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Trajectory design and stationkeeping of solar sails about a celestial body can be formulated as control problems

with positivity constraints. Specifically, when reemitted radiation is neglected and the sail is modeled as a flat surface,

which are reasonable assumptions for control purposes, the force generated by the solar radiation pressure is

contained in a pointed convex cone of revolution with the axis in the sun–satellite direction. Therefore, classical

approaches to infer controllability based on the Lie algebra rank condition do not apply to these problems. This study

offers a novel condition to decide on controllability of control systems with positivity constraints. This condition is

effective because it can be verified by solving an auxiliary convex optimization problem for which reliable numerical

methods are available. A crucial ingredient of this approach is the theory of positive trigonometric polynomials. The

practical interest of this condition is the assessment of a minimum requirement on the optical properties of the sail,

which may be of use for mission design purposes.

I. Introduction

S OLAR sails offer a propellantless solution to perform interplan-

etary transfers, planet escapes, and deorbiting maneuvers by

leveraging on solar radiation pressure (SRP) ([1] Chap. 2). Although

very few solar-sail missions have been launched to this date, the

possibility to use SRP as an inexhaustible source of propulsion has

attracted the interest of researchers in the last decades, therefore

leading to several contributions on the guidance and control of solar

sails. Specifically, a large body of literature focuses on the math-

ematical formulation and numerical solution of optimal control

problems (OCPs) to find minimum-time interplanetary transfer tra-

jectories using optimization techniques with locally optimal control

laws [2,3], indirect methods [4], or even neural networks [5]. In

addition, several contributions investigate locally optimal steering

laws tomaximize the instantaneous rate of change of a desired orbital

element, with particular focus on the increase of the semimajor axis

for orbit raising [6] or decrease of the perigee altitude for deorbiting

applications [7]. Classical feedback algorithms are also used to find

suboptimal trajectories: for instance, the Q-law algorithm in Ref. [8].

Direct methods are often preferred to find the numerical solution of

OCP for solar-sail transfers [9–11]. This is due to the fact that direct

methods do not require an initial guess of the adjoint variables, as

opposed to indirect techniques that, for this reason, have been used in

few studies [12–16].

Interestingly, very few studies on the controllability of solar sails

are available to date, although an analysis of the reachable set of

passive sails was discussed in Ref. [17]. Most often, the solutions of

two-point boundary value problems coming, for instance, from

optimal control are investigated without assessing beforehand

whether the targeted final state is within the reachable set of the

control system from the initial point, i.e., if the sail is capable of

achieving the desired maneuver. Although exhibiting a solution of

the two-point boundary value problem proves reachability as a side

result, it is of paramount importance to certify noncontrollability and
seek for solutions only when controllability holds.
A major difficulty in assessing the controllability of an SRP-

actuated system is that the sail cannot generate a force with a
positive component toward the direction of the sun, and so the
classical tools of geometric control theory cannot be used. For
example, one of the requirements for the controllability is that the
Lie algebra of the system must have full rank. It is indeed satisfied
by the solar sail, unless a fully absorptive surface model of the sail is
considered, which is physically unfeasible. However, even in this
case, theory requires that the control set is a neighborhood of the
origin, implying that both positive and negative controls should be
generated, and so it is not sufficient to analyze solar sails. This
aspect is particularly critical when considering a nonideal sail
model for which the sail is assumed to be flat but not perfectly
reflective. In this case, the control set is contained inside a strictly
convex cone of revolution, for which the angle depends on the
optical properties of the sail.
The main contribution of the paper consists of a controllability

check for nonideal solar sails in planet-centered orbits. This require-
ment is aimed at assessing whether a nonideal solar sail with given
optical parameters is capable of decreasing or increasing all possible
functions of the Keplerian integrals of motion (e.g., Keplerian or
equinoctial orbital elements) over an orbital period. In other words,
we propose a methodology allowing us to verify if a solar sail can
change the orbit in any desirable way. Given some optical properties,
a convex cone containing all possible directions of the SRP force is
first defined. Then, the necessary controllability condition we pro-
pose is verified by means of a worst-case optimization problem
characterized by a finite number of design variables and a two-
parameter family of inequality constraints, namely, the clock angle
of the convex cone associated to the control set and the true anomaly
of the sail. A numerical solution of this semi-infinite problem is
achieved by leveraging on the formalism of squared functional
systems ([18] Chap. 17, [19] Chap. 3) to exactly enforce inequality
constraints for all values of the true anomaly and clock angle. No
discretization is performed to solve the problem numerically. Even-
tually, the semi-infinite problem is recast into a finite-dimensional
convex programming problem with a finite number of linear matrix
inequalities (LMIs) and a unique well-defined solution. Nonsatisfac-
tion of the condition entails some local noncontrollability of the
system for the given value of the cone angle (and consequently of
the optical properties) and orbital conditions. Hence, a fine numerical
analysis covering the entire phase space of orbital elements is carried
out to determine theminimumcone angle for a large range of orbits. It
is shown that a universal (namely, planet-independent) minimum
cone angle exists that satisfies the condition for all orbits. Its value
is about 60 deg (note that 0 and 90 deg correspond to fully absorptive
and perfectly reflective sails, respectively). The result indicates
that the sail does not have to be ideal to satisfy the requirement.
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The methodology is based only on the conical hull of the control set,
regardless of the specific source of nonideality of the sail (e.g.,
specular reflection, diffuse reflection, or reemitted radiation) ([1]
Chap. 2). This result can be used to provide insight into the control-
lability of the sail during its lifetime, owing to the degradation of its
optical properties discussed in Ref. [20] and may support the design
of real-life missions by serving as a minimal requirement to be
satisfied.
Section II introduces the solar-sail dynamical model, the geometry

of the problem, the equations of motion, and the assumptions used in
this work. Section III outlines the novel condition for investigating
the local controllability of systems with peculiar constraints on the
solar-sail control set. An efficient numerical methodology based on
convex programming to evaluate the aforementioned condition is
detailed in Sec. IV. Finally, this methodology is extensively used in
Sec. V to deduce minimal requirements on the optical properties of
solar sails, and an example of stationkeeping around the moon is
provided. The controllability of heliocentric orbits is briefly dis-
cussed as well.

II. Dynamics of a Solar Sail

A. Force Model

Solar sails use SRP as propulsive means for orbit control and
maneuvering. The SRP is generated by the interaction between pho-
tons and the surface of the sail, and its magnitude depends on the sun–
sail distance r. Specifically, denoting by ΦSR � 1367 W ⋅m−2 the
solar flux at r� � 1 AU (astronomical unit) from the sun and by c the
speed of light, a simple model for the SRP is given by ([21] Chap. 3)

PSR � ΦSR

c

�
r�
r

�
2

A flat sail with surfaceA andmassm is considered in thiswork. The
resulting force depends on various optical and geometrical properties
of the sail; and it is obtained by summing up the force contributions of
the incoming, reflected, and thermal radiations, namely,fa,f r, andfe.
In addition, the force given by the reflected radiation is divided into
specular and diffuse components, f rs and f ru, respectively. Figure 1a
displays the directions of these force components, which can be
identified through the sun–sail direction ŝ; the unit vector normal to
the sail having a positive component along ŝ (n̂); the specular direction

to ŝwith respect to n̂ (ξ̂); and the tangent unit vector t̂ lying in the plane
generated by ŝ and n̂ and defined as

t̂ ≔
n̂ × ŝ

kn̂ × ŝk × n̂ � ŝ − cos βn̂

sin β

where β is the so-called solar-sail pitch angle defined as cos β � n̂ ⋅ ŝ.
Note that based on the definition of n̂, cos β is always nonnegative. As
shown in the sketch of Fig. 1a, the force due to the incoming radiation
fa points along ŝ. The force provided by the specularly reflected

radiation f rs points along ξ̂ and is caused by photons that are reflected
symmetrically with respect to the normal of the sail, thus yielding an
exchange of momentum. Diffuse reflection stems from the sail surface
roughness, which causes photons to be uniformly reflected in all
directions, yielding a component of the force toward the direction
normal to the sail n̂. Finally, as the absorbed photons are reradiated in
all directions, the force fe is generated, which is orthogonal to the sail
surface and points again along n̂.
Based on chapter 2 of Ref. [1], the unit vectors ŝ and ξ̂ can be

expressed in terms of n̂ and t̂ as

ŝ � cos βn̂� sin βt̂

ξ̂ � cos βn̂ − sin βt̂

so that the aforementioned forces can be expressed as [22]

fa � ε cos βŝ � ε cos β
�
cos βn̂� sin βt̂

�
f rs � ερs cos β ξ̂ � ερs cos β

�
cos βn̂ − sin βt̂

�
f ru � εBfρ�1 − s� cos βn̂

fe � ε�1 − ρ� εfBf − εbBb

εb � εf
cos βn̂ (1)

In Eq. (1), ε � APSR m−1, which combines optical and physical
parameters of the sail and has small magnitude; ρ ∈ �0; 1� is the
fraction of reflected radiation to the total amount of radiation illumi-
nating the sail; s ∈ �0; 1� is the fraction of specularly reflected radi-
ation to the total reflected radiation; εb and εf are the back and front
surface emissivity coefficients, respectively; and Bb and Bf are back

and front non-Lambertian coefficients, respectively. The SRP force is
found as

fSRP � fa � f rs � f ru � fe

B. Parametrization of the Control Set

Controlling the sail attitude (i.e., the normal vector n̂) allows us to
change the direction and magnitude of the resulting SRP. A reliable
inference of optical coefficients is indeed mandatory to accurately
estimate the mapping between n̂ and fSRP.
To carry out controllability analysis, solar-sail dynamics is

conveniently modeled as a nonlinear control-affine system (see

a) Schematic representation

0 1 2
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0

0.25

0.5

0.75

1

b) Control sets for different reflectivity
coefficients and 

Fig. 1 Components of the SRP force. In Fig. 1b, uX is the projection of u towards ŝ, whereas uY and uZ are orthogonal components.
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Sec. II.C), where the control variable is homogeneous to the force

vector, namely, u ≔ �fSRP∕ε�. Control set U ⊂ R3 is then given by

U �
�
u � fSRP�n̂�

ε
; n̂ ∈ R3; kn̂k � 1

�
Figure 1b shows the intersection ofU on the plane generated by n̂

and ŝ for various optical properties. The set is a surface of revolution
with axis ŝ, and it is nonconvex unless ρ � s � 1. Note that the

interior of the surface is not part of U. When reemitted radiation is

neglected, which is most often a reasonable assumption for control

purposes, U contains the origin but mapping between n̂ and u is

nonsmooth at this point. Two extreme cases can be identified: ideal

sails are constituted by perfectly reflective surfaces (ρ � s � 1),
whereas perfectly absorptive surfaces are the worst-case scenario

(ρ � 0, with fe neglected) because SRP is systematically parallel to

ŝ. Although sails are designed to be as close to ideal as possible,

partial absorption of the energy is unavoidable in real-life applica-

tions; in addition, optical properties exhibit degradation with time.

Hence, the fraction of reflected radiation decreases with the lifetime

of the satellite, as was discussed in Refs. [20,23].

C. Equations of Motion

The controllability of a solar sail in orbit around a celestial body is

considered in this study. The following assumptions are introduced:
1) The orbital period of the sail is much smaller than the one of the

heliocentric orbit of the attractor so that variations of the sun direction
ŝ over a single orbit of the sail are neglected.
2) Solar eclipses are neglected. Targeting a certification of non-

controllability in Sec. III, this assumption is conservative because
controllability can only deteriorate while including eclipses because
no SRP can be generated in the shadow. Eclipses restrain the time
period of control of the satellite. Moreover, as we highlighted before,
our results are independent of the semimajor axis of the orbit, which
has a major impact on the duration of eclipses during the orbital
period. Therefore, in order to provide a conservative planet-
independent and semimajor-axis-independent result, we suppose
the sail is controlled over the whole orbital period.
3) Reemitted radiation is neglected. In fact, this component of SRP

can be reasonably regarded as a disturbance for control purposes.
The equations of motion are written in a set of Keplerian-like

orbital elements, which leverages the axial symmetry of the problem

with respect to the sun’s direction; namely, consider a reference frame

S with the origin at the center of the planet, the X̂ axis toward ŝ, Ŷ
lying in the plane of the planet’s orbit around the sun and orthogonal

to X̂, and Ẑ chosen to form a right-hand frame. Because this study

focuses on short-time controllability (characteristic time is of the

order of one orbital period), the motion of this frame is neglected by

virtue of the first assumption given earlier in this paper. Figure 2

represents the vectors h, e, and N̂, which denote the angular momen-

tum, the eccentricity, and the ascending node vectors, respectively.

Let γ1, γ2, and γ3 be Euler angles orienting the eccentricity vector

according to an X-Y-X rotation, as depicted in Fig. 2, so that γ2 is the
angle between the angular momentum of the orbit and the sun

direction; and a, e, and f are the semimajor axes, eccentricity, and

true anomaly, respectively. The motion of slow elements,

I � �γ1; γ2; γ3; a; e�T ∈ M, where M is the configuration manifold,

is governed by

dI

dt
� ε

��������������������
a�1 − e2�

μ

s
G�I; f�R�I; f�u

df

dt
� ω�I; f� � εF�I; f�R�I; f�u (2)

where components of u are in the reference frame S,

R�I; f� � RX�γ3 � f�RY�γ2�RX�γ1�

is the rotation matrix from reference to the local-vertical/local-hori-
zontal frames,¶

ω�I; f� �
����������������������

μ

a�1 − e2�3
r

�1� e cos f�2

and both F�I; f� and G�I; f� can be deduced from the Gauss varia-
tional equations of the classical elements, where G�I; f� is

G �

0BBBBBBBBBB@

0 0 sin�γ3�f�
sin γ2�1�e cos f�

0 0 cos�γ3�f�
1�e cos f

− cos f
e

2�e cos f
1�e cos f

sin f
e

cos�γ3�f�
1�e cos f

2ae
1−e2 sin f

2ae
1−e2 �1� e cos f� 0

sin f e cos2 f�2 cos f�e
1�e cos f 0

1CCCCCCCCCCA
The peculiar choice of Euler angles follows from the symmetry of

system (2), namely, axial symmetry with respect to the axis X̂; and it
has the main consequence that the controllability results in Sec. Vare
independent of γ1, which is a rotation about this axis. We also note
that �1� e cos f�G�I; f�R�I; f� is a trigonometric polynomial in f
because eclipses were neglected. This has significant advantages for
the numerical methodology detailed in Sec. IV.
Finally, orbital perturbations (other than SRP) are not included in

Eq. (2) because we are interested in investigating geometric obstruc-
tions to the controllability of solar sails, regardless of their size.

III. Controllability of a Solar Sail

We are interested in studying obstructions to the controllability of
solar sails in orbit about a celestial body. More precisely, we want to
assess the existence of variations of the current orbital elements set
that a sail cannot generate after a single orbital period.
The classical approach to inspect controllability of control-affine

systems with periodic drift was detailed in Ref. [24] and chapter 4 of
Ref. [25]. Specifically, global controllability (that is the existence of
an admissible control steering the system from any initial point
toward any target) is guaranteed, provided that the following suffi-
cient conditions are met:
1) The drift of the system is periodic (or,more generally, recurrent).
2) The Lie algebra rank condition (LARC) holds; namely, the

set of vector fields defining the control-affine system are bracket
generating.
3) The convex hull of the control set U is a neighborhood of the

origin in R5.

Fig. 2 Euler angles γi orienting the orbit according to a X̂-Ŷ-X̂ rotation
with respect to the reference frame S. Here, h and e denote the angular
momentum and eccentricity vectors.

¶Here, RA�ϕ� denotes the rotation matrix of angle ϕ about the axis Â.
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Keplerian motion satisfies the first condition. Two different cases
are distinguished for the computation of the rank of the Lie algebra:
First, perfectly absorptive sails (i.e., ρ � 0) are such that the control
set degenerates to a segment aligned to ŝ, as shown in Fig. 1b. The
Appendix offers a detailed evaluation of Lie brackets in this case,
which shows that the algebra is rank deficient. This allows us to prove
noncontrollability of the system and to deduce an integral of motion,
namely, the projection of the angular momentum toward ŝ ([26]
Chap. 12). Second, real-life sails are such that ρ is strictly positive
and smaller than one. In this case, the control set is no longer
degenerate and the system is bracket generating. Nevertheless, con-
trollability of this system cannot be assessed because U does not
contain the origin in its interior (the origin is on the boundary of the
control set, as depicted in Fig. 1b) so that the third condition is not
satisfied, and the classical approach cannot be used to investigate
controllability of this system.
A novel sufficient condition relaxing the third requirement was

proposed by the authors in Refs. [27,28]. According to that result,
system (2) is controllable with respect to the slow variables, both
globally (meaning that there exists an admissible control allowing to
reach any final orbit from any initial one) and “locally in one period of
the fast variable” (meaning that there is a neighborhood of the initial
orbit that can be reached in no longer than one period of the initial
orbit) if the control set U contains the origin (not necessarily in its
topological interior), and if, for all I in M, the following condition
holds:

cone

�
dI�f; I; u�

dt
; u ∈ U; f ∈ S1

�
� TIM (3)

where S1 denotes the unit circle so that f ∈ �0; 2π�, and TIM denotes
the tangent space to the manifoldM at point I ∈ M (intuitively, TIM
is the vector spacemade of the velocities of all curves passing through
point I). Herebefore, the operator cone indicates the conical hull: for a
subset A of a vector space, coneA is the set of linear combinations
with nonnegative coefficients of vectors of A,

cone A�
�Xk

i�1

λixi;k∈N;�λ1;: : : ;λk�∈ �0;�∞�k;�x1;: : : ;xk�∈Ak

�

It is always a convex pointed cone. If condition (3) only holds at one
point, it remains true around it, and controllability in the correspond-
ing neighborhood follows. Clearly, because of the periodicity of the
free motion, the angular position determined by the true anomaly
does not play any role; any initial/final longitude can be departed
from/reached up to some additional time spent along the periodic
initial/final orbit. This result does not have an exact converse, but we
examine a condition that clearly contradicts condition (3). Clearly,
condition (3) cannot hold if, for some orbit I0, there exists a nonzero
covectorpI0 ∈ T	

I0
M (T	

I0
M is the dual of the vector space TI0M, i.e.,

the vector space of all linear maps TI0M → R) such that	
pI0 ;

dI�f; I0;u�
dt



> 0; f ∈ S1; u ∈ cone U; kuk � 1 (4)

where h⋅; ⋅i denotes duality between covectors and vectors (i.e.,
applying a linear form to a vector); note that u ∈ U [from condition
(3)] has been replaced with u ∈ coneU; kuk � 1, which is a way to
select a nonzero vector in each half-line from the origin containing an
element ofU; the covectorpI0 represents a linear coordinate function

that may only increase at first order. Because the strict inequality also
holds, replacing I0 by any I in a small enough neighborhood, con-
dition (4) entails an obstruction to local controllability in the follow-
ing sense: one can find a half-space of the neighborhood of I0 where
motion is forbidden (see Fig. 3) when starting from I0 and staying in
this neighborhood; in practice, thismeans that there is one function of
the orbital elements (say, the semimajor axis) that the sail cannot
decrease while remaining close to the original orbit (and if the thrust
is small, one period is not long enough to go far). Orbits in the

forbidden half-neighborhoodmight, however, be reached (i.e., global
controllability could hold) but only by trajectories thatmust leave this
neighborhood; in practice, this means that the sail we just mentioned
could [even if condition (4) holds] be capable of decreasing its
semimajor axis, but only at the price of first going “far” from the
neighborhood of the initial orbit (by significantly increasing its
inclination, for example).
For a detailed discussion on the gap between Eq. (4) and the

negation of condition (3) for general control systems, we refer to
the academic examples in section 2 of Ref. [28].

IV. Numerical Methodology to Inspect Local
Controllability

Given some optical properties of the sail and orbital state I, we are
interested in determining if Eq. (4) has any nontrivial solutionpI ≠ 0.
Two manipulations are introduced to facilitate this task.
First, let us denote

eG�I; f� ≔ �1� e cos f�G�I; f�R�I; f�

Therefore, the time derivative of I in Eq. (4) can be replaced as
follows:

dI

dt
� ε

1� e cos f

��������������������
a�1 − e2�

μ

s eG�I; f�u

Because

ε

1� e cos f

��������������������
a�1 − e2�

μ

s

is positive, eG�I; f�u has the same sign as dI∕dt,

dI

dt

The fact that eG�I; f� is a quadratic trigonometric polynomial in f
offers major benefits when positivity constraints are numerically
enforced in Sec. IV.B. This operation has no impact on the sign of
Eq. (4).We also note that system (2) is axially symmetric with respect
to the sun–planet direction because it is independent of γ1 and that the
semimajor axis and planetary constant have no impact on the sign of
Eq. (4). Hence, all outcomes of this controllability study are inde-
pendent of both the semimajor axis and γ1 (because of symmetry),
and they are valid for any attractor (spherical symmetric central body)
because themagnitude of SRP does not impact the noncontrollability
condition (which is a geometric obstruction).
Second, the control set U is replaced by its conical hull Kα ≔

cone�U�, which is a cone of revolution of angle α, as illustrated in
Fig. 4. This approximation makes the problem convex, which has a
major advantage for numerical computation. ReplacingU byKα has
no impact on the closure of the reachable set of the control system, as

Fig. 3 Schematic representation of a half-space of the neighborhood of
I0 where motion is (locally) forbidden.
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discussed in Ref. [28]. Therefore, noncontrollability of the system

with controls in Kα implies noncontrollability of the system with the

original control set U. Neglecting thermal radiation (this simplifica-

tion is not strictly necessary), cone angle α can be directly deduced

from the optical properties of the sail introduced in Eq. (1). The

relation is obtained by solving

tan α � max
β∈�0;�π∕2��

k�I − ŝŝT�fSRPk
fSRP ⋅ ŝ

� max
β∈�0;�π∕2��

ρs sin 2β� Bfρ�1 − s� sin β
1� ρs cos 2β� Bfρ�1 − s� cos β (5)

This condition holds for

β	 � cos−1
�
−Bfρ�1 − s��3ρs� 1� � ���

κ
p

8ρs

�
with

κ � B2
fρ

2�1 − s�2��3ρs − 1�2 − 4ρs� − 32ρ2s2�ρs − 1�

where β	 denotes the solution of the maximization performed on the

right-hand side of Eq. (5).
If Bf � 0, Eq. (5) simplifies to

α�ρ; s� � tan−1
�

ρs������������������
1 − ρ2s2

p �
; ρs � tan α��������������������

1� tan2α
p (6)

Hence, Eq. (4) is finally recast into

∃pI ∈ T	
I M; pI ≠ 0 such that

hpI; eG�I; f�ui > 0; f ∈ S1; u ∈ Kα; kuk � 1 (7)

A. Constructive Approach to Verify the Controllability Condition

A practical check of feasibility of problem (7) is carried out by

solving the auxiliary optimization problem

max
J;kpIk≤1

J

subject toD
pI; eG�I; f�u

E
≥ J; f ∈ S1; u ∈ ∂Kα; kuk � 1 (8)

The constraint kpIk ≤ 1 is preferred to kpIk � 1 to preserve

convexity of problem (8). Problem (8) is convex and semi-infinite

because inequality constraints need to be enforced on two infinite

sets, namely, for all true anomalies between 0 and 2π and for all u on

the surface of the cone. Evaluating inequalities in the interior of the

cone is not necessary because the dynamics are affine in u. If J	
[which is the solution of problem (8)] is positive, problem (7) is

verified: then, as discussed in the previous section, for the cone angle

α, there is an obstruction to local controllability around the orbit I.
Conversely, when Eq. (3) holds at** I, both J	 and the associated

minimizer pI must be zero.
A question of interest for mission design purposes is to identify

minimal optical requirements that satisfy the necessary condition.

This can be achieved by solving

min
α

α

subject to

J	�α� � 0 (9)

where J	�α� denotes the solution of problem (8) for a given α. This
angle can then be mapped into minimal requirements for the reflec-

tivity of the sail via Eq. (6). Figure 5 provides an example of this

process for a specific orbit (the detailed algorithm to achieve these

solutions is provided in Sec. IV.B). Theminimumcone angle solution

of problem (9) (for the specific I used in this simulation) is empha-

sized with a diamond.

B. Optimization Problem

The numerical solution of problem (8) is achieved by using the

formalism of positive trigonometric polynomials [18,19] to enforce

positivity constraints for all values off anduwithout introducing any
relaxation or discretization of the problem.
Let δ be an angle parametrizing control vectors on the surface of

the cone, as shown in Fig. 6. Therefore, u on the surface of the cone

can be expressed as

Fig. 4 Approximation of the control set (blue) by a convex cone (red).

0 20 40 60 80

0

0.1

0.2

Fig. 5 Example of the solution of problems (8) (black curve) and (9) (red
dot). Here, γ2 � 50 deg, γ3 � 40 deg, and e � 0.7.

**In practice, of course, the check can only be made at a single point,
whereas the condition must hold for all I to ensure global controllability.

904 HERASIMENKA ETAL.

D
ow

nl
oa

de
d 

by
 J

ea
n-

B
ap

tis
te

 P
om

et
 o

n 
Ju

ly
 6

, 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
72

50
 



u �
24 cos α
cos δ sin α
sin δ sinα

35
According to Eq. (8), positivity of the following constraints must be

verified:

pT
I
eG�I; f�u − J ≥ 0 f ∈ S1; u ∈ ∂Kα (10)

Inspection of eG�I; f�u reveals that Eq. (10) is a bivariate trig-

onometric polynomial of degree two in f and the first degree in δ.
Let h⋅; ⋅iH be the Hermitian product of two complex-valued vectors,

i.e.,

ha; biH � hRe�a�; Re�b�i � hIm�a�; Im�b�i
and denote

Φ�f; δ� �
h
1; eiδ

i
T
⊗
h
1; eif; e2if

i
T

�
h
1; eif; e2if; eiδ; eif eiδ; e2if eiδ

i
T

as the basis of the bivariate trigonometric polynomials of degree two

in f and one in δ, respectively (here,⊗ denotesKronecker’s product).

The left-hand term of Eq. (10) can be reformulated as

D
pI; eG�I; f�uE − J � pT

I

�X1
l�−1

X2
k�−2

fGu
�k;l�

eikfeilδ
�
− J

�
D
Φ�f; δ�;fGupI − e1J

E
H

where fGu�k;l��I� is the �k; l�-th coefficient of the Fourier transform††

of eG�I; f�u, and e1 � �1; 0; 0; 0; 0; 0�T .
The formalism of the squared functional systems outlined in

chapter 17 of Ref. [18] and chapter 3 of Ref. [19] allows us to recast

the continuous positivity constraints into LMIs. The corresponding

squared functional system ofΦ�f; δ� isS2�f; δ� � Φ�f; δ�ΦH�f; δ�,
whereΦH�f; δ� denotes the conjugate transpose ofΦ�f; δ�. LetN be

the dimension of Φ�f; δ� (six in our application); and ΛH∶CN →
CN×N is a linear operator mapping coefficients of polynomials in

Φ�f; δ� to the squared base so that application of ΛH on Φ�f; δ�
yields

ΛH�Φ�f; δ�� � Φ�f; δ�ΦH�f; δ�

We define its adjoint operator Λ	
H∶CN×N → CN asD

Y;ΛH�fGu�
E
H
≡
D
Λ	
H�Y�;fGu

E
H
; Y ∈ CN×N; fGu ∈ CN

Theory of the squared functional systems postulated by Nesterov

([18] Chap. 17) proves that the trigonometric polynomial is non-

negative if, and only if, a Hermitian positive semidefinite matrix Y

exists such that fGu � Λ	
H�Y�. Dumitrescu extended this theory for

multivariate trigonometric polynomials in chapter 3 of Ref. [19] and

showed that all nonnegative bivariate trigonometric polynomials can

be written as a sum of squares. This equivalence is false for three or

more variables.
Thus, hΦ�f; δ�;fGuiH is nonnegative for all f ∈ S1 and for all

u ∈ Kα if, and only if, a Hermitian positive semidefinite matrix Y

exists such that fGu � Λ	
H�Y�, namely,D

Φ�f; δ�;fGu
E
H
≥ 0; f ∈ S1; u ∈ Kα ⇔ ∃Y ⪰ 0∶fGu � Λ	

H�Y�

In fact, it holds in this case that

hΦ�f; δ�;fGuiH � hΦ�f; δ�;Λ	
H�Y�iH � hΛH�Φ�f; δ��; YiH;

� hΦ�f; δ�ΦH�f; δ�; YiH � ΦH�f; δ�YΦ�f; δ� ≥ 0

For trigonometric polynomials, Λ	 is given by

Λ	
H�Y� �

26666664
tr�hY; T00i�

..

.

tr�hY; Tkli�
..
.

tr�hY; T21i�

37777775 k � 0; 1; 2; l � 0; 1

where Tj; j � 0; 1; 2 are the elementary Toeplitz matrices with ones

on the jth diagonal and zeros elsewhere, and Tkl are obtained from a

Kronecker product of such matrices, e.g.,

T0 �
 
1 0

0 1

!
; T1 �

0BB@
0 1 0

0 0 1

0 0 0

1CCA;

T10 � T0 ⊗ T1 �

0BBBBBBBBBBB@

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

1CCCCCCCCCCCA
Finally, the inequality in Eq. (10) is rewritten as an LMI:D

pI; eG�I; f�uE − J ≥ 0; f ∈ S1; u ∈ ∂Kα ⇔ ∃Y ⪰ 0

such that fGupI − e1J � Λ	
H�Y�

where Y ∈ C6×6 is a Hermitian matrix to be determined. Hence, the

finite-dimensional counterpart of problem (8) is

min
J;kpIk≤1;Y∈C6×6

J

subject to

Y ⪰ 0

Λ	
H�Y� � fGupI − e1J (11)

Fig. 6 Parametrization of the control vector.

††We note that ~Gkl � ~G�−k;−l� because ~G�I; f�u is real valued.
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Problem (11) consists of a convex programming with 27 design

variables (scalar J, pI ∈ R5, and Y ∈ C6×6 symmetric), the ball
constraint jpIj ≤ 1, and a single LMI of a 6 × 6matrix. The computa-
tional time to solve this problem is extremely modest. Eventually, the
solution of problem (9) is carried out by means of a simple bisection
algorithm, which does not require the evaluation of derivatives of the
nonsmooth function J	�α� (we note that problem (8) has trivial
solution J � 0 and pI � 0 for α > αmin). The CVX software
[29,30] is used to solve convex problem (11). Fourier coefficients

of eG�I; f�, which is a second-degree trigonometric polynomial in f,
are evaluated by means of the fast Fourier transform algorithm.
We stress that there is no relaxation of problem (11) with respect
to problem (8). Remarkably, enforcement of the constraint for all
values of f and u is exact and stems from the trigonometric nature ofeG�I; f�u.

V. Application of the Methodology and Validation

A. Numerical Validation

A different algorithm for the evaluation of the necessary con-
dition for local controllability of solar sails was proposed in
Ref. [27]. In that case, controls necessary to move the sail toward
the vertices of a simplex encompassing its current slow state were
explicitly determined by solving a convex optimization problem.
This was achieved by discretizing the control action with a finite
number of generators of the convex cone and trigonometric
polynomials in the mean anomaly. Figure 7 shows that the αmin

estimated with the algorithm in Ref. [27] for a specific orbit
converges to the value obtained with the methodology presented
in this paper as the degree of the trigonometric polynomials of
the control action is increased. The estimation of Ref. [27] was
conservative (namely, it overestimated αmin) because an interior
polyhedral approximation of the convex cone was used. We
stress that the methodology outlined in Sec. IV outperforms the
one in Ref. [27] because the exact solution of problem (8) is
achieved by solving a low-dimensional convex program without
any relaxation.

B. Minimal Optical Requirements

Figure 8 shows the minimum cone angle satisfying the condition
as a function of γ2 and γ3 for various values of eccentricity (we recall
that the semimajor axis and γ1 have no influence on this angle).
The minimal angle is symmetric with respect to γ2 � 90 deg
becauseD

pI; eG�e; γ2; γ3; f�u
E
�
D
−pI; eG�e; π − γ2; γ3; f�u

E

The solution is independent of γ3 for circular orbits, as expected.
Sensitivity with respect to γ3 remains moderate, even for larger
eccentricities. The minimal angle approaches zero as sin�γ2� → 0.
In this case, ŝ is alignedwith the angular momentum of the orbit. On
the other hand, for γ2 � 90 deg, the sun is in the orbital plane.
Figures 9a and 9b represent αmin as a function of γ3 or γ2, respec-

tively, for various values of eccentricity. The results confirm the
strong dependency of αmin on γ2 and γ3 for large eccentricity. Hence,
the controllability of near-circular orbits requiresmore reflective sails
with respect to high-eccentric orbits. Finally, we stress that the
minimum angle α exists for all orbits, and it is systematically smaller
than 90 deg, which means that the sail has not to be ideal (i.e.
reflectivity coefficient ρ does not have to be equal to 1) to make
system (2) controllable. To compare with a real solar sail, the optical
properties of the NASA reference model [31] (designed to support
the Near-Earth Asteroid Scout and Lunar Flashlight solar-sail mis-
sions) correspond to a cone angle of 58.6 deg. This value is sufficient
to satisfy the proposed condition for most planet-centered orbits,
except for highly inclined ones.

C. Stationkeeping Example

The determination of αmin entails practical consequences in the
design of solar-sail maneuvers by imposingminimal requirements on
its reflectivity. For example, consider the scenariowhere a solar sail is
used to carry out stationkeeping of a lunar orbiter. The objective
is to maintain the sail in the proximity of the nominal orbit Iref �
�150 deg; 60 deg; 0 deg; 2RMoon; 0.01�, where RMoon denotes the
equatorial radius of the moon. Initial conditions are perturbed, and
the motion of the sail is subject to nonspherical gravitational har-
monics up to order and degree two. A simple local-optimal feedback
controller that instantaneously minimizes the rate of change of the
error function e�t� � jI�t� − Iref j is used to carry out the maneuver.
The reference orbit has αmin � 52 deg, which corresponds to a
minimum reflectivity coefficient of ρ � 0.79. Figures 10a and 10b
depict the evolution of semimajor axis and error function for a poorly
reflective sail and a highly reflective sail, namely, specular reflectiv-
ity equal to 0.5 and 0.9, respectively. At the beginning of the maneu-
ver, both sails are able to decrease the error. This is because the
direction of I�t� − Iref points inside the reachable half-space of the
poorly reflective sail. Once I�t� − Iref is in the unreachable space,
the poorly reflective sail starts drifting away from the reference, and
its error function increases,whereas the highly reflective sail is able to
keep its state in the proximity of Iref . Because external perturbations
are included, controllability of the highly reflective sail could be

jeopardized if its surface-to-mass ratio is not large enough (20 m2∕kg
in this example), but the poorly reflective sail will not be able to
stabilize the system, regardless of its size.

D. Comment on Heliocentric Orbits

Consider now a sail in a heliocentric orbit. This scenario can be a
case for interplanetary transfers, for example. The same equations
with two major corrections are used to model the problem. First, the
rotationmatrixR in Eq. (2) is removed because the local vertical/local
horizontal frame is used, and ŝ is aligned with the radial direction.
Moreover, the problemhas central symmetry so that the results do not
depend on any orbital element except for the eccentricity. For a
perfectly absorptive solar sail, the dynamical system is not bracket
generating because the control is radial, as proved in Ref. [32].
The integral ofmotion related to this rank deficiency is themagnitude
of the angular momentum. For a nonideal sail, the system becomes
bracket generating as soon as a tangential component appears: even
for very weakly reflective sails.
Using the methodology of Sec. IV to solve the optimization

problem indicates that even a very poorly reflective sail (i.e.,
0 < ρ ≪ 1) is locally controllable over one orbital period. Specifi-
cally, the necessary condition is satisfied as soon as the sail is capable
of producing even a weak force orthogonal to the radial vector.
Therefore, the minimum cone angle αmin approaches zero. However,
interplanetary transfers are often envisaged on a fraction of a helio-
centric orbit so that the proposed methodology is not very useful to

10 20 30 40 50 60 70
19

19.1

19.2

19.3

19.4

19.5

19.6

Fig. 7 Convergence of results obtained in Ref. [27] as a function of the
number of harmonics used to estimate the control action (in red). Exact
minimum angle obtained with methodology detailed in this paper (blue).
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analyze mission scenarios of interplanetary transfers: any noncom-
pletely absorptive sail yields a controllable system, but the time
necessary to achieve maneuvers can be too long for this result to be
of practical interest.

VI. Conclusions

This paper offers a novel methodology to assess the local con-
trollability of nonideal solar sails in orbit around a celestial body.
This is achieved by solving a semi-infinite convex optimization
problem. Its solution is obtained by leveraging on both the formal-
ism of bivariate polynomials and on the rational trigonometric

nature of Gauss variational equations, which limits the order of
the polynomial for which the sign has to be evaluated. A failure of
this requirement implies a certificate of noncontrollability; i.e., it
indicates that a half-space of the neighborhood of the current state
vector in the orbital element set is not locally accessible by maneu-
vering the sail. Extensive exploitation of this methodology reveals
that a minimum reflectivity of the sail exists that satisfies the
necessary condition for any orbit. A remarkable byproduct of this
analysis is that local controllability properties hold universally
(namely, regardless the planetary constant and the surface-to-mass
ratio of the sail) for nonideal sails, provided that a sufficient amount
of incoming radiation is reflected. This result has straightforward
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Fig. 9 Minimum cone angle as a function of Euler angles.
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a) Near-circular orbit: e ≈ 0
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c) Elliptic orbit with e = 0.5
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d) High eccentricity e = 0.9

Fig. 8 Results for different planet-centered orbits.
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implications in mission analysis of stationkeeping applications and

transfer maneuvers with solar sails.

Appendix. Lie Brackets Computation for a Perfectly
Absorptive Sail

Consider a control-affine dynamical system

_x� F0�x� �
Xm
i�1

uiF
i�x�; x ∈M; u� �u1; : : : ; um� ∈ U ⊂ Rm

(A1)

where M is an n-dimensional manifold Fi∶M → TM are smooth

vector fields onM.We note that Eq. (2) can be recast into the form of

Eq. (A1) by choosing columns of G�I; f�R�I; f� as vector fields Fi.
To compute Lie algebra, only the directions of the vector fields

matter. To simplify, assume that the system to be controlled is given

by a simple two-body equation with a term of perturbation aligned

with an ŝ solar vector, which is considered fixed for a few orbits. For a

perfectly absorptive solar sail, only the cross-sectional surface is

controlled so that control is assumed to be u ∈ �0; 1� with a certain

coefficient ε defining SRP magnitude.
Using x � �r; v� ∈ R6 as the state vector, where r and v denote

the Cartesian position and velocity vectors, respectively, a simple

control-affine system can be rewritten as

_x � F0�x� � εuF1�x�

withF0 as the recurrent drift andF1 as the SRP perturbation. Finally,

the perturbed two-body problem is

8>>><>>>:
dr

dt
� v

dv

dt
� −

μ

r3
r� εŝu

(A2)

where r � krk. System (A2) provides two vector fields:

F0 � vX
∂
∂rX

� vY
∂
∂rY

� vZ
∂
∂rZ

−
rX
r3

∂
∂vX

−
rY
r3

∂
∂vY

−
rZ
r3

∂
∂vZ

F1 � sX
∂

∂vX
� sY

∂
∂vY

� sZ
∂
∂vZ

To simplify, let us denote vector fields

v
∂
∂r

� vX
∂
∂rX

� vY
∂
∂rY

� vZ
∂
∂rZ

;

r

r3
∂
∂v

� rX
r3

∂
∂vX

� rY
r3

∂
∂vY

� rZ
r3

∂
∂vZ

s
∂
∂v

� sX
∂

∂vX
� sY

∂
∂vY

� sZ
∂
∂vZ

and

Fsr � s
∂
∂r

; Frr � r
∂
∂r

; Fvr � v
∂
∂r

; Fsv � s
∂
∂v

; : : :

Finally, by denoting ŝ ⋅ r as a scalar product of two vectors, ŝ and r,
the computation of Lie brackets gives the following results:

F0� v
∂
∂r

−
r

r3
∂
∂v

�Fvr−
1

r3
Frv; F1 � s

∂
∂v

�Fsv;

F01��F0;F1��−Fsr

F001�
h
F0; �F0;F1�

i
� 3�ŝ ⋅r�

r5
Frv−

Fsv

r3
; F101��F1; �F0;F1��� 0

F0001�
h
F0; �F0; �F0;F1��

i
� 1

r3
Fsr�3�v ⋅r�

r5
Fsv

�
�
3�ŝ ⋅v�
r5

−
15�ŝ ⋅r��v ⋅r�

r7

�
Frv�3�ŝ ⋅r�

r5
�Fvv−Frr�

All subsequent iterations are linear combinations of the previous

vector fields. Thus, the Lie algebra of system (A2) has five indepen-

dent vector fields if ŝ ⋅ r ≠ 0:

Fsr; Fsv; Frv; Fvr; Fvv − Frr

dim Lie�F0; F1; : : : � � 5 < dimR6 � 6

Moreover, rank deficiency implies that an integral of motion

exists, which happens to be the projection of the angular momen-

tum h toward ŝ, namely, ŝ ⋅ h � ŝ ⋅ �r × v� � det�r; v; ŝ�. In fact,

the Lie derivative of ŝ ⋅ h with respect to the controlled vector

field

F1 � sX
∂

∂vX
� sY

∂
∂vY

� sZ
∂
∂vZ

is

0 1 2 3 4 5

1.998

1.999

2

2.001
 = 0.9
 = 0.5

a) Trajectory of the semimajor axis

0 1 2 3 4 5
0

0.004

0.008

0.012
 = 0.9
 = 0.5

b) Evolution of the error function

Fig. 10 Implementation of a stationkeeping algorithm using a locally optimal control law: reference value denoted by black dashed–dotted line.
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LF1�det�r; v; ŝ�� � sX
∂

∂vX
det�r; v; ŝ� � sY

∂
∂vY

det�r; v; ŝ�

� sZ
∂
∂vZ

det�r; v; ŝ�

� sX�−rYsZ � rZsY� � sY�rXsZ − rZsX�
� sZ�−rXsY � rYsX�

� 0
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