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Abstract: Minimum time control of slow-fast systems is considered. In the case of only one fast
angle, averaging techniques are available for such systems. The approach introduced in Dargent
(2014) and Bombrun et al. (2013) is recalled, then extended to time-dependent systems by
means of a suitable filtering operator. The process relies upon approximating the dynamics by
means of sliding windows. The size of these windows is an additional parameter that provides
intermediate approximations between averaging over the whole fast angle period and the original
dynamics. The motivation is that averaging over an entire period may not provide a good enough
approximation to initialize a convergent numerical resolution of the original system; considering
a continuous set of intermediate approximations (filtering over windows of size varying from the
period to zero) may ensure that convergence. The method is illustrated on problems coming
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INTRODUCTION

When dealing with slow-fast dynamical systems, averaging
is a well know approach to devise an approximation of the
original system. In the case of systems with only one fast
angle, standard averaging is well understood and used in
many applications (see, e.g., Lochak (1988); Sanders et al.
(2007)). The application of averaging to optimal control
is a more delicate issue; one cannot average naively the
control-depending dynamical system, as the control must
keep track of the fast angle (see Chaplais (1987)). We
adopt here the point of view of Bombrun et al. (2013)
which provides a suitable framework for the approach
developed in Geffroy (1997); Tarzi (2012); Dargent (2014,
2015) for space mechanical applications in the minimum
time case. (See also Edelbaum (1974); Bonnard et al.
(2009) for energy minimization). Then we extend the
method to filtering: Instead of eliminating the fast angle
by averaging over an entire period of the system, we
use a partial average on a sliding window whose size is
only a fraction of the period. For another approach based
on filtering over fixed rectangular windows, see Bernard
(2015).
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R&T contract no. R-S13/BS-005-012). J.-B. Caillau acknowledges
support from PGMO (grant no. 2016-1753H).

The paper is organized as follows. In the first section we
recall the averaging procedure of Bombrun et al. (2013) for
minimum time control systems with one fast angle. Then
we present a new filtering method that extends the pre-
vious computation to time-dependent systems, time being
another fast variable. Numerical simulations based on an
implementation of filtering into the industrial code T 3D

are finally presented. We restrict to time minimization and
do not address the more complicated problem of fuel mini-
mization. (See Chen et al. (2016) for a recent mathematical
analysis of that problem, and Dargent (2014, 2015) for
numerical results using averaging techniques.)

1. AVERAGING FOR MINIMUM TIME

We consider the following slow-fast control system:

İ(t) = εF0(I(t), ϕ(t)) + ε
m
∑

i=1

ui(t)Fi(I(t), ϕ(t)), (1)

ϕ̇(t) = ω(I(t), ϕ(t)) + εG0(I(t), ϕ(t))

+ ε
m
∑

i=1

ui(t)Gi(I(t), ϕ(t)), |u(t)| ≤ 1, (2)

where x = (I, ϕ) belongs to M × S1; the data are so
supposed to be periodic wrt. the angle ϕ, and smooth on a
smooth n-dimensional manifold (that we may treat as an
open subset of Rn, up to some choice of local coordinates).
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As ε > 0 is to be interpreted as small parameter, I ∈ M
represents the slow variables while ϕ is the fast angle. The
Euclidean norm of the control is bounded by one, and we
consider time minimization, typically for fixed endpoints of
the slow variables and unprescribed initial and final angles.
The pulsation ω(I, ϕ) is assumed to be uniformly bounded
from below by some positive constant. We denote by
f(x, u) the right hand side of (1-2) so that the dynamical
system on M × S1 writes ẋ(t) = f(x(t), u(t)), |u(t)| ≤ 1.

For a smooth function g on M × S1 × Rm, and a given
control function u ∈ L∞(S1, B) where B is the closed unit
Euclidean ball of Rm, one defines

µ(g)(x, u(·)) :=
1

T (x)

∫ 2π

0

g(x, u(ϕ))
dϕ

ω(x)
(3)

where

T (x) :=

∫ 2π

0

dϕ

ω(x)
,

that is 2π/T (x) = ω(x) = ω(I), the harmonic average
of ω(x) (which, as µ(g) and T , only depends on I—see
Lemma 5). Note that, as x = (I, ϕ), the integration in (3)
is

µ(g)(I, ϕ, u(·)) =
1

T (I, ϕ)

∫ 2π

0

g(I, ψ, u(ψ))
dψ

ω(I, ψ)
·

The same remark holds for the integration to com-
pute T (x), and for the integrals involved in the definition
of filtering in the next section. The linear operator µ
on smooth functions times essentially bounded controls
defined by (3) readily extends to functions defined on
T ∗(M × S1) × Rm. Instead of the original problem, one
then considers the following differential inclusion:

ẋ(t) ∈ {µ(f)(x(t), u(·)), u(·) ∈ L∞(S1, B)}. (4)

Convergence of the slow coordinates of time minimum
trajectories of (1) towards those of (4) when the small
parameter ε tends to zero is proven in Bombrun et al.
(2013) under mild assumptions. Note that, in accordance
with Dargent (2014), we keep track of the fast angle as
there is a still a dynamics on ϕ (to be interpreted as
a mean angle, see Remark 2). It is proven in Bombrun
et al. (2013) that the right-hand side multi-application
is locally Lipschitz so that, for time minimization, the
maximum principle for differential inclusions of Clarke
et al. (1998) holds. In order to avoid possible singularities,
we restrict the discussion to the open subset Ω defined as
the complement in the cotangent bundle of

Σ := {(x, p) ∈ T ∗(M × S1) | Hi(x, p) = 0, i = 1, . . . ,m}

where p = (pI , pϕ) and Hi(x, p) := �pI , Fi(x)� +
�pϕ, Gi(x, p)�, i = 0, 1, . . . ,m. Then, if x is an absolutely
continuous solution of (4), time minimizing for prescribed
boundary conditions, there exists an absolutely continuous
covector function p = (pI , pϕ) such that

ẋ(t) =
∂H

∂p
(x(t), p(t)), ṗ(t) = −

∂H

∂x
(x(t), p(t)),

where the Hamiltonian maximized over the field of veloci-
ties parameterized by controls depending on the fast angle

H(x, p) := max
u(·)∈L∞(S1,B)

µ(H)(x, p, u(·))

(with H(x, p, u) := �p, f(x, u)�)

is well defined and smooth. Actually,

Proposition 1. For (x, p) ∈ Ω,

H(x, p) = pϕω(I) + εK(x, p)

with

K(x, p) :=
1

T (x)

∫ 2π

0

K(x, p)
dϕ

ω(x)

and

K(x, p) := H0(x, p) +

√

√

√

√

m
∑

i=1

H2
i (x, p).

Proof. On Ω, we have H(x, p) = µ(H)(x, p, u(·)) evalu-
ated at u(ϕ) = u(x, p) (= u(I, ϕ, pI , pϕ)) with

u(x, p) :=
(H1(x, p), . . . , Hm(x, p))

|(H1(x, p), . . . , Hm(x, p))|
· ✷ (5)

Remark 2. As ϕ becomes a cyclic variable of H (see
Lemma 5), pϕ is constant. For pϕ = 0, one has ϕ̇ = ω(I)
which allows to interpret the angle of the averaged system
as a mean angle. Keeping track of this angle is important
in practice as this allows to treat more complex boundary
conditions in applications (see Dargent (2014, 2015)).

Remark 3. For pϕ = 0, the same system can be obtained
by suitably averaging the extremal system associated
with the original optimal control problem after identifying
carefully the slow and fast variables (CNES (2015)).

In a more compact form with z = (x, p), the extremal
system writes

ż(t) =
−→
∇H(z(t)), (6)

where
−→
∇ denotes the symplectic gradient. It turns out that

Lemma 4.
−→
∇H(z) =

[−→
∇µ(H)(z, u(·))

]

|u(·)=u(z)
,

with u(z) defined by (5).

Proof. As
−→
∇ commutes with the integration over ϕ,

it suffices to check that the symplectic gradient also
commutes with evaluating at u(z), the unique maximizer
of H(x, p, ·) on B for z in Ω. But this is obvious since,
in coordinates, if A(z) ∈ Rm is a non-vanishing smooth
function of z ∈ R2n, one has the following: h(z, v) :=
(A(z)|v) is maximized wrt. v on the unit Euclidean ball B
of Rm by v(z) := A(z)/|A(z)|, and

∂h

∂z
(z, v(z)) =

d

dz
(h(z, v(z))). ✷

As a result, the averaged extremal system (6) can be also
written

ẋ(t) =

[

∂

∂p
µ(H)(x, p, u(·))

]

|u(·)=u(x,p)

(7)

ṗ(t) =

[

−
∂

∂x
µ(H)(x, p, u(·))

]

|u(·)=u(x,p)

(8)

and it is this form that we will depart from to define an
approximation by filtering in the next section. We conclude
by indicating the effect of the choice of the fast angle on
the computation of the adjoint equation.

Lemma 5. For any smooth function g on M × S1 ×Rm,
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∂

∂I
· µ(g) = µ

(

∂g

∂I

)

+ µ(g) · µ

(

∂ω/∂I

ω

)

− µ

(

g ·
∂ω/∂I

ω

)

,

∂

∂ϕ
· µ(g) = 0.

The proof is obvious, and the result emphasizes that
the non-commutativity of the averaging operator µ with
taking derivatives is due to the non-canonical choice for the
fast angle. Whenever ϕ is such that its pulsation, ω, only
depends on the slow variable I, the remainder in (∂/∂I) ·µ
vanishes and commutativity is retrieved. Such a choice is
always possible but may not be convenient in practice, as
the change of angle may involve solving some transcendent
equation (e.g., Kepler equation in two-body problems).

2. FILTERING BY SLIDING WINDOWS

We now consider the following time-dependent slow-fast
control system:

İ(t) = εF0(t, I(t), ϕ(t)) + ε

m
∑

i=1

ui(t)Fi(t, I(t), ϕ(t)), (9)

ϕ̇(t) = ω(I(t), ϕ(t)) + εG0(t, I(t), ϕ(t))

+ ε
m
∑

i=1

ui(t)Gi(t, I(t), ϕ(t)), |u(t)| ≤ 1, (10)

and denote

ω(t, x, u) := ω(x) + εG0(t, x) + ε

m
∑

i=1

uiGi(t, x)

(the dependence on ε is kept implicit). Time is another fast
variable, but no periodicity wrt. t is assumed. Therefore
it is less relevant to use an approximation such as (3)
that would freeze time over a whole angle period. Given a
window size ∆ ∈ (0, 2π] and u ∈ L∞(S1, B), we define

µ∆(g)(t, x, u(·)) :=

1

T∆(t, x, u(·))

∫ ϕ+∆/2

ϕ−∆/2

g(t, x, u(ϕ))
dϕ

ω(t, x, u(ϕ))
, (11)

with

T∆(t, x, u(·)) :=

∫ ϕ+∆/2

ϕ−∆/2

dϕ

ω(t, x, u(ϕ))
,

and where g is any smooth function on R×M ×S1×Rm.

Remark 6. In addition to time dependence, another dif-
ference with averaging as described in the previous section
is the integration wrt. dϕ/ω(t, x, u(ϕ)) instead of dϕ/ω(x);
this also results in a functional dependence on u(·) for T∆.
So when ∆ = 2π, one retrieves µ∆ = µ provided that the
system is autonomous and such that G0 = G1 = · · · =
Gm = 0 to kill the dependence on u in ω(t, x, u). Note
that the difference between ω(x) and ω(t, x, u) is of order
one in ε, though.

The Hamiltonian associated to time minimization of the
control system (9-10) is

H(t, x, p, u) := pϕω(x) + εH0(t, x, p) + ε

m
∑

i=1

uiHi(t, x, p),

Hi(t, x, p) := �pI , Fi(t, x)�+ �pϕ, Gi(t, x)�, i = 0,m.

Similarly to what was done in the previous section, we
restrict to the open complement Ω in R× T ∗(M × S1) of

Σ := {(t, x, p) ∈ R× T ∗(M × S1) |

Hi(t, x, p) = 0, i = 1, . . . ,m}.

For any (t, z) = (t, x, p) ∈ Ω, the unique maximizer of
H(t, x, p, ·) on the unit Euclidean ball B of Rm is

u(t, z) :=
(H1(t, z), . . . , Hm(t, z))

|(H1(t, z), . . . , Hm(t, z))|
·

By analogy with the averaged system (7-8), we consider
the following filtered extremal system

ż(t) =
[−→
∇µ∆(H)(t, z(t), u(·))

]

|u(·)=u(t,z)
. (12)

Remark 7. Contrary to Lemma 4, taking gradient and
evaluating at the maximizing control need not commute
anymore. Indeed, for a given ∆, evaluating at u(t, z) does
not necessarily maximize µ∆(H)(t, z, u(·)) over u(·) in
L∞(S1, B) because of the dependence in u(·) in the filtered
expression (due to the presence of the control in ω(t, x, u),
hence in T∆(t, x, u(·))). As a consequence, the dynamical
system (12) is not Hamiltonian, in general.

We now review the basic properties of the linear operator
µ∆ with in mind convergence properties when ∆ tends to
zero. The motivation is that, for the time minimization
of (9-10), filtering over a ∆ = 2π window (which is close
to averaging, notwithstanding time dependency—see Re-
mark 6) might not provide a good enough approximation
to initialize a convergent numerical resolution of the ori-
ginal system; having a continuous set of intermediate ap-
proximations as ∆ range from 2π to 0 may allow to ensure
this convergence. In this respect, see the final section for
numerical experiments on problems stemming from space
mechanics. The computation below is completely similar
to Lemma 5 for the part concerning the slow variables;
notice that filtering does not kill anymore the dependency
on the fast angle, though. (The corresponding expression
in brackets below means taking the value at ϕ+∆/2 minus
the one at ϕ−∆/2.) The function ω involved is the whole
right-hand side ω(t, x, u) of ϕ̇, according to definition (11).

Lemma 8. Let ∆ in (0, 2π]. For any smooth function g on
R×M × S1 ×Rm,

∂

∂I
· µ∆(g) = µ∆

(

∂g

∂I

)

+ µ∆(g) · µ∆

(

∂ω/∂I

ω

)

− µ∆

(

g ·
∂ω/∂I

ω

)

,

∂

∂ϕ
· µ∆(g) =

1

T∆

[

f

ω

]ϕ+∆/2

ϕ−∆/2

+ µ∆(g) · µ∆

(

∂ω/∂ϕ

ω

)

.

Lemma 9. As ∆ tends to zero,

µ∆ → δϕ,

∂

∂I
· µ∆ → δϕ ·

∂

∂I
,

∂

∂ϕ
· µ∆ → δϕ ·

∂

∂ϕ
·

(See the proof below for the definition of δϕ.)
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∂

∂I
· µ(g) = µ

(

∂g

∂I

)

+ µ(g) · µ

(

∂ω/∂I

ω

)

− µ

(

g ·
∂ω/∂I

ω

)

,

∂

∂ϕ
· µ(g) = 0.

The proof is obvious, and the result emphasizes that
the non-commutativity of the averaging operator µ with
taking derivatives is due to the non-canonical choice for the
fast angle. Whenever ϕ is such that its pulsation, ω, only
depends on the slow variable I, the remainder in (∂/∂I) ·µ
vanishes and commutativity is retrieved. Such a choice is
always possible but may not be convenient in practice, as
the change of angle may involve solving some transcendent
equation (e.g., Kepler equation in two-body problems).

2. FILTERING BY SLIDING WINDOWS
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control system:

İ(t) = εF0(t, I(t), ϕ(t)) + ε

m
∑

i=1

ui(t)Fi(t, I(t), ϕ(t)), (9)

ϕ̇(t) = ω(I(t), ϕ(t)) + εG0(t, I(t), ϕ(t))

+ ε
m
∑

i=1

ui(t)Gi(t, I(t), ϕ(t)), |u(t)| ≤ 1, (10)

and denote

ω(t, x, u) := ω(x) + εG0(t, x) + ε

m
∑

i=1

uiGi(t, x)

(the dependence on ε is kept implicit). Time is another fast
variable, but no periodicity wrt. t is assumed. Therefore
it is less relevant to use an approximation such as (3)
that would freeze time over a whole angle period. Given a
window size ∆ ∈ (0, 2π] and u ∈ L∞(S1, B), we define

µ∆(g)(t, x, u(·)) :=

1

T∆(t, x, u(·))

∫ ϕ+∆/2

ϕ−∆/2

g(t, x, u(ϕ))
dϕ

ω(t, x, u(ϕ))
, (11)

with

T∆(t, x, u(·)) :=

∫ ϕ+∆/2

ϕ−∆/2

dϕ

ω(t, x, u(ϕ))
,

and where g is any smooth function on R×M ×S1×Rm.

Remark 6. In addition to time dependence, another dif-
ference with averaging as described in the previous section
is the integration wrt. dϕ/ω(t, x, u(ϕ)) instead of dϕ/ω(x);
this also results in a functional dependence on u(·) for T∆.
So when ∆ = 2π, one retrieves µ∆ = µ provided that the
system is autonomous and such that G0 = G1 = · · · =
Gm = 0 to kill the dependence on u in ω(t, x, u). Note
that the difference between ω(x) and ω(t, x, u) is of order
one in ε, though.
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control system (9-10) is

H(t, x, p, u) := pϕω(x) + εH0(t, x, p) + ε

m
∑

i=1

uiHi(t, x, p),

Hi(t, x, p) := �pI , Fi(t, x)�+ �pϕ, Gi(t, x)�, i = 0,m.
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For any (t, z) = (t, x, p) ∈ Ω, the unique maximizer of
H(t, x, p, ·) on the unit Euclidean ball B of Rm is

u(t, z) :=
(H1(t, z), . . . , Hm(t, z))

|(H1(t, z), . . . , Hm(t, z))|
·

By analogy with the averaged system (7-8), we consider
the following filtered extremal system

ż(t) =
[−→
∇µ∆(H)(t, z(t), u(·))

]

|u(·)=u(t,z)
. (12)

Remark 7. Contrary to Lemma 4, taking gradient and
evaluating at the maximizing control need not commute
anymore. Indeed, for a given ∆, evaluating at u(t, z) does
not necessarily maximize µ∆(H)(t, z, u(·)) over u(·) in
L∞(S1, B) because of the dependence in u(·) in the filtered
expression (due to the presence of the control in ω(t, x, u),
hence in T∆(t, x, u(·))). As a consequence, the dynamical
system (12) is not Hamiltonian, in general.

We now review the basic properties of the linear operator
µ∆ with in mind convergence properties when ∆ tends to
zero. The motivation is that, for the time minimization
of (9-10), filtering over a ∆ = 2π window (which is close
to averaging, notwithstanding time dependency—see Re-
mark 6) might not provide a good enough approximation
to initialize a convergent numerical resolution of the ori-
ginal system; having a continuous set of intermediate ap-
proximations as ∆ range from 2π to 0 may allow to ensure
this convergence. In this respect, see the final section for
numerical experiments on problems stemming from space
mechanics. The computation below is completely similar
to Lemma 5 for the part concerning the slow variables;
notice that filtering does not kill anymore the dependency
on the fast angle, though. (The corresponding expression
in brackets below means taking the value at ϕ+∆/2 minus
the one at ϕ−∆/2.) The function ω involved is the whole
right-hand side ω(t, x, u) of ϕ̇, according to definition (11).

Lemma 8. Let ∆ in (0, 2π]. For any smooth function g on
R×M × S1 ×Rm,

∂

∂I
· µ∆(g) = µ∆

(

∂g

∂I

)

+ µ∆(g) · µ∆

(

∂ω/∂I

ω

)

− µ∆

(

g ·
∂ω/∂I

ω

)

,

∂

∂ϕ
· µ∆(g) =

1

T∆

[

f

ω

]ϕ+∆/2

ϕ−∆/2

+ µ∆(g) · µ∆

(

∂ω/∂ϕ

ω

)

.

Lemma 9. As ∆ tends to zero,

µ∆ → δϕ,

∂

∂I
· µ∆ → δϕ ·

∂

∂I
,

∂

∂ϕ
· µ∆ → δϕ ·

∂

∂ϕ
·

(See the proof below for the definition of δϕ.)
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Proof. Given u in L∞(S1, B) and a smooth function g on
R×M × S1 ×Rm, one readily gets

µ∆(g)(t, x, u(·)) → g(t, x, u(ϕ)) (with x = (I, ϕ))

when ∆ tends to zero, which we denote µ∆ → δϕ. Using

the previous lemma, the limit of ∂
∂I · µ∆ follows. In the

case of ∂
∂ϕ · µ∆, one has

1

T∆

[

f

ω

]ϕ+∆/2

ϕ−∆/2

→ ω ·
∂

∂ϕ

(

f

ω

)

=
∂f

∂ϕ
− f ·

∂ω/∂ϕ

ω
,

when ∆ tends to zero, whence the result. ✷

We set µ0 := id, which amounts to extend (12) by

ż(t) =
[−→
∇H(t, z(t), u(·))

]

|u(·)=u(t,z)
(13)

for ∆ = 0. (This system being Hamiltonian as taking
gradient and evaluating at the maximizing control actually
commute.)

Proposition 10. Let (t0, z0) be an arbitrary initial condi-
tion in Ω. There exists η > 0 such that, for all ∆ in [0, 2π],
the differential equation (12) admits a unique solution of
class C 1 on [t0 − η, t0 + η]; this solution depends continu-
ously on ∆. In particular, one has convergence towards a
solution of the original extremal system (13) when ∆ tends
to zero.

Proof. For (t, z) in Ω and ∆ in [0, 2π], denote by g(t, z,∆)
the right-hand side of (12) (extended by the right-hand
side of (13) when ∆ = 0). Partial functions ∆ �→ g(t, z,∆)
are continuous on [0, 2π], the previous lemma ensuring
continuity at ∆ = 0. Given the expression of (12) (see
Lemma 8), the result below suffices to show that all
functions g are locally Lipschitz wrt. z with local Lipschitz
constants that are uniform in ∆.

Lemma 11. Let f : Rn → Rm be a smooth function, and
fix d in Rn. For δ in (0, 1], set

gδ(x) :=
1

δ

[

f

(

x+
δ

2
d

)

− f

(

x−
δ

2
d

)]

.

The family {gδ}δ is locally equilipschitzian.

Proof. Fix x0 in Rn; g′δ(x) → f ′′(x) · d when δ tends
to zero, and the convergence is uniform on a compact
neighbourhood V of x0 (Taylor-Lagrange inequality). So
one can find δ0 > 0 such that, for all δ in (0, δ0] and x
in V , |g′δ(x)| ≤ |f ′′(x) · d|+1. The family {gδ}δ is so equi-
lipschitzian on V with Lipschitz constant the maximum of
|f ′′(x) · d|+ 1 and max(x,δ)∈V×[δ0,1] |g

′
δ(x)|. ✷

A standard application of the parameterized fixed point
theorem allows to prove that, given (t0, z0) in Ω, there
exists η > 0 such that

ż(t) = g(t, z(t),∆), z(t0) = z0,

admits a unique C 1 solution defined on [t0 − η, t0 + η]
continuously depending on the parameter ∆ in [0, 2π]. ✷

3. APPLICATION IN SPACE MECHANICS

Unperturbed dynamics. We want to compute minimum
time trajectories for a spacecraft orbiting around the
Earth. The control is provided by a new generation electro-
ionic engine delivering small to very small thrust levels,
as opposed to older chemical propulsion. The literature

on this topic is now well established, and we refer to
it for further details on the problem (see, e.g., Caillau
et al. (2012a,b)). Having in mind to take into account
perturbations of the Keplerian motion, we first recall
the unperturbed dynamics describing the controlled two-
body problem. The state is made of slow variables I =
(P, ex, ey, hx, hy) that characterize the geometry of the
osculating ellipse (we restrict to periodic free motion),
and of one fast angle, the longitude ℓ, that defines the
position of the spacecraft on the current orbit. Note that
(ex, ey) = e · exp(ı(Ω + ω)) where e is the eccentricity, Ω
the longitude of the ascending node, ω the argument of
the pericenter, while (hx, hy) = tan(i/2) exp(ıΩ) where i
is the inclination of the orbit plane wrt. the equatorial
plane; P is the semi-latus rectum of the ellipse. In these
coordinates, the dynamics is

Ṗ = 2
√

P 3/µu2/W,

ėx =
√

P/µ(1/W )(W sin ℓ u1 +Au2 − eyCu3),

ėy =
√

P/µ(1/W )(−W cos ℓ u1 +Bu2 + exCu3),

ḣx =
√

P/µ(D/2W ) cos ℓ u3,

ḣy =
√

P/µ(D/2W ) sin ℓ u3,

ℓ̇=
√

µ/P 3 W 2 +
√

P/µ(C/W )u3,

with |u| ≤ Tmax,

W = 1 + ex cos ℓ+ ey sin ℓ,

A = ex + (1 +W ) cos ℓ, B = ey + (1 +W ) sin ℓ,

C = hx sin ℓ− hy cos ℓ, D = 1 + h2
x + h2

y,

and where the control is expressed in a radial-orthoradial-
out of plane local frame. Note that this unperturbed model
is of the form (1-2) with the thrust modulus Tmax playing
the role of the small parameter ε, and no drift terms F0,
G0. The constant µ is the Earth gravitational constant
(µ ≃ 3.9860047 × 1e + 14 in m2/s2). The complete dy-
namics also includes the mass of the spacecraft as an
additional state variable (see Dargent (2014) for further
details). For the numerical tests below, the initial orbit
has semi-major axis 24505.9 kilometers, eccentricity 0.72,
inclination 7.05 degrees, argument of pericenter 180 de-
grees, null longitude of the ascending node and anomaly.
(The anomaly, ν, is such that ℓ = Ω+ ω + ν.) The target
orbit is the geostationary one. The thrust level is very
low, Tmax = 0.175 Newtons, for a spacecraft of mass
2000 kilograms. We use the software T 3D developed at
Thales Alenia Space (see Dargent (2014, 2015)) for the
computation. Filtering as described in Section 2 has been
incorporated into the code. For these specific boundary
conditions, single shooting initialized by the solution of the
averaged problem (defined as in Section 1) does not con-
verge. Using an intermediate step of filtering at ∆ = π/2
allows shooting on the true dynamics to converge (Figure 1
and 2).

Dynamics with J2 perturbation. We now add a first per-
turbation to the dynamics to take into account the J2 effect
(higher order term in the Earth potential). This amounts
to adding drift terms F0, G0 in the previous equations.
For the numerical tests, the initial orbit has semi-major
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