0(x) x ∈ R
d,

(45)

(for some continuous Hamiltonian H ) and set ourselves in the usual finite differ-
ence scheme framework. Time is discretized with a (fixed) time step �t , so that
tk = k�t ; space is discretized with a fixed space step �x = (�x1, · · · ,�xd).
A generic node will be denoted by xj = j�x, for j ∈ Z

d . We also define
� = (�x,�t). More general options can be considered, in particular variable
time steps and unstructured space grids, but we will restrict here to the basic
ideas. In the following, we denote by V n

i the desired approximation of v(tn, xi),
and by V n the set of nodal values for the numerical solution v(tn, ·) at time tn.
A scheme may be written in compact form as

V n+1 = S(�;V n), (46)

where S may be defined in terms of its components Sj , for j ∈ Z
d .

4.5.1 Monotone schemes
The first and basic convergence theory aimed at approximating HJ equations
of the form (45) uses the concept of monotone scheme. Among the various
results, we quote here the Barles–Souganidis theory (Barles and Souganidis,
1991), which applies to the widest class of schemes and models, including the
possibility of treating second-order, degenerate and singular equations. Roughly
speaking, this theory states that any monotone, stable and consistent scheme
converges to the exact viscosity solution, provided there exists a comparison
principle for the limiting equation. Consider a scheme in the general form (46).
We recall the concepts of consistency, monotonicity and stability.

Consistency

Let �m = (�xm,�tm) be a generic sequence of discretization parameters,
(tjm, xjm) be a generic sequence of nodes in the space–time grid such that, for
m → ∞,

(�xm,�tm) → 0 and (tnm, xjm) → (t, x). (47)

The scheme S is said to be consistent if for any φ ∈ C∞((0, T ] ×R
d), we have

lim
m→∞

φ(tnm, xjm) − Sjm(�m;φ(tnm−1, ·))
�tm

= φt (t, x) + H(t, x,Dφ(t, x)),

(48)

Monotonicity

The scheme S is said to be monotone if, for any couple of vectors V and W such
that Vj ≥ Wj :

Sj (�;V ) ≥ Sj (�;W), (49)
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for any �x, �t satisfying suitable compatibility conditions, that are typically in
the form of the so-called Courant–Friedrich–Levy (CFL) conditions.

It is also possible to give a generalized form of definition of monotonicity,
to treat some case of high-order scheme. We refer the reader to the discussion
carried out in Bokanowski et al. (2015).

Given a numerical solution V n, we define its piecewise constant (in time)
interpolation V � as

V �(t, x) =
{

I [V n](x) if t ∈ [tn, tn+1) ,

v0(x) if t ∈ [0,�t),
(50)

where I [V n](x) denotes an interpolation of the node values in V n, computed at
x. We remark that the interpolation operator has to satisfy itself a monotonicity
property to obtain a monotone scheme (this holds, for example, for a piecewise
linear reconstruction).

We can now state (in a slightly rephrased form) the convergence result given
in Barles and Souganidis (1991):

Theorem 4.8. Assume that (45) satisfies a comparison principle, and let v(t, x)

be the unique viscosity solution of (45). Assume that (48) and (49) hold. Assume
in addition that the family v�t is uniformly bounded in L∞. Then, V �(t, x) →
v(t, x) locally uniformly on R

d × [0, T ] as � → 0.

This result directly applies to the most classical cases of monotone schemes,
as in the examples below.

Finite difference schemes

Given a numerical Hamiltonian H : [0, T ] ×R
d ×R

d ×R
d → R, we define an

explicit scheme (see Crandall and Lions, 1984) as follows:

V n+1
i = V n

i − �t H(tn, xi, D−V n
i , D+V n

i ), (51a)

V 0
i = v0(xi). (51b)

Here, i ∈ Z
d , and the terms D−V n

i and D+V n
i represent respectively left and

right finite difference approximations of the gradient at xi , defined as D±V n
i =

(D±
k V n

i )1≤k≤d with

D±
k V n

i := ±V n
i±ek

− V n
i

�xk

,

and where {ek}k=1,...,d is the canonical basis of Rd ((ek)k = 1 and (ek)j = 0 if
j �= k).

For schemes of this form, and assuming that the numerical Hamiltonian H
is Lipschitz continuous with respect to all its arguments, consistency with H
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comes down to the condition

H(t, x,p,p) = H(t, x,p)

and monotonicity is checked in the form

∂H
∂p−

k

(t, x,p−,p+) ≥ 0,
∂H
∂p+

k

(t, x,p−,p+) ≤ 0.

These latter conditions typically require a CFL-type compatibility condition be-
tween �t and �xi .

Two classical choices for the numerical Hamiltonian are in Upwind and
Lax–Friedrichs form:

• If the Hamiltonian H is defined by (28), then an upwind numerical Hamilto-
nian may be constructed in the form

HUp(t, x,p−,p+) = max
u∈U

[
d∑

i=1

(
max(−fi(t, x,u),0)p−

i

+ min(−fi(t, x,u),0)p+
i

)− �(t, x,u)

]
. (52)

This form fulfills consistency and monotonicity conditions for �t satisfying
the CFL condition

�t

⎛
⎝ ∑

1≤i≤d

maxt,x,u |fi(t, x,u)|
�xi

⎞
⎠≤ 1. (53)

• The Lax-Friedrichs scheme can be defined for a generic Hamiltonian H as

HLF
(
t, x,p−,p+) := H

(
t, x,

p− + p+

2

)
−

d∑
i=1

Ci

p+
i − p−

i

2
. (54)

The numerical Hamiltonian HLF satisfies the monotonicity condition pro-
vided the constants Ci are chosen such that Ci ≥ maxu∈U |fi(t, x,u)| and
(�t,�x) satisfies (53).

Semi-Lagrangian schemes

The Semi-Lagrangian (SL) scheme is written here directly in the form suit-
able for the backward dynamic programming equation (27)–(28). In fact, the
SL scheme can be derived by discretizing the Dynamic Programming Principle
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on a single time step:⎧⎨
⎩

vn−1
j = min

α∈U

{
�t�(t, x,α) + I1[V n](xj + �tf (t, x,α)

}
vN
j = ϕ(xj ),

(55)

in which I1[V ](x) denotes the P1 (piecewise linear or multilinear) interpolate
of the vector V of node values, computed at the point x. The SL scheme is con-
sistent, and the choice of a linear interpolation as I1 implies also monotonicity
of the scheme.

4.5.2 High-order schemes
While the framework of monotone schemes remains the most classical, in the
last decades high-order numerical schemes for HJB equations have been devel-
oped and analyzed. Their convergence analysis relies typically on two theoreti-
cal tools:

• ε-monotonicity
The Barles–Souganidis theorem allows for an o(�t) monotonicity defect,
making it possible to prove convergence for quasimonotone schemes. This
theory has been applied to high-order SL schemes and to filtered schemes, as
in Augoula and Abgrall (2000); Falcone and Ferretti (2013); Bokanowski et
al. (2015).

• Lin–Tadmor theory
Lin–Tadmor convergence theory is inspired by the Lip’-stability theory for
conservation laws. Here, a different concept of stability is singled out, i.e.,
uniform semiconcavity of numerical solutions, along with a suitable defini-
tion of consistency. The convergence result, together with a practical appli-
cation of this theory is presented in Lin and Tadmor (2001).

Higher-order FD schemes

The basic strategy for constructing high-order finite difference methods has been
first proposed in Osher and Shu (1991) and uses a TVD Runge–Kutta method for
the time discretization combined with high order approximations of the right/left
derivatives D±

j [V ] at the node xj (for example the ENO approximation, see Os-
her and Shu (1991)).

Higher-order SL schemes

The SL scheme (55) is easily extended to a higher consistency rate by re-
placing the P1 space interpolation I1 with an interpolation of higher accuracy
(Falcone and Ferretti, 2002; Carlini et al., 2005). In general, since characteris-
tics are not straight lines, a more accurate method of characteristics tracking is
also desirable (Falcone and Ferretti, 1994). In some model cases convergence
of high-order SL schemes, for both the evolutive and the stationary case, can
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be proved by showing their quasimonotonicity (see Ferretti, 2002; Falcone and
Ferretti, 2013; Bokanowski et al., 2015).

Filtered schemes

The general idea of filtered schemes (which had previously appeared in the
context of conservation laws as flux-limiter schemes) is to provide a clever cou-
pling between a monotone and a high-order scheme. Starting from a monotone
scheme SM , a high-order scheme SHO and a bounded filter function F :R → R,
the filtered scheme SF is defined as

vn+1
j = SF

j (V n) := SM
j (V n) + ε�tF

(
SHO

j (V n) − SM
j (V n)

ε�t

)
, (56)

where ε = ε(�) > 0 is a parameter vanishing for �t,�x → 0, which controls
the monotonicity defect of the filtered scheme (more hints on the choice of ε and
of the filter function can be found in Froese and Oberman (2013); Bokanowski et
al. (2016)). In constructing the filter function, the basic idea is that “large” values
of the ratio ρ = (SHO − SM)/(ε�t) indicate a singularity (where the scheme
needs to be monotone), while “small” values indicate a smooth region (in which
the scheme can be high-order). It can be shown that, for a suitable choice of ε,
the filtered scheme converges to the viscosity solution by quasimonotonicity.

Further comments

Several advances have been made to improve the numerical schemes of ap-
proximations of HJB equations, in particular in high dimension. Let us mention
the resolution techniques on sparse grids (Bokanowski et al., 2013; Garcke and
Kröner, 2017), on tree structures as in Alla et al. (2019), or approximation by
sophisticated model reduction techniques as in Alla and Falcone (2013). We
also mention another chapter by Ballarin et al. (2022) of the Volume 23 of this
Handbook, dedicated to model reduction methods. All these methods aim at
providing accurate numerical approaches for solving efficiently HJB equations
with reasonable numerical efforts (measured by complexity of algorithms, CPU
time and accuracy).

4.5.3 Optimal trajectory reconstruction from the value function
From a control viewpoint, the approximation of the value function V has a
relatively lesser interest with respect to the construction of the (approximate)
optimal control. We propose in this section some algorithms that lead, given
an approximation of the value function, to construct a quasioptimal controls in
feedback form. The procedure does not depend on the specific scheme used
to compute V . For simplicity, we consider the trajectory reconstruction on the
time interval [0, T ], although all the results remain valid for a reconstruc-
tion on any subinterval [t, T ]. For nh ∈ N and h = T/nh, consider a partition
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s0 = 0 < s1 < · · · < snh
= T of [0, T ], with sk = kh. Consider a numerical ap-

proximation fh of the dynamics f such that, for every R > 0, we have

|fh(t, x,u) − f (t, x,u)| ≤ CRh, ∀t ∈ [0, T ], |x| ≤ R,u ∈ U, (57)

where the constant CR is independent of h ∈ (0,1]. An approximation scheme
for the differential equation ẋ(t) = f (t,x(t),u(t)) (for a constant control u,
discrete times sk and time step h) can be written as

yk+1 = yk + hfh(sk, yk, u), k ≥ 0. (58)

Here and in the sequel we use the notation yk to denote a state at discrete times.
The case of the Euler forward scheme corresponds to the choice fh := f . Higher
order Runge-Kutta schemes can also be written as (58) and with a function fh

satisfying (57). For instance, the Heun scheme (with constant control) corre-
sponds to the choice

fh(t, y,u) := 1

2
(f (t, y,u) + f (t + h,y + hf (t, y,u),u)).

Bolza problems

Consider first, the case of Bolza unconstrained problems. Let V the exact value
function defined in (3). Let Vh be an approximation of V , and define Eh as a
uniform bound on the error:

|Vh(t, x) − V(t, x)| ≤ Eh, ∀t ∈ [0, T ], |x| ≤ R,

with R > 0 large enough. The approximate feedback is defined on the basis of
the approximate value function with a discrete dynamic programming proce-
dure.

Following some arguments introduced in Rowland and Vinter (1991), it can
be shown that any cluster point of (yh)h>0 is an optimal trajectory that realizes
a minimum in the definition of the original control problem.

Theorem 4.9. Assume (H0), (H1), (H2) and (H4). Assume also that the approx-
imation (57) is valid and the error estimate Eh = o(h). Let (y, z) be in R

d ×R

and let (yh
k ) be the sequence generated by Algorithm (TR).

(i) The approximate trajectories (yh
k )k=0,...,nh

constitute a minimizing se-
quence in the following sense:

V(0, x) = lim
h→0

(
ϕ(yh

nh
) + h

nh∑
k=0

�(sk, y
h
k , uh

k )

)
. (61)

(ii) Moreover, the family (yh)h>0 admits cluster points, for the L∞ norm, when
h → 0. Any such cluster point ȳ is an admissible trajectory and y is an
optimal trajectory for V(0, x).
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Algorithm (TR) Trajectory reconstruction algorithm for Bolza problems

Require: First we set yh
0 := x.

1: For k = 0, . . . , nh − 1, knowing the state yh
k we define

(i) an optimal control value uh
k ∈ U such that

uh
k ∈ argminu∈U

[
Vh
(
sk, y

h
k + hk fh(sk, y

h
k , u)

)+ h�(sk, y
h
k , u)

]
(59)

(ii) a new state position yh
k+1

yh
k+1 := yh

k + hkfh(sk, y
h
k , uh

k ). (60)

2: return a piecewise constant control uh(s) := uh
k on [sk, sk+1[, and a piece-

wise linear trajectory yh such that yh(sk) = yh
k .

Let us emphasize that the condition Eh = o(h) indicates that the approxi-
mation Vh should be provided with a given precision. Typically, a numerical
scheme would provide an approximation V � for � = (�t,�x). Under a CFL
condition, the error estimate is of order O(

√
�t). To ensure that ‖V � − V‖ =

o(h), it suffices to take
√

�t = o(h).

Minmax problems

The same idea as in Algorithm (TR) can be adapted for minmax control prob-
lems (see section 4.2). Let V#,h be an approximation of the value function V#.
Here, the function V#,h could be again a numerical approximation obtained by
solving a discretized form of the HJB equation (29).

Note that in (62) the value of uh
k can also be defined as a minimizer of u →

V#,h
(
sk, y

h
k +hk fh(sk, y

h
k , u), z

)
, since this will imply in turn to be a minimizer

of (62)

Theorem 4.10. Assume (H0), (H1), (H2) and (H4) hold true. Assume also that
the approximation (57) is valid and that V#,h is an approximation of V# with
error estimate ‖V# − V#,h‖ = o(h). Let (yh

k ) be the sequence generated by Al-
gorithm (TRM).

(i) The approximate trajectories (yh
k )k=0,...,nh

constitute a minimizing se-
quence in the following sense:

V#(0, y) = lim
h→0

(
max

0≤k≤nh

�(sk, y
h
k )

)∨
ϕ(yh

nh
).

(ii) Moreover, the family (yh)h>0 admits cluster points, for the L∞ norm, when
h → 0. For any such cluster point ȳ, we have ȳ ∈ S[0,T ](y) and ȳ is an
optimal trajectory for V#(0, x).
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Algorithm (TRM) Trajectory reconstruction for Minmax problems

Require: Set yh
0 = x.

1: Define the positions (yh
k )k=0,...,nh

, and control values (uh
k )k=0,...,nh−1, by

recursion as follows, or k = 0, . . . , nh − 1, knowing the state yh
k we define

(i) an optimal control value uh
k ∈ U such that

uh
k ∈ argminu∈UV#,h

(
sk, y

h
k + hk fh(sk, y

h
k , u), z

)∨
�(sk, y

h
k ) (62)

(ii) a new state position yh
k+1

yh
k+1 := yh

k + hkfh(sk, y
h
k , uh

k ).

2: return a piecewise constant control uh(s) := uh
k on [sk, sk+1[, and a piece-

wise linear trajectory yh such that yh(sk) = yh
k .

4.6 Numerical examples

Test 1 - unconstrained Zermelo problem

In this example, we consider the same setting as in Section 3.4. To compute the
minimal time function, we use the level-set approach described in Section 4.2.
We consider a domain of computation large enough to contain the initial po-
sition (0,0) and the final target yf = (20,1). More precisely, the computation
will be performed on D := [−1,21] × [−0.5,1.5]. We use the finite difference
scheme (51) combined with ENO approximation and the Lax-Friedrichs numer-
ical Hamiltonian (54). Fig. 7 shows the optimal solution computed on a uniform
grid with 500 × 100 nodes. The optimal time to steer the system from the initial
point (0,0) to the final state yf = (20,1) is 4.94916.

While the approximation of the optimal trajectory on Fig. 7(left) seems quite
accurate, the optimal control law in Fig. 7(right) presents some oscillations. This
happens because the control law is constructed in a “blind” way: in fact, in the
reconstruction algorithms, at each time step, the control value is computed to
follow a minimal path. It may happen that several values of the control lead to
the same position of the trajectory. The reconstruction process picks one of the
optimal control values and this arbitrary choice may generate oscillations. No-
tice also that Theorems 4.9 and 4.10 state the convergence of the reconstructed
optimal trajectories but not the optimal control laws (convergence of control
laws would require additional assumptions).

In this example, the minimum time function T is continuous on its domain,
as it can be seen on Fig. 8, where some level-sets of the T are presented.

Recall that for this version of Zermelo problem, the shooting method pro-
vides a globally optimal trajectory or a locally optimal trajectory depending on
the initialization of the adjoint state (see Section 4). By using the HJB approach,
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FIGURE 7 (Test 1) Approximation of the optimal trajectory for Zermelo problem with HJB ap-
proach.

FIGURE 8 (Test 1) Level sets of the minimum time function on the domain [−0.5,20] ×
[−0.5,1.1].

the reconstructed trajectory is an approximation of the global optimum, even
when performing the calculations on very coarse grids. Note also that an ap-
proximation of the derivative of the minimal time function at the initial position
(0,0) can be computed. In our simulation, we obtain

DxT �(0) = (−0.24585,−0.09163)T, and T (0) = 4.94916.

An initialization of the shooting method with this vector allows the method to
converge towards the global solution in very few iterations.
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FIGURE 9 (Test 2-1) Zermelo problem. The figure on the left-hand side shows some level-sets
of the minimum time {x | T (x) = c} for c between 0 and 5. The figure on the right displays some
trajectories (the black curves) starting from different initial positions. The simulations presented in
this figure are performed on a grid with Nx1 = Nx2 = 100.

Test 2 - unconstrained Zermelo problem - case with a strong current

Here, we consider a variant of the Zermelo problem where the dynamics is given
by

ẏ1(s) = v(s) cos(u(s)) + 2 − 1

2
y2

2(s), (63a)

ẏ2(s) = v(s) sin(u(s)), (63b)

where the control inputs are the speed v(s) and the angle of orientation u(s)

of the boat. The set of control values is U := [0,1] × [0,2π]. In this example,
the drift is strong in the middle of the channel R× [−2,2] and is zero along the
channel banks. The target is a ball centered at the origin and with radius r = 0.1.
The domain of computation is D := [−5,2] × [−2,2].
- Test 2-1: The numerical simulations are performed on a uniform grid with

Nx1 = Nx2 = 100 nodes on each axis. The numerical results of this test are
displayed in Fig. 9. The left-hand side of Fig. 9 shows level sets of the mini-
mum time function. Some trajectories starting from different initial positions
are given in the right-hand side of Fig. 9.

- Test 2-2 : Here, the numerical simulations are performed on a uniform grid
with Nx1 = Nx2 = 500 nodes on each axis. The numerical results of this test
are given in Fig. 10.

Numerical convergence can be observed when refining the size of the grid
(i.e., at the increase of Nx1 and Nx2 ).

Test 3 - constrained Zermelo problem

Consider again the same dynamics for Zermelo problem as in the previ-
ous paragraph. Now, the state is required to avoid the rectangular obstacle
[−2.5,−1.5] × [−0.5,0.5]. Fig. 11 shows the level sets of the minimum time
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FIGURE 10 (Test 2-1) Zermelo problem. The figure on the left-hand side shows some level-sets
of the minimum time {x | T (x) = c} for c between 0 and 5. The figure on the right displays some
trajectories starting from different initial positions. The simulations presented in this figure are per-
formed on a grid with Nx1 = Nx2 = 500.

FIGURE 11 (Test 3) Zermelo problem with an obstacle. The two figures display level sets of the
minimum time function {x | T (x) = c} for some values of c between 0 and 5, and some optimal
trajectories starting from different initial positions. The figure on the left-hand side displays the
numerical results obtained on a grid with Nx1 = Nx2 = 250. The results on a grid with Nx1 =
Nx2 = 500 are given in the right-hand side of the figure.

function and some samples of optimal trajectories. Fig. 11 (left) displays the
results obtained with 250 × 250 nodes on the domain of computation, while
Fig. 11 (right) corresponds to computation on grid of 500 × 500 nodes. Notice
that the optimal trajectories avoid the obstacle (in red) but they tend to get closer
to the central section of the channel, in which the current is stronger. Moreover,
gradient singularities upstream of the obstacles indicate points at which the op-
timal trajectory is not unique (e.g., it can go either left or right of the obstacle).

Test 4 - Goddard problem

Now, consider the Goddard problem as described in Sections 2.4 and 3.5.
The problem is with free final time and state constraints. Since the inward
pointing condition is not satisfied, we reformulate the problem as described in
Section 4.3.2. We compute the auxiliary value function (in dimension 4) on
D = [1.0,1.2]× [0,0.12]× [0,1]× [0,1]. We use a uniform grid with N4

x node
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FIGURE 12 (Test 4) Goddard problem solved by HJB approach, with Nx = 20.

points (i.e., Nx points on each axis). In the sequel, we will choose Nx = 20 and
Nx = 40 so that the computation of the value function and the optimal trajectory
is performed in less than 1 minute.

Fig. 12 corresponds to a simulation with Nx = 20, while Fig. 13 corresponds
to a simulation with Nx = 40. In both figures, we show the three state variables
in the top line, and the adjoint states in the middle line. In the third line, the
control variable is displayed on the left. We present also, in the middle of the
third line, an approximation of the derivative of the Hamiltonian with respect to
variable u.

In Figs. 12–13, we notice that the derivative of the Hamiltonian w.r.t. the
control variable u vanishes identically on a time interval whose entry and exit
times are indicated by red dots (middle of the third line). On this time interval,
the control law is singular. Moreover, we notice that the constraint on the ve-
locity x2 = v is saturated on another time interval (the entry and exit times are
indicated by red dots in the figure situated in the middle of the first line).

In this example, we observe again that the approximation of the control law
presents high oscillations (for the same reasons we mentioned in Test 2). We no-
tice that the oscillations persist even when Nx increases. These oscillations oc-
cur mainly during the time interval when the trajectory is singular-constrained.
Besides, we observe a numerical convergence of the trajectories when refining
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FIGURE 13 (Test 4) Goddard problem solved by HJB approach, with Nx = 40.

the size of the grid (i.e., increasing Nx). At the increase of the number of nodes,
CPU time and memory used also increase, but we notice that even a coarse grid
calculation, by HJB approach, provides interesting results that can at least serve
as an initialization for a more precise method like the shooting method. The
computation of the value function and the reconstruction of the optimal trajec-
tory give an approximation of

- the costate p(0) = (p1(0),p2(0),p3(0)) (by using the sensitivity relations in
Section 4.4);

- the entry point of the singular arc t1, the entry and exit points of the boundary
arc t2 and t3, and the free final time tf .

In Table 1, the second row presents the numerical results obtained by HJB
simulations on a grid of Nx = 20 points on each axis. The fourth row presents
the numerical results obtained by the shooting method (initialized with the val-
ues obtained by the HJB simulation). The convergence of the shooting method
requires 43 iterations. The adjoint vector being defined up to a multiplicative
constant, we give in the third row of Table 1 the results of HJB with a re-
normalization of the adjoint vector. This makes it easier to compare the results
of the HJB simulation and those of the shooting method.
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TABLE 1 Godard problem. The second row presents the results obtained by
HJB simulation on a grid with Nx = 20 points on each axis. The third row
presents the same results of row 2 with a re-normalization of the costate
vector. The fourth row presents the results obtained by the shooting method
(initialized by the HJB results given in row 2).

p1(0) p2(0) p3(0) t1 t2 t3 tf

HJB simulation 5.205e1 1.947e0 6.826e-1 2.912e-2 4.980e-2 8.735e-2 1.747e-1

HJB simulation with
a re-normalization
of p(0)

3.945e0 1.476e-1 5.174e-2 2.912e-2 4.980e-2 8.735e-2 1.747e-1

Shooting method 3.945e0 1.504e-1 5.371e-2 2.351e-2 5.974e-2 1.016e-1 2.020e-1

5 Optimistic planning algorithms

As mentioned previously, direct and indirect methods are quite simple to imple-
ment, and provide locally optimal solutions with high accuracy. These methods
depend on the initialization – especially the shooting method which is particu-
larly sensitive to the initialization and also requires an a priori knowledge of the
optimal trajectory structure (existence of bang and/or singular and/or saturated
arcs). On the other hand, the HJB approach always provides a global optimum,
but, if ever feasible, it requires a greater computational effort because of the high
dimension of the space in which the value function must be computed.

A further approach that we present here is a global approach based on a
discretization in the space of controls, combined with optimistic planning (OP)
algorithms (Buşoniu et al., 2016, 2018) (without requiring any discretization of
the state space). This approach is interesting especially for applications where
the control dimension r is lower compared to the state dimension d . On a given
discretization of the time interval, our approach will seek to identify the best
control strategy to apply on each time subinterval. The OP methods perform the
optimal control search by branch and bound on the control set, always refining
the region with the best lower bound of the optimal value (this is what justifies
the term “optimistic”). An interesting feature of these algorithms is the close re-
lationship between computational resources and quasioptimality, which exploits
some ideas of reinforcement learning (Munos, 2014). Indeed, for given com-
putational resources, the OP approaches provide a suboptimal strategy whose
performance is close to the optimal value (with the available resources).

First, for N ≥ 2, consider a uniform partition of [0, T ] with N +1 time steps:
tk = k�t , k = 0, . . . ,N , where �t = T

N
is the step size. For a sequence of ac-

tions u = (uk)0≤k≤N−1 ∈ UN , we consider (y
x,u
k )0≤k≤N the trajectory solution

of the discrete-time dynamical system

{
y0 = x,

yk+1 = Fk(yk, uk) k = 0, ...,N − 1,
(64)
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where Fk(x,u) is an approximation of the solution to the system ẋ(s) =
f (s,x(s), u) on (tk, tk+1), with the initial condition x(tk) = x. More precisely,
we assume that∥∥∥∥Fk(x,u) − x −

∫ tk+1

tk

f (s,x(s), u) ds

∥∥∥∥= O(�t) for all x ∈R
d , u ∈ U.

Consider also an instantaneous cost function Lk that approximates the integral
of � over an interval [tk, tk+1], for k = 0, ...,N − 1:∥∥∥∥Lk(x,u) −

∫ tk+1

tk

�(s,x(s), u) ds

∥∥∥∥= O(�t) for all x ∈R
d, u ∈ U.

In this section, we assume that (H0)–(H4) are satisfied and that f and � are
Lipschitz continuous with respect to the control variable. The approximations
Fk and Lk are also assumed to be Lipschitz continuous:

‖Fk(x,u) − Fk(x
′, u′)‖ ≤ LF,x‖x − x′‖ + LF,u‖u − u′‖,

|Lk(x,u) − Lk(x
′, u′)| ≤ LL,x‖x − x′‖ + LL,u‖u − u′‖,

for every x ∈ R
d and u ∈ U . Moreover, we assume that the Lipschitz constants

of Fk and Lk are related to the Lipschitz constants of f and � by the following
relations

LF,x := 1 + �tLf,xC LF,u := �tLf,uC and (65a)

LL,x := �t

2
L�,xC, LL,a := �t(L�,a + C), (65b)

where the constant C > 0 may depend on �t and the Lipschitz constants of f

and �.
Now, we define the state-constrained optimal control problem

V (x) := inf
u=(uk)k∈UN

{
N−1∑
k=0

Lk(y
x,u
k , uk) + ϕ(y

x,u
N ) |

g(y
x,u
k ) ≤ 0 ∀k = 0, ...,N, gf (y

x,u
N ) ≤ 0

}
. (66)

Then, for the discrete auxiliary control problem, we define the cost functional J

by

J (x, z,u) :=
(N−1∑

k=0

Lk(y
x,u
k , uk) + ϕ(y

x,u
N ) − z

)∨(
max

0≤k≤N
g(y

x,u
k )

)
∨

gf (y
x,u
N ) (67)
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(for (x, z,u = (uk)) ∈ Rd × R × UN ) and the corresponding auxiliary value is
defined, for (x, z) ∈R

d ×R, by

W(x, z) := inf
u=(uk)k∈UN

J (x, z,u). (68)

Notice that W(x, z) converges to W(0, x, z) as N → ∞ (i.e., �t = T
N

→ 0),
where the continuous value function W is defined in (41). Under Assump-
tions (H0)–(H4), the error estimate of |W(x, z) − W(0, x, z)| is bounded by
O( 1

N
), see Bokanowski et al. (2002, Appendix B). Furthermore, the sequence

of discrete-time optimal trajectories (for N ∈ N) provide convergent approxima-
tions of optimal trajectories of the continuous problem (68), see Assellaou et al.
(2018).

Remark 5.1. The discrete dynamics F and the discrete cost L can be defined
as approximations of the time-continuous function f and �. It is worth men-
tioning that the algorithms that will be presented in this section can also handle
situations where the dynamics F and L are obtained by some statistical models
which can be enriched during the computational process.

With similar arguments as in the proof of (42), we have

V (x) = inf{z | W(x, z) ≤ 0}. (69)

For the sake of simplicity and without loss of generality, we suppose that
the control is of dimension r = 1 and we denote by D its maximal diameter
(∀a, a′ ∈ A, ‖a − a′‖ ≤ D), although the approach can be generalized to control
variables in multiple dimensions.

Planning algorithms are based on the principles of optimistic optimization.
In order to minimize the objective function J over the space UN , we refine, in
an iterative way the search space into smaller subsets. A search space, called
node and denoted by Ui with i ∈N, is a Cartesian product of subintervals of U ,
i.e., Ui := Ui,0 × Ui,1 × · · · × Ui,N−1 ⊆ UN , where Ui,k represents the control
interval at time step k, for k = 0, . . . ,N − 1. The collection of nodes will be
organized into a tree ϒ that will be constructed progressively by expanding the
tree nodes. Expanding a node Ui , with i ∈ N, consists in choosing an interval
Ui,k , for k = 0, . . . ,N − 1, and splitting it uniformly to M subintervals where
M > 1 is a parameter of the algorithm. The order of expanded nodes and the
intervals that have to be split will be chosen in such a way to minimize the cost
J . For now, we introduce some useful notations related to the tree ϒ :
• We associate, for any node Ui ∈ ϒ , a sample sequence of controls ui :=

(ui,k)
N−1
k=0 ∈ Ui such that ui,k corresponds to the midpoint of the interval Ui,k

for any k = 0, . . . ,N − 1.
• Denote di,k , for k = 0, ...,N − 1, the diameter of the interval Ui,k of some

node Ui ∈ ϒ . In particular,

di,k = D

Msi(k)
,
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where si(k) indicates the number of splits needed to obtain the interval Ui,k

for k = 0, . . . ,N − 1.
• The depth pi of a node Ui is the total number of splits done to obtain this

node:

pi :=
N−1∑
k=0

si(k). (70)

We denote by Depth(ϒ) the maximal depth in the tree ϒ .
• A node Ui is a tree leaf if it has not been expanded. The set of tree leaves is

denoted by �.

• Finally, we denote by �p :=
{
Ui ∈ ϒ s.t. pi = p

}
the set of leaves of ϒ

of depth p ∈ N.
By selecting controls at the intervals centers and by taking M odd, we guar-

antee that after expanding a node Ui we generate at least one node Uj with
J (x, z,uj ) ≤ J (x, z,ui ). Indeed, the middle child Uj contains the control se-
quence of Ui .

Proposition 5.1. By the tree construction, there exists at least a leaf node Ui ∈
� containing an optimal control sequence and satisfying

J (x, z,ui ) − σi ≤ W(x, z) ≤ J (x, z,ui ), (71)

where ui is the sample control sequence in Ui and where

σi :=
(N−1∑

k=0

βkdi,k

)∨(N−1∑
k=0

γkdi,k

)
, (72)

with βk and γk positive constants only depending on the Lipschitz constants of
F , L, � and of �.

In the optimistic planning algorithms, at each iteration, one or several opti-
mistic nodes are chosen and split to get from each node M children (M > 1 is a
fixed parameter of the algorithm). To expand a node Ui , we choose an interval
from Ui,0 ×Ui,1 ×· · ·×Ui,N−1 and we partition it uniformly to M subintervals.
If we choose to split the interval Ui,k , for some k = 0, . . . ,N − 1, then M nodes
will be generated and then the new error term σ+

i (k) is

σ+
i (k) :=

( N−1∑
j=0,j �=k

βj di,j + βk

di,k

M

)∨( N−1∑
j=0,j �=k

γj di,j + γk

di,k

M

)
.

Henceforth, in order to minimize the error σ+
i (k), the best choice of the interval

to split, k∗
i , is given by:

k∗
i ∈ argmin

0≤k≤N−1
σ+

i (k). (73)
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The following result gives an upper bound on the error term σi , of any node
Ui ∈ ϒ .

Proposition 5.2. Assume that the number of split M > LF,x > 1. Consider a
node Ui at some depth pi = p. For p large enough, the error σi (defined in
(72)) is bounded as follows:

σi ≤ δp := c1(N)�t M− p
N , (74)

where c1(N) > 0 is bounded independently of N .

We refer to Bokanowski et al. (2002) for the proof of this result and for the
exact expression of the constant c1(N).

Now, we will present the rules for refining the search of an optimal control
strategy. In the first algorithm, at each iteration, the node Ui∗ minimizing the
lower bound (J (x, z,ui) − σi) will be selected and split to M children. More
precisely, we identify an interval Ui∗,k∗

i∗ whose partition in M subintervals will
produce the lowest error σi∗(k∗

i∗).

Algorithm (OP) Optimistic Planning
Require: The number of intervals N , the split factor M , the maximal number

of expanded nodes Imax
1: Initialize ϒ with a root U0 := UN and n = 0 (n := number of expanded

nodes).
2: while n < Imax do
3: Select an optimistic node to expand: Ui∗ ∈ argmin

Ui∈�

(J (x, z,ui ) − σi).

4: Select k∗
i∗ , defined in (73), the interval to split for the node Ui∗ .

5: Update ϒ by expanding Ui∗ along k∗
i∗ and adding its M children.

6: Update n = n + 1.
7: end while
8: return Control sequence ui∗ = (ui∗,k)k ∈ UN of the node Ui∗ ∈

argmin
Ui∈�

J(x, z,ui ).

Theorem 5.1. Assume that M > LF,x > 1. Let ui∗ and J (x, z,ui∗) be the out-
put of the OP algorithm, and let n ≥ 1 be the corresponding number of expanded
nodes. We have

0 ≤ J (x, z,ui∗) − W(x, z) −→ 0, when n → +∞. (75)

In Algorithm (OP), the number Imax represents a maximal available compu-
tational resource. The number of expanded nodes corresponds to the number of
iterations, since at each iteration only one node is expanded. Other optimistic
planning methods can be considered. For instance, the simultaneous optimistic
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planning (SOP) algorithm or simultaneous optimistic planning with multiple
steps (SOPMS) algorithm that expand at each iteration several nodes at every
iteration, see Bokanowski et al. (2002).

Test 5

To show the relevance of this approach, we consider a variant of Zermelo prob-
lem where a boat targets the set C := B(0;0.1), at time T = 1, with minimal fuel
consumption. The dynamics is similar to the one considered in (63). We consider
also two rectangular obstacles with horizontal and vertical half lengths (rx, ry).
The first obstacle is centered at (−2.0,0.5) with (rx, ry) = (0.4,0.4), and the
second obstacle is centered at (−2.5,−1) with (rx, ry) = (0.2,1). To take into
account the pointwise and final state constraints, we define the functions g and
gf by

g(x) :=
(

0.4 − ‖x − (−2,0.5)‖∞
)∨

min
(
0.2 − |x1 + 2.5|,1 − |x2 + 1|) and

gf (x) := ‖x‖∞ − 0.1.

For a given N , the discrete control problem becomes:

V (x) = inf
{ 1

N

N−1∑
k=0

u1,k with u = ((u1,k, u2,k))k ∈ UN,

g(y
x,u
k ) ≤ 0 for k = 0, · · · ,N, and gf (y

x,u
N ) ≤ 0

}
,

where (y
x,u
k )k is the discrete state variable, corresponding to the control policy

u ∈ UN , and starting at the initial position x, while the discrete auxiliary value
function is defined as

W(x, z) = inf
u∈UN

{( 1

N

N−1∑
k=0

u1,k − z
)∨(

max
0≤k≤N

g(y
x,u
k )

)∨
gf (y

x,u
N )

}
.

Fig. 14 displays optimal trajectories obtained from three different initial
positions. A simultaneous optimistic planning algorithm is used for this sim-
ulation with Imax = 3200 and N = 40. The optimal controls are displayed on
Fig. 15. In this example, we can see that the optimal trajectories, computed
by an OP approach, reach the target and avoid the obstacles. The main feature
of the OP approaches is the fact that they give an approximation of the global
solution. For a fixed value of N , the complexity of these (global) approaches
depends on the dimension of the control and not on the dimension of the space
variable. The complexity increases also when the discretization is refined (i.e.,
when N increases). As pointed out in the literature (Buşoniu et al., 2018, 2016;
Bokanowski et al., 2002), the accuracy of the numerical solutions, obtained by
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FIGURE 14 (Test 5) An optimistic planning approach with N = 40. Optimal trajectories corre-
sponding to three different initial data. The trajectory in black corresponds to the initial position
x0,1 = (−3,1.5), the trajectory in blue corresponds to x0,2 = (−3.5,0.5), and the trajectory in red
corresponds to x0,3 = (−4,−1).

FIGURE 15 (Test 5) An optimistic planning approach with N = 40. Control laws corresponding
to three different initial positions. The control law in black corresponds to the initial position x0,1 =
(−3,1.5), the control laws in blue correspond to x0,2 = (−3.5,0.5), and the control laws in red
correspond to x0,3 = (−4,−1).
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OP methods, depends on the available numerical resources Imax. The conver-
gence results derived in the literature give some hints on how to choose Imax to
obtain a given precision, but this question deserves further analysis.
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Buşoniu, L., Páll, E., Munos, R., 2016. Discounted near-optimal control of general continuous-
action nonlinear systems using optimistic planning. In: 2016 American Control Conference
(ACC). IEEE, pp. 203–208.
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