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Abstract: This article deals with the time minimal transfer of a satellite between Keplerian
orbits with control along the tangential direction. The study is motivated by cone
constraints on the thrust. The time optimal control law has switchings and homotopies
are applied to smooth the discontinuities. The optimal solutions are computed using a
shooting method, taking into account second-order optimality conditions.
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1. INTRODUCTION

The orbital transfer is described by the controlled
Kepler equation

q̈ = −µ q

|q|3
+
u

m
(1)

where the mass variation is

ṁ = −|u|
Ve

(2)

and whereq in R3 is the position of the satellite
measured in a fixed frame whose origin is the Earth
center,µ > 0 is the gravitation constant,m in R∗+
is the mass of the satellite,u in R3 is the thrust of
the satellite bounded in norm,|u| = (u2

1 + u2
2 +

u2
3)1/2 ≤ ε, maximal thrust.

The system can be written
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ẋ = F0(x) +
ε

m

3∑
i=1

uiFi(x) (3)

u = (u1, u2, u3), |u| ≤ 1, with the mass variation
given by (2).

According to (Caillau, 2000), the time optimal control
is with maximum thrust|u| = 1 and thenm(t)
can be computed by (2). Moreover, except isolated
singularities which can be handled numerically, an
optimal control issmoothand is given by

u =
(H1, H2, H3)
|(H1, H2, H3)|

(4)

whereHi = 〈p, Fi〉, i = 1, 2, 3, andp is the adjoint
vector.

Hence time optimal controls are essentially solu-
tions of a smooth time-dependent Hamiltonian sys-
tem
−→
H (t, x, p). The same result holds for the copla-

nar transfer. A shooting method, taking into account
second-order optimality conditions can be applied to
compute numerically the optimal solution to transfer



the satellite to the geostationary orbit (Bonnardet
al., 2005).

The thrust can be decomposed in thetangential-
normal frame:

u = utFt + unFn + ucFc (5)

whereFt is the unit vector colinear tȯq:

Ft =
q̇

|q̇|
∂

∂q̇
· (6)

The vector fieldFc is perpendicular to the osculating
plane(q, q̇),

Fc =
q ∧ q̇
|q ∧ q̇|

∂

∂q̇
(7)

andFn = Fc ∧ Ft.

In practice, the control may be cone-constrained (see
figure 1).

Fn

Fc

Ft

Fig. 1. Cone constraint alongFt.

Moreover, to understand the controllability properties
of the system, it is important to study the effect of each
control componentut, un or uc.

The objective of this article is to analyze numerically
the time optimal control problem for the single-input
case

ẋ = F0(x) + utFt(x), |u| ≤ ε (8)
corresponding to a transfer towards a coplanar orbit.

According to (Bonnardet al., 2005), the problem
restricted to the so-called elliptic domain

X = {(q, q̇) | q ∧ q̇ 6= 0, H(q, q̇) < 0}
with H(q, q̇) = (1/2)|q̇|2 − µ/|q| is controllable.
Besides, in the so-callednormal case(Bonnard et
al., 2005), every time optimal trajectory is bang-bang
i.e. u∗ = ε sign〈p, Ft〉, wherep is the adjoint vector,
with finite number of switchings.

2. DESCRIPTION OF THE CONTINUATION
METHODS

We will present continuation methods (Allgower and
Georg, 1990) used at two levels. First, we make a
continuation on the maximal thrustε for the problem
with multiple inputs (Caillau, 2000). Then, for a fixed
ε, we set up homotopies from the multiple-input case
to the single-input case. These homotopies are used
to smooth the switchings which otherwise result in
numerical instability.

2.1 Continuation on the maximum thrust

We consider the time optimal problem with fixed ex-
tremities for an autonomous system (everything being
the same after obvious changes in the time-dependent
case)

ẋ = f(x, u), u ∈ U.
The associated Hamiltonian is

H(x, p, u) = 〈p, F (x, u)〉.

2.1.1. Shooting method. From Pontryagin maxi-
mum principle, every optimal trajectory is solution of
the following boundary value problem:

ẋ =
∂H

∂p
(x, p, u), ṗ = −∂H

∂x
(x, p, u)

x(0) = x0, x(tf ) = xf

(9)

whereu is computed using the maximization condi-
tion

H(x, p, u) = Max
v∈U

H(x, p, v).

In the minimum time case, we define theexponential
mappingon the(n− 1)-dimensional projective space
Pn−1 as

expx0,tf
(p0) = x(tf , x0, p0) (10)

that is as the value attf of the state component of
the solution of the initial value problem associated
with (9) and the initial condition(x0, p0). Solving (9)
then reduces to find a zero of theshooting function
S : R×Pn−1 → Rn,

S(tf , p0) = expx0,tf
(p0)− xf . (11)

2.1.2. Continuation on the maximal thrust. The
continuation on the maximal thrust (Caillau, 2000) is
the generation of a sequence(εn)n defined as follows :

(1) We start fromε0 = 60 Newtons.
(2) If εn is a value where the shooting method has

converged i.e. if we have found a root of the
shooting function,tfn and zn = (xn, pn) are
used as initial guesses for the shooting method
on an arbitraryεn+1 < εn.

(3) If the shooting method has failed, we go back to
step (2), with a new value ofεn greater and closer
to εn−1.

(4) We continue the process until we reach the de-
siredε.

Repeating the argument of (Caillauet al., 2003), we
have

Proposition 1.Assuming the admissible trajectories
stay in a fix compact, the minimum time is a right-
continuous function of the bound on the thrust.

It is thus relevant to use a decreasing sequence of
thrusts to get an approximation of the limit value
function.



Remark 2.In Kepler case, the compactness assump-
tion of Proposition 1 means that there is no minimiz-
ing sequence of trajectories coming arbitrarily close
to the boundary of the elliptic domain, that is arbi-
trarily close to a collision, parabolic trajectories, or
|q| = +∞.

2.2 Smooth homotopies

The idea of smoothing switchings has already been
developed for the minimum consumption problem
using differential homotopy methods (Gergaud and
Haberkorn, 2006, to appear).

2.2.1. General algorithm. The main argument is
to build an homotopy(Pλ)λ∈[0, 1] from (P0) to the
single-input orbital transfer(P1) such that(Pλ) is
smooth forλ ∈ [0, 1[. We require that the starting
problem (P0) can be solved for everyε using the
continuation described above.

With this assumption, we proceed as follows. Given
an initial stepλ0

stepand a targetλ∗,

(1) We start fromλ1 = 0 andλstep = λ0
step.

(2) If λn is such that the shooting method on(Pλ)
converges, thenλn+1 = λn + λstep.

(3) Otherwise,λn is changed intoλn−1+αλstepwith
0 < α < 1 andλstep is changed intoαλstep.

(4) We stop either ifλ∗ is reached or ifλstepbecomes
smaller than a givenλmin

step (that is if the pro-
gression on the homotopy path is not significant
enough).

The values used in the simulations are the following:
λ0

step = 1e − 1, 1e − 2, 1e − 3, λ∗ = 9.99e − 1,
α = 1e− 1, λmin

step = 1e− 7.

We consider two different initial smooth problems
(P0), hence two different kinds of homotopy. We
recall that these homotopies are performed for a given
value of the maximal thrustε.

2.2.2. Continuation on the control domain. We
consider(P0) as the transfer to a coplanar orbit by
settinguc = 0, i.e.u = utFt + unFn.

The only difference between(P0) and (P1) is the
set of admissible controls: for(P0), U0 is the disc
of centre0R2 and radiusε, whereas for(P1), U1 is
the segment line[−ε, ε] directed along the tangential
direction. The homotopy can therefore be defined as
follows. The problem(Pλ) is the orbital transfer with
control domainUλ whereUλ is the ellipse of centre
0R2 , semi-major axisε along the tangential direction,
and semi-minor axis(1− λ)ε along the normal direc-
tion. Except at isolated singularities (Caillau, 2000),
the problem(Pλ) is smooth forλ ∈ [0, 1[, and asso-
ciated with the true Hamiltonian function

Hλ(t, x, p) = H0 +
ε

m(t)
[
H2

1 + (1− λ)H2
2

]1/2
(12)

with, as before,Hi = 〈p, Fi〉, i = 0, 3, andHλ →
H = H0 + (ε/m)|H1| whenλ→ 1.

If we define on[0, 1] the value functionλ 7→ tf (λ),
the same argument as in Proposition 1 results in

Proposition 3. If the admissible trajectories remain
in a fix compact independent ofλ, then the value
function is continuous atλ = 1.

Sketch of the proof.The result proceeds from the fact
that the sequence of control sets(Uλ)λ is decreasing.
Let (λk)k converge to1 in [0, 1]. The compactness
assumption and the convexity of the dynamics en-
sure existence of a solution(tf k, xk, uk) for every
k, and the sequence(tf k)k is bounded over by the
value of (P1), tf (1). Taking a subsequence, we can
assume it converges towards someT ≤ tf (1). We can
also assume that the equicontinuous bounded family
(xk)k converges uniformly to somex. Now, ẋk ∈
f(t, xk, Uλk) ⊂ f(t, xk, U0) almost everywhere for
all k, f(t, x, u) being the dynamics, andf(t, x, U0)
is convex so thaṫx ∈ f(t, x, U0) [see,e.g., (Lee and
Markus, 1986), theorem 4 of chap. 4]. SinceU0 is
compact, we can select a measurable controlu such
that ẋ = f(t, x, u). Clearly, theuk must converge to
u for the weak dual space topology ofL∞, and the
uniform boundedness principle tells us that

‖u‖∞ ≤ lim inf
k
‖uk‖.

In particular, the same holds for each component
of the control and, since the normal controls verify
‖un,k‖∞ ≤ (1−λk)ε, we getun = 0 and‖ut‖∞ ≤ ε
on the limit. Then(T, x, u) is admissible and necessar-
ily optimal sinceT ≤ tf (1) impliesT = tf (1). We
have shown that(tf (λk))k converges totf (1). 2

Remark 4.Compactness results on the adjoint vari-
able similar to those on the state and the control in the
above proof can also be obtained in thenormal case.

2.2.3. Continuation on the inclination. We impose
that, in contrast with the final one, the initial orbit does
not belong to the equatorial plane, and we make a
convex homotopy on the initial inclination (that is on
the initial condition):

hx,0(λ) = (1− λ)η (13)

with η 6= 0. Indeed, the single-input transfer is a
coplanar transfer and we use the following result
(Caillau, 2000).

Lemma 5.Every extremal trajectory for the coplanar
orbit transfer problem is also extremal for the general
orbit transfer problem, provided the initial and final
inclinations are the same.



We define(P0) by settingun = 0, i.e. u = utFt +
ucFc, and connect so the single-input transfer to a
problem with two controls, including a non-coplanar
thrust.

Remark 6.Though the initial state stays in a fix com-
pact, no such result as Proposition 3 is available for
this new homotopy since there is no obvious mono-
tonicity property on the associated value function.

3. CONJUGATE POINTS

We present briefly the concept of conjugate point
in the minimum time case. We refer the reader to
(Bonnardet al., to appear) for details.

3.1 Definitions and properties

We consider from asmoothHamiltonian system de-
noted ż =

−→
H (z) with z = (x, p), and define the

Jacobi equation which is the variational equationδż =
d
−→
H (z)δz. The non-trivial solutions of this equation

are calledJacobifields.

Definition 7. Let J = (δx, δp) be a Jacobi field,J is
said to beverticalat timet if δx(t) = 0.

Definition 8. A time tc > 0 is said to beconjugateif
there exists a Jacobi field vertical at timet = 0 and
t = tc. Thenx(tc) is called aconjugate point.

According to the definition (10) of exponential func-
tion in the minimum time case, we have

Proposition 9.A time tc is conjugate if and only if the
exponential mapping attc is not an immersion.

The key result of this theory is stated below (Sarychev,
1982).

Theorem 10.Every extremal is locallyC 1-optimal up
to the first conjugate time.

In particular, the two smoothing homotopies of the
previous section are obviously such that the result
hereafter holds.

Proposition 11.Provided there is no conjugate point,
the mappingλ 7→ p0(λ) associated with the homotopy
2.2.2 (resp. 2.2.3) wherep0(λ) is the zero of the
corresponding shooting function, is smooth forλ < 1.

Proof.Let us consider for instance the first homotopy.
Forλ in [0, 1[, the initial adjoint state valuep0(λ) is a
zero of the shooting function

Variable Value
ε 6 Newtons
µ 5165.8620912 Mm3.h−2

V −1
e 0.0142 Mm−1.h

Table 1. Physical values.

S(tf , p0, λ) = expx0,tf ,λ
(p0)− xf

= x(tf , x0, p0, λ)− xf

associated with the smooth Hamiltonian (12). The
assumption of non-conjugacy along the extremal en-
sures that the implicit functionλ 7→ p0(λ) is well
defined and smooth (see Proposition 9, adding the fact
that the derivative of the exponential mapping is the
dynamics which defines a direction not included in
the span of∂S/∂p). The same holds for the second
homotopy since, according to (13),λ 7→ x0(λ) is
smooth. 2

3.2 Computation of conjugate points

Let Ji = (δxi, δpi), i = 1, . . . , n be a basis of the
space of Jacobi fields which are vertical at timet = 0.
There exists a non-trivial Jacobi field which is vertical
att = 0 andt = tc if and only if the rank of the matrix
C(t) whose columns are(δxj(t))1≤j≤n is strictly less
thann− 1 at t = tc.

Our test about the rank is provided by a singular value
decomposition on the matrixC(t). If σn−1(t) is the
smallest singular value, the test isσn−1(tc) = 0.

4. NUMERICAL COMPUTATIONS

For numerical reasons, we choose equinoctial coordi-
nates (Caillau, 2000)(P, ex, ey, hx, hy, L) whereP is
the semi-latus rectum,e = (ex, ey) the eccentricity
vector,h = (hx, hy) the inclination vector, andL the
longitude. The first five coordinates areslow variables
corresponding to the first integrals of the free motion,
whileL is thefast variable. The numerical values used
for the computation are summarized in tables 1 and 2.

Remark 12.The final longitude is actually free and
the shooting function definition (11) has to be readily
modified in order to take into account the transversal-
ity conditionpL(tf ) = 0. Practically, having obtained
the relevant extremal, we compute another extremal,
close to the previous one but with fixedLf so as to be
in the standard framework of conjugate point of curves
with fixed extremities.

4.1 Evolution of the optimal control along homotopies

We present in figures 2 and 3 the evolution of the
optimal thrust along the homotopy path respectively



Initial conditions Final conditions
P 11.625 Mm 42.165 Mm
ex 0.75 0
ey 0 0

hx 0.0612 rad 0 rad
hy 0 rad 0 rad
L π rad free
m 1500 kg free

Table 2. Boundary conditions.

for the homotopy on the control domain and the ho-
motopy on the inclination.

We can see that switchings are localized at the very be-
ginning of the homotopy path. The remaining part of
the homotopy path confirms this localization and tends
to give the final shape of the optimal control. This
phenomenon has already been observed in (Gergaud
and Haberkorn, 2006, to appear) for the minimum
consumption problem where the homotopy consists in
deforming anL2-cost into anL1-cost.

As a first comparison, we can also remark that the
localization is far more efficient in the case of the
homotopy on the inclination.

4.2 Computation of conjugate times

Using thecotcot algorithm sketched above and the
underlying software (Bonnardet al., to appear), we
can apply the conjugate points test on the intermediate
problems(Pλ) for λ ∈ [0, 1[, since they give smooth
controls.

Once we have obtained an extremal by the shooting
method, we extend this extremal up to several times
the minimum time. Then we apply our test to the ex-
tended extremal. We shall notice that it is a condition
of optimality in the case offixed extremities.

We present in the figures 4 and 5 the evolution of
the smallest singular value along the homotopy path
respectively for the homotopy on the control domain
and the homotopy on the inclination.

We can notice that we have conjugate times at roughly
three times the final time obtained by the previous
shooting method, which confirms previous results
(Bonnardet al., 2005).

4.3 Analysis of the extremal trajectories

We observe that the zone whereu = ε (acceleration
phase) is located around the apocenter. In contrast, the
zone whereu = −ε (deceleration phase) is located
around the pericenter. The apocenter is indeed the
point where the gravitation is the weakest. Therefore,
it is the place where the acceleration is the most effi-
cient. Conversely, the deceleration is the most efficient
when the gravitation is the strongest, that is at the peri-
center. Finally, a preliminary interesting constatation

on single-input transfers is that, compared to copla-
nar transfers with two thrusters, the minimum time is
only increased of approximatively twenty percent. As
illustrated by the second homotopy, a similar approach
with two thrusters instead of three can be considered
for non-coplanar transfers.
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Fig. 2. Optimal control: Homotopy on the control
domain.

0 20 40 60 80 100 120 140 160
−100

−50

0

50

100

t

u t

λ = 0
λ = 0.5
λ = 0.8
λ = 1

0 20 40 60 80 100 120 140 160
−100

−50

0

50

100

t

u w

λ = 0
λ = 0.5
λ = 0.8
λ = 1

Fig. 3. Optimal control: Homotopy on the inclination.
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