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Abstract In relation with regularity properties of the transport map in optimal trans-
portation on Riemannian manifolds, convexity of injectivity and nonfocal domains
is investigated on the ellipsoid of revolution. Building upon previous results [4, 5],
both the oblate and prolate cases are addressed. Preliminary numerical estimates are
given in the prolate situation.

Introduction

It is known after the work of Brenier [7] and McCann [12] that, under suitable as-
sumptions, the optimal transport map between two probability measures on a com-
pact Riemannian manifoldX exists and is unique when the cost is the square of the
geodesic distance, d . The issue of the continuity of this map is addressed in a series
of papers of Figalli et al. (cf. [9,10] and references therein). A crucial object in this
respect is the Ma-Trudinger-Wang tensor,
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defined at x 2 X , v 2 I.x/ and ."; #/ 2 TxX " TxX , where I.x/ # TxX denotes
the injectivity domain of x (see §1). On surfaces, positivity of this tensor, namely

" ? # D 0 H) !.x;v/."; #/ $ 0; .x; v/ 2 TX; v 2 I.x/; ."; #/ 2 TxX"TxX;

together with convexity of the injectivity domain I.x/ for all points x are proved
to be necessary and sufficient for the continuity of the optimal transport map. (A
gap exists in dimension greater than two [10].) Using the fact that the exponential
mapping is a local diffeomorphism prior to the first conjugate time, the tensor can
be extended to the nonfocal domain of x, NF.x/ % I.x/ (see §1), and similar re-
sults involving the convexity of the nonfocal domain can also be formulated: On
surfaces, positivity of the extended tensor on nonfocal domains together with con-
vexity of all these domains are sufficient for the continuity of the optimal transport
map. The ellipsoid of revolution provides a one-parameter example whose geometry
is rich enough to illustrate the change in convexity of the two types of domains, in-
jectivity and nonfocal. It has been considered in the oblate case (ellipsoid squeezed
along its axis of revolution) in [4,5]. As a deformation of the round sphere, it paves
the way for a systematic study of surfaces of revolution whose integrable geodesic
flow has a prescribed transcendency. On the ellipsoid of revolution, the quadratures
are parameterized by a complex curve of genus one, and only elliptic functions (and
primitives) are required (see also [6] for the general ellipsoid).

The paper is organized as follows: In Sect. 1, the main definitions are recalled; a
unified framework using a parameterization by an elliptic curve is provided, which
lays the emphasis on the role of singularities of this curve to understand convexity
properties of the domains. It is moreover important to use a Hamiltonian point of
view that allows to interpretate the limit case of the oblate ellipsoid flattened onto a
two-sided disk in connection with almost-Riemannian metrics [1, 3]. Sects. 2 and 3
are devoted to the oblate and prolate cases, respectively. It is proven that the non-
focal domain of a point on the equator is not convex for an oblate enough ellipsoid.
In the prolate case, numerical estimates of the curvature are given using a suitable
compactification suggesting that, for a sufficiently large semi-major axis, convexity
holds for injectivity domain, not for nonfocal ones.

1 Preliminaries

For $ > 0, consider the ellipsoid of revolution with z-axis embedded in R3, x2 C
y2Cz2=$2 D 1. For$ < 1 (resp.$ > 1), one has an oblate (resp. prolate) ellipsoid,
while for $ D 1 the round sphere is retrieved. For .%; '/ 2 R " .0;&/,

x D sin ' cos %; y D sin' sin %; z D $ cos';

is the universal covering of the ellipsoid minus its poles. In the associated coordinates
.%; '/, the metric readsXd%2C.1!X='/d'2 withX WD sin2 ' and' WD 1=.1!$2/.
We set ' D 1 when $ D 1 (round sphere), and use indifferently$ or ' to specify
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the geometry of the surface in the sequel. From the Hamiltonian point of view, one
sets

H.%; '; p! ; p'/ WD 1

2

 
p2!
X

C
p2'

1 !X='

!
&

Because of the symmetry of revolution, % is a cyclic variable so p! is a linear first
integral (Clairaut constant); the geodesic flow is integrable and arc length geodesics
are Hamiltonian integral curves on ¹H D 1=2º.

Proposition 1. The quadrature on ' is parameterized by the complex curve

Y 2 D 4.X ! p2! /.X ! 1/.X ! '/; X D sin2 '; Y D
PX.' ! X/p

'
;

which is elliptic outside singularities.

Proof. On ¹H D 1=2º, p2'=.1 !X='/ D 1 ! p2
!
=X and one has

P' D @H

@p'
D p'

1 !X=' &

Since PX2 D 4X.1 !X/ P'2 , the result follows. ut

When $ < 1 (oblate ellipsoid), ' is positive and the real cubic (Y 2 R) has to
be used; on the converse, when $ > 1 (prolate ellipsoid), ' is negative and the
parameterization is obtained considering the imaginary cubic (Y 2 iR). In both
cases, as p2

!
( X D sin2 ' ( 1, the bounded component of the cubic is used. The

complex curve is homeomorphic to some torus C=ƒ where ƒ D !Z C !0Z is the
real-rectangular lattice of periods. In the oblate (resp. prolate) case, X is !-periodic
(resp. !0-periodic) as a function on the torus. (The period of ' is twice the period of
X D sin2 ', and the period as a function of time is given by some time law).

The singularities are the following. When $ D 0, ' D 1 and the elliptic curve
degenerates to a rational one; geometrically, the ellipsoid is flat and the resulting sin-
gular metric is simply the flat metric on a two-sided disk (see Proposition 3). When
$ D 1, ' D 1 and the curve also degenerates for all p! ; one has the round sphere
whose geodesics are indeed rational curves. For any $, p! D ˙1 (allowed only
when X D 1) corresponds to the equator and is also a degeneracy of the elliptic
curve. Finally, when $ D 1, ' D 0 and the curve degenerates for p! D 0 (merid-
ians); one may expect to use this, together with some compactification, to establish
convexity properties in the prolate case, $ big enough (see the preliminary discus-
sion §3). The bifurcations occuring in the cut and conjugate loci when going from
$ D 0 to $ D 1, then to $ D 1 are portrayed Fig. 1. (See Sects. 2 and 3 on the
structure of these sets in the oblate and prolate settings).

Given an initial point x0 on the ellipsoid, consider the geodesic ( defined by
p0 2 H!1.x0; &/.¹1=2º/; as the manifold is compact,

tcut.x0; p0;$/ WD sup¹t > 0 j ( is minimizing on Œ0; t )º
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" D 0 " 2 .0; 1/ " D 1 " 2 .1;1/ " D 1
Fig. 1 Bifurcation of the cut and conjugate loci of '0 D #=2 when " goes from 0 to 1, then to
1. See §2 for the interpretation when " D 0. When " D 1, the cut locus is the vertical line
antipodal on the cylinder to the initial point (not a pole), and the conjugate locus is empty (see §3)

is finite, and is called the cut time along ( . As a subspace of the cotangent space at
x0, the injectivity domain of x0 is defined according to

I.x0/ WD ¹tcut.x0; p0;$/p0 jH.x0; p0/ D 1=2º:

As convexity is invariant by linear transformations, whether the injectivity domain
is defined as a subspace of the tangent or cotangent fibre does not matter. The expo-
nential mapping is

expx0
.t; p0/ WD x.t; x0; p0/; .t; p0/ 2 R "H!1.x0; &/.¹1=2º/;

where .x.:; x0; p0/; p.:; x0; p0// is the integral curve of H for initial condition
.x0; p0/ (globally defined on the compact manifold). Along ( , the time t is said
to be conjugate if .t; p0/ is a critical point of expx0

; the first of such times, if any,
is called the (first) conjugate time along ( and is denoted tc.x0; p0;$/. The corre-
sponding critical value is the (first) conjugate point. One defines the nonfocal domain
of x0 as

NF.x0/ WD ¹tc.x0; p0;$/p0 j H.x0; p0/ D 1=2º:
Up to the dilation .x; y/ 7! .x=

p
X0; y=

p
1 ! X0='/ which does not change con-

vexity, the boundary of I.x0/ is parameterized by

S1 3 ˛ ! tcut.x0; p0;$/ exp.i˛/; ˛ D arg

 
p!p
X0

C i
p'0p
1 !X0='

!
: (1)

One can also parameterize by p! D cos ˛
p
X0, allowing a ramification above

p'0 D 0 since

p'0 D ˙
p
1 !X0='

q
1 ! p2

!
=X0:

(Two distinct geodesics are generated depending on the sign.) For the sake of sim-
plicity, we denote *.p! / WD tcut.x0; p0;$/ and 0 WD d=dp! . Convexity of the in-
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jectivity domain holds if and only if the curvature of its boundary (provided the
boundary is regular enough) is nonnegative.

Proposition 2. The curvature of the injectivity domain of x0 is

K D X
3=2
0

*.* C p! *
0/C .X0 ! p2

!
/.2* 02 ! ** 00/

Œ.X0 ! p2
!
/.* C p!* 0/2 C .p! * ! .X0 ! p2

!
/* 0/2)3=2

; p2! ( X0;

whose sign is given by

+ WD *.* C p! *
0/C .X0 ! p2! /.2* 02 ! ** 00/:

Proof. In cartesian coordinates,K D .x00y0 ! x0y00/=.x02 C y02/3=2 whenever de-
fined, hence the result. ut

2 Oblate case

Let x0 D .%0; '0/; thanks to the symmetry of revolution, one can set %0 D 0. The
initial condition is thus reduced to '0, that is to X0 D sin2 '0.

Lemma 1. The cut time along a geodesic (not a meridian) is equal to the half-period
of the '-coordinate. As such, * D *.p! ;$/ is independent of X0, and of the sign of
p'0 (no ramification1). The injectivity domain has two axial symmetries, and con-
vexity can be checked on a quarter of the domain.

Proof. When $ < 1, cut points are generated by the discrete symmetry p'0 7!
!p'0: the associated geodesics intersect at t D T=2 where T is the period of '.
The period does not depend on the initial condition since, up to a translation on % ,
any geodesic can be seen as a geodesic with initial condition '0 D &=2. The limit
case p'0 D 0 (where the cut point is a conjugate point) is obtained letting p! tend
to ˙

p
X0. Because of the symmetry involved, *.p! ;!p'0;$/ D *.p! ; p'0;$/

and one has an x-axis symmetry on the injectivity domain. Obviously, p! 7! !p!
induces another symmetry (wrt. y-axis) on the domain. ut

When $ D 0 (' D 1), the metric is singular at X D 1 (that is ' D &=2). Setting
, D sin', one gets

Xd%2 C .1 !X='/d'2 D sin2 'd%2 C d,2 D dx2 C dy2

which is the flat metric on the Poincaré disk D. Geometrically, the ellipsoid is col-
lapsed on the unit disk and the equatorial singularity corresponds to the boundary.
Crossing @D is interpretated as going from one side of the disk to the other, that is
crossing the equator to go from one hemisphere to the other on the flat ellipsoid. As

1 This is not true anymore for conjugate times outside polar or equatorial points; only one axial
symmetry is preserved, see Fig. 4.
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Fig. 2 Injectivity and nonfocal domains (left and right, respectively) of '0 D #=2 in the oblate
case when" ! 0. For" D 1, both domains are disks, while for" D 0 both are union of tangent
disks (of radii 1 and 4=3, respectively)

the metric is flat, geodesics are straight lines, in accordance with the degeneracy of
the parameterization by the elliptic curve in Proposition 1 (double rootX D 1when
' D 1), which trivializes the computation of the cut locus.

Proposition 3. For $ D 0 and '0 D &=2, the cut locus is the equator minus the
initial point. The injectivity domain is the union of two unit disks both tangent to the
x-axis at the origin, and is not convex (Fig. 2).

Proof. The geodesic from any point on the boundary is a straight line segment which
meets again the boundary; the resulting point is a cut point as is intersects the geodesic
from the other side of the disk, and the cut time is just given by the common length of
these segments. The whole boundary but the initial the point is so made of cut points.
In parameterization (1), *.˛/ D 2 sin ˛ and ˛ 7! ˙*.˛/ exp.i˛/, ˛ 2 .0;&/, is the
union of two circles tangent at the origin and of radii one. ut

Remark 1. When $ D 0 and X0 D 1,

p'0 D ˙
p
1 !X0

q
1 ! p2

!
=X0 D 0;

so the dilation used in (1) desingularizes the parameterization of the boundary of
the injectivity domain (which would otherwise collapse on a segment), revealing its
non-convexity.

By continuity, I.'0 D &=2/ cannot be convex for $ small enough; conversely,
when $ D 1, the injectivity domain of any point (including equatorial ones) are
circles of radius & (the cut locus of any point on the round sphere is the antipodal
point, at distance & ), therefore convex. There is so some threshold between $ D 1
and $ D 0 regarding convexity. Besides, for any fixed $ 2 Œ0; 1), the injectivity
domains of poles are circles (as on the round sphere), and the same must hold for
initial conditions '0 2 .0;&=2/ close enough to 0 (by symmetry, one can restrict to
' < &=2). See Fig. 4. The following is proved in [4,5].
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Theorem 1. There is a nondecreasing function'0 7! $.'0/ from Œ0;&=2) to R such
that the injectivity domain I.'0/ on an oblate ellipsoid of semi-minor axis $ ( 1 is
convex if and only if $ $ $.'0/. One has $.0/ D 0 (pole) and $.&=2/ D 1=

p
3

(equator).

The proof makes an essential use of the two following facts: (i) the degeneracy at
p! D ˙1 of the elliptic curve to obtain $.&=2/ D 1=

p
3; (ii) the fact that the cut

time is given by the period of ' (this is not true anymore in the prolate case, see
§3), which allows to derive analytic expressions of * 0 and * 00 using derivatives of
the periods of Weierstraß functions with respect to their invariants. As the thresh-
old$.'0/ is monotonic, injectivity domains of any point on an oblate ellipsoid with
1=

p
3 ( $ ( 1 are convex. The determination of $.'0/ for '0 2 .0;&=2/ is an

open problem. (Numerical estimates are available, though.)
When $ D 0, since crossing the boundary is changing hemisphere, one can also

interpretate the geodesic continuing on the other side as a reflection on @D (with the
usual rule on the angles). As a result, the conjugate locus is obtained as a catacaustic
of the circle (see Fig. 3).

Proposition 4. For $ D 0 and '0 D &=2, the conjugate locus is a cardioid de-
prived of the initial point. The nonfocal domain is the union of two disks of radii 4=3
both tangent to the x-axis at the origin, and is not convex (Fig. 2).

Proof. The catacaustic of the unit circle with a source on the boundary is known to
be the cardioid z.ˇ/ WD .2=3/.1 C cosˇ/ exp.iˇ/ ! 1=3 (see [2]). To prove that
the associated nonfocal domain is the union of two circles, consider the ray gen-
erated by some ˛ 2 .0;&/ in the parameterization (1) (considering ˛ 2 .!&; 0/,
that is p'0 negative, gives the other disk); it is enough to check that w.˛/ WD 1 C
2 cos˛ exp.i.& !˛//C .2=3/ cos˛ exp.!3i˛/ (see construction on Fig. 3) belongs
to the cardioid, which is clear. ut

Remark 2. When $ D 0, the metric is conformal to an almost-Riemannian metric
with a singularity at the equator since

Xd%2 C .1 !X/d'2 D .1 !X/.XR.X/d%2 C d'2/

with R.X/ D 1=.1 ! X/ having a pole of order one at X D 1 (' D &=2). Such
metrics are particular cases of sub-Riemannian metrics and are considered in [1,3].
Here, the conformal coefficient itself is singular, but the analysis is obvious because
of the flatness of the metric. Note that the cut locus of an equatorial point is the equa-
tor minus a point, and that the contact of the conjugate locus with the initial point is
of order one (compare Theorem 1 and 2 in [3]).

As for the injectivity domain, there exists some threshold phenomenon for the loss
of convexity of the nonfocal domain of '0 D &=2 when $ goes to zero (see Fig. 2).
Conversely, for a fixed $ ( 1, convexity of nonfocal domains is retrieved when
'0 tends to zero (see Fig. 4). Although numerical investigation suggests that some
result similar to Theorem 1 may hold for nonfocal domains, the problem is open.
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Fig. 3 Conjugate locus and nonfocal domain for " D 0 and '0 D #=2. On the disk, geodesics
are straight lines starting from a point on the boundary and crossing@D when changing hemisphere
can be seen as reflecting on @D. The envelope of reflected rays forms the conjugate locus obtained
as a catacaustic of the circle with source point on its boundary (leftmost graph). The geometric
construction of the nonfocal domain from the cardioid is illustrated on the righmost picture

3 Prolate case

When $ > 1, some loss of symmetry occurs, except when X0 D 1.

Lemma 2. The cut time along a geodesic (not a meridian) is obtained solving % D
& . As such, * D *.p! ;$/ is independent of X0 but depends on the sign of p'0.
The injectivity domain has just one axial symmetry wrt. y-axis, and convexity can
be checked on a half of the domain.

Proof. The situation in the prolate case is reversed compared to the oblate one: The
symmetry p! 7! !p! now generates intersections between geodesics emanating
from the same point at length shorter than those generating by p'0 7! !p'0. Along
every geodesic not a meridian, the cut is thus obtained at % D & (while the meridian
case is obtained as an envelope, letting p! tend to 0, providing a point both in the
cut and conjugate loci). Clearly, ˙p! provide the same cut time, so the symmetry
wrt. the y-axis of the injectivity domain is preserved. On the contrary, for X0 ¤ 1,
geodesics with same p! but opposite p'0 do not cross % D & at the same time, so
that * actually depends on the sign of p'0; it has to be thought of as a function ram-
ified above p'0 when parameterizing by p! alone. To prove that * D *.p! ; X0;$/
actually does not depend on the initial condition, define -% the quasi-period of % ,
that is the increment from %0 D 0 on a period of '. (According to Proposition 1, the
period ofX , and so of ', is given in the complex parameterization by the imaginary
period of the lattice). As in the oblate case, the period of ' only depends on p! , and
so does -% . Given p! > 0, as dt=d% D 1= P% D X=p! > 0, one can reparametrize
using % instead of t ; since P% and ' have the same period, X remains periodic as a
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Fig. 4 Injectivity and nonfocal domains (left and right, respectively) for" < 1=
p
3 when '0 !

0. For '0 D 0, both domains are disks, though for '0 D #=2 none are convex. Observe the loss
of the axial symmetry wrt. the x-axis for the nonfocal domain

function of % (with period-%.p! //, and

* D
Z #

0

X.%/

p!
d%:

Let t1 > 0 be the first intersection of the geodesic with ' D &=2, assuming for the
sake of simplicity '0 < &=2 and p'0 > 0 (the same kind of argument works for
p'0 < 0). The geodesic of initial condition .%.t1/;&=2/with same p! (and positive
p'0) has cut time

z* D
Z !.t1/C#

!.t1/

X.%/

p!
d% D

Z #

0

X.%/

p!
d%

by periodicity of X.%/, so * D z* , cut time associated with initial condition &=2,
whatever '0. ut

Up to translation,X is given by some Weierstraß function, }, whose invariants de-
pend only on p! and ' (that is on p! and$ – see Proposition 1). In the parameteriza-
tion by z 2 C=ƒ, one checks that the resulting quadrature on % involves integrating
rational fractions in } such as

Z
}0.a/ dz

}.z/ ! }.a/
D 2..a/z C ln

!.z ! a/
!.z C a/

where .0 D !} and ! 0=! D .. Studying the roots of an equation with such tran-
scendence is a complicated task. We provide a preliminary analysis trying to take
advantage of the degeneracy for $ D 1 when p! D 0, and using numerical esti-
mates.

Proposition 5. The metric of the prolate ellipsoid converges pointwisely outside
poles to the metric of the flat cylinder of revolution when $ ! 1. All injectivity
and nonfocal domains of the cylinder are convex.
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Proof. Recalling that z D $ cos', the metric on the ellipsoid writes
!
1 ! z2

$2

"
d%2 C

!
1C z2

$2.$2 ! z2/

"
dz2

and convergence is clear. The geodesics on the cylinder of revolution are either ver-
tical lines (p! D 0) without cut points, or helices (dz=d% D pz=p! D cst); in the
second case, the cut time is &=jp! j (cut point on the antipodal vertical line). Injec-
tivity domains are therefore all equal to a vertical strip Œ!&;&)"R, and convex. The
metric is flat and there are no conjugate points, so nonfocal domains are the whole
fiber (' R2) at any point, also convex. ut
In contrast with the oblate case, another complication is so that there is no obvious
obstruction to convexity arising from the asymptotic behavior when $ ! 1. With
implicit function use on % D & in mind, we recall the computation of the sensitivi-
ties wrt. initial condition of first (Jacobi fields) and second order for a Hamiltonian
system.

Remark 3. The fact that the metric converges towards a flat metric (previous Propo-
sition)does not even entail that the limit, after some compactification, of the nonfocal
domains must be convex (see Fig. 5).

Let Pz D !!
H.z/ be a smooth Hamiltonian system, with z D .x; p/ 2 R2n and

!!
H D .@pH;!@xH/. The solution z.&; z0/ with initial condition z.0/ D z0 depends
smoothly on z0, and for any ız0 2 R2n one has

@z

@z0
.t; z0/ız0 D ız.t/;

@2z

@z20
.t; z0/.ız0; ız0/ D ı2z.t/;

where ız and ı2z are solutions of, respectively (byHŒt ) we meanH.z.t; z0//, etc.),

Pız D !!
H 0Œt )ız; ız.0/ D id;

!! !" !# !$ % $ # " !
!"

!#

!$

%

$

#

"

!! !" !# !$ % $ # " ! &
!"

!#

!$

%

$

#

"

Fig. 5 Injectivity and nonfocal domains (left and right, respectively) of '0 D #=2 in the prolate
case when " ! 1. While convexity seems to hold at " D 1 (and before) for the injectiv-
ity domain, nonfocal domains are clearly not convex for " large enough, suggesting a threshold
phenomenon as in the oblate case when " ! 0
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" < ".'0/ ".'0/ " " " < z".'0/ z".'0/ " " " O".'0/ O".'0/ < "

Fig. 6 Conjecture on the bifurcation of convexity of injectivity and nonfocal domains on the ellip-
soid of revolution for a given point ('0) not a pole when " goes from 0 to 1. Leftmost graph: For
the injectivity domain, there might be only be one threshold".'0/ < 1. Rightmost graph: For the
nonfocal domain, there might be two thresholds z".'0/ < 1 and O".'0/ > 1, as convexity might
be retrieved for" close to 1, and lost again for " large enough

Pı2z D !!
H 0Œt )ı2z C !!

H 00Œt ).ız.t/; ız.t//; ı2z.0/ D 0:

The numerical computation of these sensitivities, up to order two, is performed by the
cotcot software2 combining automatic differentiation and numerical integration
of ordinary differential equations. In our case, z D .%; '; p! ; p'/ and, for p! ¤ 0,
* is implicitely defined by %.*; p!/ D & . As previously mentioned, there is a de-
pendence of the geodesic not only on p! but also on the sign of p'0. The initial
condition on ¹H D 1=2º writes

z0.p! / WD
!
p! ;˙

p
1 !X0='

q
1 ! p2

!
=X0

"
:

Proposition 6. For 0 < p2! < X0, the derivatives of first and second order are

* 0 D ! 1P%
ı%; * 00 D ! 1P%

. R%* 02 C 2ı P%* 0 C ı2% C zı%/;

where ı% (resp. ı2%) is the first (resp. second) variation associated with ız0 D
z0
0.p! /, zı% the first variation associated with zız0 D z00

0 .p! /, and where all func-
tions are evaluated at *.p! /.

Proof. Apply implicit function theorem to %.*; p!/ D & noting that P% D p!=X ¤
0 whenever p! ¤ 0. ut
Whereas the worst case for curvature on an oblate ellipsoid, whatever the point, is
given by the equator (p2

!
D X0), numerical simulations below indicate that the worst

case in the prolate situation is given by meridians, p! D 0, at the apparent singular-
ity of the expressions before. Worst cases for curvature of injectivity domains (and,
seemingly, of nonfocal domains – see Fig. 5) actually occur along geodesics where
cut points are conjugate ones (equator in the oblate case, meridian in the prolate one).

To achieve numerical convergence of the domains, and of the curvature, we use
a second dilation: .x; y/ 7! .x; y=$/. The curvature is thus renormalized according

2 apo.enseeiht.fr/cotcot
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to

zK D .1=$/X
3=2
0

*.* C p!*
0/C .X0 ! p2

!
/.2* 02 ! ** 00/

Œ.X0 ! p2
!
/.* C p!* 0/2 C .1=$/2.p! * ! .X0 ! p2

!
/* 0/2)3=2

&

This provides a heuristical compactification of domains and curvature, but has the
effect that the parameterization byp! D cos˛

p
X0 becomes singular when$ ! 1

as

˛ D arg

 
p!p
X0

C i
p'0p

1C .$2 ! 1/X0

!
! 0

wheneverp! ¤ 0. One parameterizes instead zK usingˇ WD arg.cos˛C.i=$/ sin˛/.
On the basis of numerical estimates computed as in Proposition 6, the following ob-
servations can be made: (i) For '0 D &=2, numerical convergence of the (renormal-
ized) injectivity domain is obtained (see Fig. 5); the limit domain seems to be con-
vex, which suggests that convexity holds for equatorial points and $ large enough.
A stronger conjecture would be convexity for all $ > 1, or even for all $ > 1
whatever '0 (see also Fig. 8 in this respect). (ii) For '0 D &=2, an estimation of the
curvature zK of the (renormalized) injectivity domain is obtained (see Fig. 7), not
contradicting (i). (iii) For '0 D &=2, numerical convergence of the (renormalized)
nonfocal domain is also obtained (see Fig. 5), which suggests that convexity does
not hold for large enough$; one can conjecturate a threshold phenomenon as in the
oblate situation. (iv) The dependence of the convexity on the initial condition for
$ > 1 seems to be more complicate than in the oblate case, both for injectivity and
nonfocal domains, as no monotonic behaviour seems to hold (see Fig. 8). For a fixed
'0, Fig. 6 summarizes the previous conjectures on the bifurcation of the domains in
terms of convexity.

!4 !3 !2 !1 0 1 2 3 4
!0.5

0

0.5

1

1.5

2

2.5

Fig. 7 Renormalized curvature zK of the injectivity domain for " D 1 and '0 D #=2. The
parameter in abscissa is ˇ D arg.cos˛ C .i="/ sin˛/ with p! D cos˛

p
X0 so meridians

are retrieved for ˇ D ˙#=2. They actually correspond to the minimum estimated value of the
curvature, in accordance with Fig. 5
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Fig. 8 Injectivity and nonfocal domains (left and right, respectively) for " > 1 when '0 ! 0.
For '0 D 0, both domains are disks; for '0 D #=2, the injectivity domain remains convex but
not the nonfocal domain. For '0 2 .0;#=2/, domains only have one axial symmetry. Monotonic
dependence of the curvature on '0 does not seem to hold, either for the injectivity domain, or for
the nonfocal one
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