
Classification and feature selection
using a primal-dual method and projection

on structured constraints
Michel Barlaud
Fellow, IEEE
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Abstract—This paper concerns feature selection using super-
vised classification on high dimensional datasets. The classical
approach is to project data onto a low dimensional space and
classify by minimizing an appropriate quadratic cost. We first
introduced a matrix of centers in the definition of this cost. More-
over, as quadratic costs are not robust to outliers, we propose
instead to use an `1 cost (or Huber loss to mitigate overfitting
issues). While control on sparsity is commonly obtained by adding
an `1 constraint on the vectorized matrix of weights used for
projecting the data, we propose to enforce structured sparsity.
To this end we used constraints that take into account the matrix
structure of the data, based either on the nuclear norm, on the `2,1
norm, or on the `1,2 norm for which we provide a new projection
algorithm. We optimize simultaneously the projection matrix and
the matrix of centers with a new tailored constrained primal-
dual method. The primal-dual framework is general enough to
encompass the various robust losses and structured constraints
we use, and allows a convergence analysis. We demonstrate
the effectiveness of this approach on three biological datasets.
Our primal-dual method with robust losses, adaptive centers
and structured constraints does significantly better than classical
methods, both in terms of accuracy and computational time.

I. INTRODUCTION

We considered methods in which feature selection is embedded
into a classification process, see [1], [2]. Sparse learning based
methods have received a lot of attention in the last decade
because of their high level of performance. The basic idea
is to use a sparse regularizer that forces some coefficients
to be zero. To achieve feature selection, the Least Absolute
Shrinkage and Selection Operator (LASSO) formulation [3],
[4], [5], [6], [7] adds an `1 penalty term to the classification
cost, which can be interpreted as convexifying an `0 penalty
[8], [9]. An issue concerns the use of the Frobenius norm
(that is the `2 norm of the vectorized data) for the loss
term is not robust to outliers. We propose a more drastic
approach that uses an `1 norm on the regularization term and
a Huber loss function. The idea is then to combine a splitting
method [10] with a proximal approach. Proximal methods were
introduced in [11] and have been used intensively in signal
processing; see, e.g., [12], [13], [14], [15], [16], [17]. The first

step is the computation of the proximal operator for the loss
term that involves the matrix of projection weights and the
matrix of centers. We tackle this point by dualizing the norm
computation. When using an `1 (or Huber loss) penalization
to ensure sparsity, the computational time due to the treatment
of the corresponding hyper-parameter is expensive (see [4],
[18]). We propose alternatively a constrained approach that
takes advantage of an available efficient projection on the `1
ball [19], [20] and projection on convex sets [21]. Regarding
structured sparsity, the most common approaches are based
on penalizations; see, e.g., group LASSO [22], [23], [24], [25],
[26], [27], [6], [7], Exclusive LASSO [28], [29], [30], or `2,1
based penalties [31], [32], [33]. To the best of our knowledge,
the only constrained approach was proposed in [32] for Group
LASSO.

The paper is organized as follows. We first present our setting
that combines dimension reduction, classification and feature
selection. We provide in Section III a flexible primal-dual
scheme for this constrained formulation of the classification
problem. In Section IV, we lay the emphasis on structured
sparsity and replace the `1 hard constraint by constraints based
either on the nuclear norm, the `2,1 norm (Group LASSO), or
the `1,2 norm (Exclusive LASSO). In Section V, we finally
compare different methods experimentally. The tests involve
four different bases: a synthetic dataset, and three biological
datasets (two mass-spectrometric datasets and a single cell
one).

II. A ROBUST AUGMENTED VARIABLE MODELLING

Let X be the m × d data matrix made of m line samples
x1, . . . , xm that belong to the d-dimensional space of features.
Let Y ∈ {0, 1}m×k be the matrix of labels where k > 2 is the
number of clusters. Each line of Y has exactly one nonzero
element equal to one, yij = 1 indicating that the sample
xi belongs to the j-th cluster. Projecting the data in lower
dimension is crucial to be able to separate them accurately. Let
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W be the d×k projection matrix, where k � d.1 The classical
approach is to minimize the following squared Frobenius norm,
see [7]:

min
W
‖Y −XW‖2F . (1)

A more accurate criterion proposed in [18] based on the sum
of square difference (and used in k-means [34]) can be cast as
follows:

‖Y µ−XW‖2F =

k∑
j=1

∑
l∈Cj

‖(XW )(l, :)− µj‖22, (2)

where (XW )(l, :) denotes the l-th row of matrix (XW ), Cj ⊂
{1, . . . ,m} denotes the j-th class, and where the row vector
µj is the centroid of this class. The matrix of centers µ is so
a square matrix of order k. As the squared Frobenius loss is
smooth, Fista algorithm [35] can be used. It is well known that
the Frobenius norm is not robust to outliers, so we robustify
the approach by replacing the Frobenius norm by the `1 norm
of the loss term,

‖Y µ−XW‖1 =

k∑
j=1

∑
l∈Cj

‖(XW )(l, :)− µj‖1. (3)

While for µ = Ik one has a robustified version of the loss
(1), we will actually optimize jointly in (W,µ), adding some
ad hoc penalty to break homogeneity and avoid the trivial
solution (W,µ) = (0, 0). The advantage of optimising also the
centers is illustrated in Section V (see Figure 4). Using both
the projection W and the centers µ learnt during the training
set, a new query x in the test set (a dimension d row vector)
is classified according to the following rule: it belongs to class
number j∗ if and only if2

j∗ ∈ arg min
j∈{1,...,k}

‖µj − xW‖1. (4)

III. PRIMAL-DUAL SCHEME, CONSTRAINED FORMULATION

A. Minimization of the `1 loss

We advocate the use of a convex constrained formulation of
the supervised classification problem in order to reduce the
computational cost due to the estimation of the hyper-parameter
in penalty methods [32]. The number of selected features is
a linear function of the constraint η (see Figure 2), thus the
constraint η is easily tuned. Let us consider

min
(W,µ)

‖Y µ−XW‖1 +
ρ

2
‖Ik − µ‖2F s.t. ‖W‖1 6 η (5)

where Ik denotes the order k identity matrix. As previously
stated, an `2 regularization has been added in order to avoid the
trivial solution (W,µ) = (0, 0) while maintaining the matrix
of centers µ not too far away for a rank k matrix spanning all
directions in the low dimensional space used for projection.

1Note that the dimension of the projection space is equal to the number of
clusters.

2In practice, there is one and only one such class.

So as to cope with the computation of proximal operator wrt.
W , we dualize as:

min
(W,µ)

max
‖Z‖∞61

〈Z, Y µ−XW 〉+
ρ

2
‖Ik − µ‖2F s.t.‖W‖1 6 η.

(6)
A possible primal-dual algorithm [14], [17] is then as follows:

Wn+1 = arg min
‖W‖16η

1

2τ
‖W −Wn‖2F − 〈XTZn,W 〉,

µn+1 = arg min
µ

1

2τµ
‖µ− µn‖2F +

ρ

2
‖µ− I‖2F

+〈Y TZ, µ〉,
Zn+1 = proj{‖Z‖∞≤1}Z + σ(Y (2µn+1 − µn)

−X(2Wn+1 −Wn)).

These proximal steps are computed as follows:

Wn+1 = arg min
‖W‖16η

1

2τ
‖W − (Wn + τXTZn)‖2,

= proj`1(Wn + τXTZn, η)

where proj`1(·, η) is the projection on the `1 ball of radius η.
Similarly,

µn+1 =
1

1 + τµρ
(µn + ρτµI − τµY TZn),

and the iteration on Z is standard. The resulting scheme is
summarized by Algorithm 1. The convergence condition on

Algorithm 1 Primal-dual algorithm, `1 loss.
Input: X,Y,N, σ, τ, τµ, η, ρ, µ0,W0, Z0

for n = 1, . . . , N do
Wold := W ; µold := µ
W := proj`1(W + τ · (XTZ), η)
µ := 1

1+τµ·ρ (µold + ρ · τµIk − τµ · (Y TZ))

Z := Z + σ · (Y (2µ− µold)−X(2W −Wold)))
Z := max(−1,min(1, Z)))

end for
Output: W,µ

the step-sizes τ , τµ and σ (see [36]) imposes that:

σ

(
τµ

1 + τµ(ρ/4)
‖Y ‖2 + τ‖X‖2

)
< 1. (7)

The norms involved in the previous expression are operator
norms, that is, e.g.,

‖X‖ = sup
‖W‖F≤1

‖XW‖F = sup
‖v‖2≤1

‖X(:)v‖2. (8)

Since the problem is strongly convex with respect to variable
µ, then the descent step for the corresponding variable µ can
be increased with respect to the choice in [14], [17].
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B. A robust approach using Huber loss.

The drawback of the term ‖Y µ −XW‖1 is that it enforces
equality of the two matrices out of a sparse set, tuning the
parameters to obtain a perfect matching of the training data.
In order to soften this behaviour, we use the Huber function
instead of the `1 norm. Letting hδ(t) = t2/(2δ) for |t| ≤ δ,
and |t| − δ/2 for |t| ≥ δ, we replace the loss by

hδ(Y µ−XW ) :=

m∑
i=1

k∑
j=1

hδ((Y µ−XW )i,j), (9)

and consider the following updated problem:

min
(W,µ)

hδ(Y µ−XW ) +
ρ

2
‖Ik − µ‖2F s.t. ‖W‖1 6 η. (10)

This approach ensures that, up to a sparse set of outliers, the
components of Y µ at optimality will lie at distance ≈ δ of the
components of XW . We can tune the primal-dual method to
solve this problem, even with acceleration, cf [14], [17]. One
has h∗δ(s) = δs2/2 if |s| ≤ 1, +∞ else, hence we find the
following saddle-point problem:

min
µ, ‖W‖16η

max
‖Z‖∞61

〈Z, Y µ−XW 〉+
ρ

2
‖Ik − µ‖2F −

δ

2
‖Z‖2F .

(11)
Compared to Algorithm 1, only the iteration on Z has to be
updated using an appropriate re-weighting:

Z :=
1

1 + σ · δ
(Z + σ · (Y (2µ− µold)−X(2W −Wold))),

Z := max(−1,min(1, Z)).

IV. STRUCTURED SPARSITY

This section deals with the following structured constraint
sparsity methods: nuclear constraint, Group LASSO and
Exclusive LASSO methods. Our framework turns to be flexible
enough to encompass these methods.

A. Nuclear norm

In applications, it is often crucial not to forget the matrix struc-
ture of the projection matrix W . To preserve this information,
instead of the `1 norm of the vectorization of the matrix, one
can consider the nuclear norm ‖W‖∗, that is the sum of the
singular values of W . This norm is very popular for matrix
completion [37], e.g.. The projection on the nuclear ball can
be computed according to the lemma below, and one can reuse
the algorithms presented in the previous section after updating
the projection for the iteration on W (see Algorithm 1).

Lemma 1 If W = V TΣU is the SVD decomposition of the
matrix W , then the projection on the closed nuclear ball of
radius η is W ∗ = V TΣ∗U where Σ∗ is the diagonal matrix
whose entries are the projection of the diagonal of Σ (that is
of the singular values of W ) on the `1 ball of radius η.

B. Group LASSO

Group LASSO was first introduced in [22]. The main idea is
to enforce parameters of different classes to share common
features. Group sparsity reduces so complexity by eliminating
entire features. It consists in using the `2,1 norm for the
constraint on W , which is defined as follows. The rowwise
`2,1 norm of a d× k matrix W (whose rows are denoted wi,
i = 1, . . . , d) is

‖W‖2,1 :=

d∑
i=1

‖wi‖2. (12)

We use the standard following approach to compute the
projection W of a d× k matrix V (whose rows are denoted
vi, i = 1, . . . , d) on the `2,1 ball of radius η: compute the
vector t = (t1, . . . , td) which is the projection of the vector
(‖v1‖2, . . . , ‖vd‖2) on the `1 ball of Rd of radius η; then, each
row of the projection is obtained by a series of projections on
`2 balls of radii ti, i = 1, . . . , d, in Rk:

wi =
tivi

max{ti, ‖vi‖2}
, i = 1, . . . , d.

This last operation is denoted as wi := proj`2(vi, ti) in
Algorithm 2. This is standard (and easy to derive); a variant is
proposed in [38], however it requires to compute the roots of
an equation using bisection, which is slow.

Algorithm 2 Projection on the `2,1 ball.
Input: V, η
t := proj`1((‖v1‖2, . . . , ‖vd‖2), η)
for i = 1, . . . , d do
wi := proj`2(vi, ti)

end for
Output: W

C. Exclusive LASSO

Exclusive sparsity or exclusive LASSO was first introduced in
[28]. The main idea is that if one feature in a class is selected
(large weight), the method tends to assign small weights to the
other features in the same class. This is enforced by employing
the row-wise `1,2 norm, defined for a d× k matrix with row
vectors w1, . . . , wd as (compare (12))

‖W‖1,2 :=

(
d∑
i=1

‖wi‖21

)1/2

.

So given a d×k matrix V , the projection on the corresponding
balls consists in finding a matrix W which solves

min
W

∑
i,j

|wi,j − vi,j |2 s.t.
∑
i

∑
j

|wi,j |

2

≤ η2. (13)

Our approach is to introduce a Lagrange multiplier for the
constraint and then compute it by a variant of Newton’s method.
This is detailed in Algorithm 3 (see details in Appendix).
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Algorithm 3 Projection on the `1,2 ball.
Input: V, η, N
for i = 1, . . . , d do

Sort in decreasing order |v(i, :)|
for j = 1, . . . , k do
Si,j :=

∑j
l=1 |vi,j |

end for
end for
λ = maxp∈{1,...,k}

1
η

√∑
i S

2
i,p−1

p

pi = arg maxpi∈{1,...,k} Si,pi/(1 + λpi)

if
∑d
i=1

(
Si,pi
1+λpi

)2
≤ η2, terminate

for n = 1, . . . , N do

λ := λ+

∑d
i=1

(
Si,pi
1+λpi

)2

−η2

2
∑d
i=1 pi

(
Si,pi

)2

(1+λpi)
3

for i = 1, . . . , d do
pi := arg maxpi∈{1,...,k}

Si,pi
1+λpi

.
end for

end for
δi = λ

Si,pi
1+λpi

Output: wi,j = (|vi,j | − δi)+sign(vi,j)

V. NUMERICAL EXPERIMENTS

A. Experimental settings

Our primal-dual method can be applied to classification problem
with feature selection on a high dimensional dataset (stemming
from computational biology, image recognition, social networks
analysis, customer relationship management, etc.) We provide
an experimental evaluation in computational biology on a single-
cell sequencing dataset and two proteomic mass-spectrometric
datasets. Feature selection is based on the sparsity induced
by the `1 constraint. In class k, the gene j will be selected
if |wj,k| > ε. The set of non-zero column coefficients is
interpreted as the signature of the corresponding class. We
use [19] method to compute the projection on the `1-ball. We
report the classical accuracy versus parameters using four folds
for cross validation. Processing times are obtained on a laptop
computer using an i7 processor (3.1 Ghz). In our experiments,
we normalize the features according to σmax(X) = 1 (setting
the largest singular value fixes the operator norm the matrix),
and we set µ0 = Ik and ρ = 1. We choose the value of the `1
bound η in connection with the desired number of genes. We
set τ = 1,

τµ =
β

2
√
m‖Y ‖ − (1/4)βρ

,

then we tune β and compute σ using equation (7).

Ovarian proteomic dataset [39]. The data available on UCI
database consists of mass-spectra obtained with the SELDI
technique. The samples include patients with cancer (ovarian
or prostate cancer), and healthy or control patients. The dataset
is composed of 216 samples and 15000 features.

Lung proteomic dataset [40]. The data were collected using
unbiased liquid chromatography/mass spectrometry. The
dataset is comprised of 1005 patients (469 among them with
lung cancer and 536 control patients), and 2944 features.

Single cell dataset [41]. The dataset comes from a collection
of mouse cells from the primary somatosensory cortex (S1)
and the hippocampal CA1 region. This dataset is composed
of 3005 cells, 7364 genes and k = 9 clusters. Note that class
8 and 9 have only 20 and 60 cells respectively. The set of
selected features is currently evaluated by biologist partners.

Fig. 1: This figure shows the benefit for the convergence of using
Huber loss (δ = 1) instead of `1 loss (δ = 0) on Ovarian dataset.

Fig. 2: Number of selected features versus constraint η for Lung and
Ovarian databases. The number of genes grows linearly with the `1
bound.

Figure 1 shows the convergence of the `1 loss and Huber
loss in the training set (normalized by the value of the first
iterate). Note an oscillatory convergence of the `1 loss while
convergence of Huber loss is perfectly smooth. The linear
dependence of the number of selected genes on the `1 bound
on the projection matrix is depicted Figure 2. Figure 3 shows
a break in the slope of accuracy curve versus the number of
selected genes for the three biological databases on which the
tests wre performed. This drastic change of slope can be easily
detected and used to determine the relevant (and small) number
of genes to select for the analysis. For the experiments in next
subsection, we chose the constraint such that the number of
selected genes corresponds to this rapid change of slope.

B. Comparison of loss functions

Figure 4 and Table I show the improvement in accuracy on
all biological datasets when using Huber loss instead of `1 or

6541



Fig. 3: Accuracy versus number of features for the three biological
databases. The rapid change of slope allows to find the number of
genes to select.

Methods `1 Huber (µ = I) Huber Froben.
Ovarian 90.% 95.83% 98.61% 90.7%

Lung 66% 72.1% 76.6% 70.2 %
Zeisel 79.6% 94.2% 95.5% 94.2 %

TABLE I: Accuracy test on the three biological datasets: using
the primal-dual approach with Huber loss and optimizing on
the matrix of centers (vs. fixed µ = I) significantly improves
accuracy over the other methods on all datasets.

Frobenius loss; `1 loss suffers from overfitting while Frobenius
loss is not robust enough. Moreover, optimizing also wrt. the
matrix of centers, µ, improved the accuracy by 2.78% on the
Ovarian, 4.5% on Lung and by 1.5% on the Zeisel datasets
respectively.

C. Comparison of computational times

Although it is not obvious to carry out a fair comparison
between the different methods (because of the issue of between
of implementation or choice of parameters issues), we propose
the following numerical comparison. FISTA requires that one
part of the objective is smooth and the other can be easily
solved implicitly. This is the case for the non-robust Frobenius
loss:

min
W,µ
‖Y µ−XW‖2F +

ρ

2
‖Ik − µ‖2F s.t. ‖W‖1 6 η.

We report computational time in this case in Table II. However,
with the squared Frobenius norm replaced by an `1 norm,
this structure is lost (also in the dual, as the objective is
strongly convex only in µ), and there is no way to implement

Fig. 4: Accuracy as a function of parameter δ. Blue curve is obtained
using optimised µ centers, the red one fixing µ = I . Top: Lung
dataset, middle: Ovarian dataset, bottom: Zeisel dataset.

an accelerated method (while a subgradient method would be
more expensive). The only reasonable alternative would be
ADMM [42], [15], which makes sense as long as the matrix
factorizations are not too hard to tackle (here it would be very
computationally expensive when m and d are large and when
X is a full rank matrix). For the numerical comparison, we
generated m × d random data matrices, with random labels
for k = 2 classes. Then we compared computational times
of algorithms the primal-dual algorithm (with Huber loss and
optimization on µ) vs. FISTA and ADMM [15]. Figure 5
and Table II show that computational time as a function of
the number of features d of primal-dual is linear, while it is
quadratic for FISTA. Figure 5 also shows that computational
time as a function of the number of samples m is linear both for
primal-dual and FISTA. Table II shows that the computational
time of ADMM is one or order of magnitude greater than the
others because of the linear algebra involved. Table III shows
that the primal-dual method is 50 times faster than FISTA with
the Ovarian, 3 times faster for the two other real datasets.

D. Comparison of projections on synthetic random data

We evaluate the cost of the different constraint projections
using random matrices of size d× k, keeping one of the two
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TABLE II: Computational time of primal-dual vs. FISTA and ADMM
on random data matrices of size m×d with m = 1000 and d ranging
from 1000 to 15000. Time is in seconds. (NC = No Convergence)

d 1000 3000 5000 10000 15000
Primal-dual 0.025 0.12 0.205 0.42 0.63

Fista 0.075 0.481 1.16 4.62 10.6
ADMM 0.65 4.52 58 NC NC

Fig. 5: Comparison of primal-dual and FISTA on a synthetic dataset.
Top: computational time as function of the number of features d for
m = 1000. Bottom: computational time as function of the number of
samples m for d = 5000. While the two methods behave similarly
wrt. the number of samples, primal-dual scales much more favorably
than FISTA wrt. the number of features (a key issue for biological
datasets for which the number of genes is large).

TABLE III: Comparison of computational time (seconds) for primal-
dual and FISTA on biological datasets.

Dataset primal-dual FISTA
Ovarian (m = 216, d = 15000) 0.19 9.5

Lung (m = 1005, d = 2944) 0.12 0.4
Zeisel (m = 3005, d = 7364) 1.07 3.44

dimensions fixed. The discussion on the complexity of the
various projection methods is delicate so we focus on a mere
comparison of computation times. Figure 6 (top) shows that for
small k the projection cost on the nuclear constraint is similar
to the projection cost on the `2,1 ball. The projection cost on
the `2,1 ball with our method outperforms the bisection method
[38]. Figure 6 (bottom) shows that the cost of the projection
on the `1,2 ball grows linearly with d and k, and is slightly
higher than for the projection on the `1 ball. Figure 7 shows
that the `1,2 constraint gives better results than other structured
constraints. Our primal-dual algorithm provides accuracy for
each cluster. In the case of the Single cell Zeisel dataset, we
report accuracy for different constraints on class 8 and 9 that
have only 20 and 60 cells, respectively. Figure 7 also shows

Fig. 6: Comparisons of projection numerical costs (performed on
randomly generated d× k matrices). Top: time as function of k for
d = 1000. Bottom: time as function of d for k = 10.

Fig. 7: Single cell Zeisel dataset: comparison of `1, `2,1 and nuclear
norm constraint. Left: global accuracy. Right: accuracy in classes 8
and 9 (classes with a small number of features).

that using the nuclear norm, the `2,1 or `1,2 norm to enforce
structured sparsity improves accuracy on small classes. Figure 8
shows the fast convergence of the modified Newton inner loop
in Algorithm 3, we typically use N = 4 or N = 5.

Fig. 8: Convergence of Algorithm 3 (modified Newton) for the `1,2
projection.
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VI. CONCLUSION

For supervised classification and feature selection, we advocate
the use of a robust loss (`1, or Huber to deal with overfitting)
together with joint optimization of the projection matrix (a
crucial procedure for high-dimensional data) and of the matrix
of centers of the clusters. We also put forward constrained
formulations (instead of penalizations) to enforce sparsity for
feature selection. The primal-dual framework we propose is
flexible enough to encompass not only several kind of losses
(smooth or nonsmooth), but also to cover various kind of
constraints. This includes ad hoc constraints for structured
sparsity such as Group or Exclusive LASSO. In the case of
Exclusive LASSO, we provide original algorithms for the
projection on the `1,2 ball and illustrate its numerical efficiency.
The merits of the primal-dual method are shown using several
databases, synthetic and biological [39], [40], [41]. The method
(the convergence of which is studied in [36]) can be extended
to other criteria on condition that efficient projection (on the
dual ball for the loss data term) algorithms are available.

APPENDIX

Projection on the `1,2 ball. Given (vi,j)
j=1,...,m
i=1,...,n , our problem

is to find w = (wi,j) solving

min
w


∑
i,j

|wi,j − vi,j |2 :
∑
i

∑
j

|wi,j |

2

≤ η2

 . (14)

The most direct approach is to compute the Lagrange multiplier
associated with the `1,2 constraint by a suitable adaption of
Newton’s method. For λ > 0, we first consider

min
w

∑
i,j

|wi,j − vi,j |2 + λ
∑
i

(∑
j

|wi,j |
)2
. (15)

This has the advantage to decouple into independent minimiza-
tion problems as follows:∑

i

min
wi,·

∑
j

|wi,j − vi,j |2 + λ
(∑

j

|wi,j |
)2
. (16)

We then focus on the generic sub-problem (dropping index i):

min
wj

∑
j

|wj − vj |2 + λ
(∑

j

|wj |
)2
. (17)

Its solution is easily seen to satisfy:

wj =
(
|vj | − λ

∑
j′

|wj′ |
)+

sgnvj . (18)

Hence, letting δ = λ
∑
|wj |, one sees that one needs to find δ

such that δ = λ
∑
j(|vj |− δ)+, which has a unique solution in

[0,maxj |vj |]. If |vj | are sorted in decreasing order, one must
find p such that if

δ =
λ
∑p
j=1 |vj |

1 + λp
(19)

one has |vp| ≥ δ, |vp+1| ≤ δ. If we interpret the RHS of (19)
as an average of 0 with weight 1/λ and |vj |: ((1/λ) × 0 +

∑p
j=1 |vj |)/(1/λ+ p), we see that it increases as long as one

adds terms above the average, and then decreases, so that:

δ = λmax
p

∑p
j=1 |vj |

1 + λp
· (20)

Observe in addition that∑
j

(|vj | − δ)+ =
δ

λ
= max

p

∑p
j=1 |vj |

1 + λp
· (21)

Returning to the original problem (14), we see that one
needs to find λ ≥ 0 such that (assuming all |vi,·| are sorted in
decreasing order and defining Si,p :=

∑p
j=1 |vi,j |):

n∑
i=1

max
pi

(
Si,pi

1 + λpi

)2

= η2. (22)

This is found by Newton’s method. The function in (22) is
convex (as a max of convex functions), decreasing in λ. Starting
from λ0 and the corresponding values p0i one should compute
iteratively:

λk+1 = λk +

∑
i

(
S
i,pk
i

1+λkpki

)2

− η2

2
∑
i p
k
i

(S
i,pk
i
)2

(1+λkpki )
3

(23)

and then update pk+1
i by finding for each i:

max
pi

Si,pi
1 + λk+1pi

· (24)

This process must converge as the function to invert in (22) is
convex and decreasing, in particular if λ0 is less than the
optimal lambda it is easy to see that (λk) will converge
monotonically, increasing towards the optimal value. It is not
difficult to prove that this convergence is at least linear (with
rate 1−f ′(λ∗)/f ′(λ0) if f(λ) denotes the left-hand side of (22)
and λ∗ the solution), and it is classical that it becomes quadratic
when λk is close enough to the optimum (hence the importance
of finding a good starting point). Once this has converged, one
gets the thresholds δi by the formula

δi = λk
Si,pki

1 + λkpki
(25)

and then wi,j = (|vi,j | − δi)+sgnvi,j can be easily computed
on the unsorted data. The process will converge faster if one
can find a good estimate of the optimal λ as an initial guess.
One has for the optimal λ∗:

max
p=(p1,...,pn)

∑
i

S2
i,pi

(1 + λ∗pi)2
= η2 ≥ max

p

∑
i S

2
i,p

(1 + λ∗p)2
·

The idea here is that the max on arbitrary vectors (p1, . . . , pn)
is replaced with a (smaller) max over vectors (p, . . . , p) with
identical coordinates. It follows easily that:

λ∗ ≥ max
p

1
η

√∑
i S

2
i,p − 1

p
· (26)
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In practice, we use the right-hand side of (26) as initial λ0.
This yields a good precision in a small number of iterations,
typically N ≈ 4 to 5, see Fig. 8.
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