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a b s t r a c t

We prove, using Moralès–Ramis theorem, that the minimum-time controlled Kepler prob-
lem is not meromorphically integrable in the Liouville sens on the Riemann surface of its
Hamiltonian.
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1. Introduction

The Kepler problem

q̈ + q
→q→3 = 0, q ↑ R2 \ {0}. (1)

is a classical reduction of the two-body problem [1]. Here, we think of q as the position of a spacecraft, and of the attraction
as the action of the Earth. We are interested in controlling the transfer of the spacecraft from one Keplerian orbit towards
another, in the plane. Denoting v = q̇ the velocity, and the adjoint variables of q and v by pq and pv , the minimum time
dynamics is a Hamiltonian system with

H(q, v, pq, pv) = pq.v ↓ pv.q
→q→3 + →pv→, (2)

as is explained in Section 2.1. Prior studies of this problem can be found in [2,3]. The controlled Kepler problem can be
embedded in the two parameter family obtainedwhen considering the control of the circular restricted three-body problem:

q̈ + ↔qωµ(t, q) = εu, (3)
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where

ωµ(t, q) = ↓ 1 ↓ µ
)
(q1 + µ cos t)2 + (q2 + µ sin t)2

↓ µ
)
(q1 ↓ (1 ↓ µ) cos t)2 + (q2 ↓ (1 ↓ µ) sin t)2

is the potential parameterized by the ratio of masses, µ ↑ [0, 1/2], and where u ↑ R2 is the control, whose amplitude is
modulated by the second parameter, ε ↗ 0. Alternatively to time minimization, minimization of the L2 norm of the control
can be considered,

[ tf

0
u2(t) dt ↘ min .

This is the so-called energy cost. In the uncontrolledmodel (ε = 0), it is well known that the Kepler case (µ = 0) is integrable
and geodesic (there exists a Riemannian metric such that Keplerian curves are geodesics of this metric [4,5]) while there are
obstructions to integrability for positive µ. In the controlled case (ε > 0), the Kepler problem for the energy cost has been
shown to be integrable (and geodesic) when suitably averaged (see [6] for a survey). The aim of this paper is to study the
integrability properties of the Kepler problem for time minimization.

The pioneering work of Ziglin in the 80s [7], followed by the modern formulation of differential Galois theory in the
late 90s by Moralès, Ramis and Simó [8,9], have led to a very diverse literature on the integrability of Hamiltonian systems.
According to Pontryagin s Maximum principle, one can turn general optimization problems with dynamical constraints into
Hamiltonian systems, which are generally not everywhere differentiable. Optimal control theory thus provides an abundant
class of dynamical systems for which integrability is a central question. Yet, differential Galois theory has not so often been
applied in this context (see, e.g., [10]), in part because of the difficulty brought by the singularities. Notwithstanding theses
singularities (vanishing of the adjoint variable pv , here), we show how to apply these ideas to the system (2).

2. Setting

2.1. The minimum time controlled Kepler problem

We first recall some classical facts on optimal control. We refer for example to the book of Agrachev and Sachkov [11]
for more details. LetM be an n-dimensional smooth manifold and U an arbitrary subset of Rm (typically a submanifold with
boundary). A controlled dynamical system is a smooth family of vector fields

f : M ≃ U ↘ TM

parameterized by the control values. Admissible controls are measurable functions valued in the subset U . A preliminary
question is the following: Is some final state xf accessible from some initial state x0, i.e. does the system

ẋ(t) = f (x(t), u(t)), u(t) ↑ U,

x(0) = x0, x(tf ) = xf ,

have a solution for some admissible control? The system is said to be controllable if the answer is positive for all possible
initial and final states x0, xf ↑ M . The controlled Kepler problem, associated with (1), is

q̈ + q
→q→3 = u, q ↑ R2 \ {0}, u2

1 + u2
2 ⇐ 1,

(q(0), q̇(0)) = (q0, v0), (q(tf ), q̇(tf )) = (qf , vf ),

where q is the position vector of a spacecraft and where the control u is the thrust of the engine. The thrust is obviously
bounded; here we assume that it is valued in the Euclidean unit ball. (Note that, with respect to (3), we have chosen ε = 1;
as will be clear from Section 3, this does not restrict the generality of the analysis.)

Proposition 1 ([3]). The Kepler problem is controllable.

This is a consequence of two facts: The Lie algebra generated by the drift and the vector field supporting the control
generate the whole tangent space at each point (which entails some local controllability), and the uncontrolled flow (or
drift) of the Kepler problem is recurrent. Under some additional convexity and compactness assumptions, one is then able
to retrieve existence of optimal controls.

We now deal with such optimal controls. We restrict ourselves to integral cost functions, that is to problems of the form
]
⌊⌋

⌊⌈

ẋ(t) = f (x(t), u(t)),
x(0) = x0, x(tf ) = xf ,[ tf

0
L(x(t), u(t)) dt ↘ min

(4)
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where the final time tf can be fixed or not, and L : M ≃ U ↘ R is a smooth function. In the early 60s, Pontryagin and his
coauthors realized that necessary conditions for optimality could be stated in Hamiltonian terms. By T ⇒M we denote the
cotangent bundle of the manifoldM .

Definition 1. The associated pseudo-Hamiltonian is

H : T ⇒M ≃ R ≃ U ↘ R, (x, p, p0, u) ⇑↘ ⇓p, f (x, u)⇔ + p0L(x, u).

The following fundamental result is Pontryagin Maximum Principle [12] (see [11] for a modern presentation).

Theorem 1. If (x, u) solves (4), there exist a Lipschitzian function p(t) ↑ T ⇒
x(t)M, t ↑ [0, tf ], a constant p0 ⇐ 0, (p(t), p0) ↖= 0,

such that, almost everywhere,

(i) (x, p) is a solution of the Hamiltonian system associated with H(·, ·, u(t)):

ẋ = ϑH
ϑp

(x, p, u), ṗ = ↓ϑH
ϑx

(x, p, u),

(ii) H(x(t), p(t), u(t)) = maxv↑UH(x(t), p(t), v).

Such curves (x, p) are called extremals. As a consequence of the maximization condition, the pseudo-Hamiltonian evaluated
along an extremal is constant. Moreover, if the final time is free then this constant is zero.

This powerful result has some downsides. The Hamiltonian is defined on the cotangent bundle of the original phase
space, and thus the dimension is doubled. Besides, the maximization condition, which ‘‘eliminates the control’’ and allows
to obtain a truly Hamiltonian system in (x, p) only, might generate singularities (that is non-differentiability points of the
maximized Hamiltonian which is in general only Lipschitzian as a function of time when evaluated along an extremal). The
above theorem applies to time minimization with L ↙ 1 (and free final time). In this case, the non-positive constant p0 is
only related to the level of the Hamiltonian, and we will not mention it in the sequel as we will not discuss the implications
of having normal (p0 ↖= 0) or abnormal (p0 = 0) extremals.

2.2. Main result

The minimum time Kepler problem can be stated according to
]
⌊⌋

⌊⌈

q̈ + q
→q→3 = u, →u→ ⇐ 1,

(q(0), q̇(0)) = (q0, v0), (q(tf ), q̇(tf )) = (qf , vf ),
tf ↘ min,

(5)

where, as before, q ↑ R2 is the position vector and u ↑ R2 the control. It will be convenient to use the same notations as in
the general problem (4) and let

q = (x1, x2), q̇ = (x3, x4),

be the coordinates on the initial phase spaceM = (R2 \ {0})≃R2. According to Definition 1, the pseudo-Hamiltonian is then

H(x, p, u) = p1x3 + p2x4 ↓ p3x1 + p4x2
(x21 + x22)3/2

+ p3u1 + p4u2. (6)

According to Theorem 1, minimizing trajectories must be projections onM of integral curves of the Hamiltonian that has to
be maximized over the unit disk. The maximized Hamiltonian is readily equal to

H(x, p) = p1x3 + p2x4 ↓ p3x1 + p4x2
(x21 + x22)3/2

+
⌉
p23 + p24

on T ⇒M , while the control is given by

u = 1
⌉
p23 + p24

(p3, p4)

whenever p3 and p4 do not vanish simultaneously. Now, let

M = {(x, p, r) ↑ C8 ≃ C2
⇒, r21 = x21 + x22, r22 = p23 + p24}

be the Riemann surface of H . It is a complex symplectic manifold (with local Darboux coordinates (x, p) outside the singular
hypersurface r1r2 = 0), over which H extends meromorphically, and even rationally, since

H(x, p, r) = p1x3 + p2x4 ↓ p3x1 + p4x2
r31

+ r2. (7)
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The Hamiltonian H has four degrees of freedom, hence (see [1]) the meromorphic Liouville integrability of H overMwould
mean that there would exist three independent first integrals, in addition to H itself, almost everywhere in M. The aim of
this paper is to prove that it is not the case.

Theorem 2. The minimum time Kepler problem is not meromorphically Liouville integrable on M.

It is well known that the classical Kepler problem is integrable, and even super integrable (since there are more first
integrals than degrees of freedom, as a result of Kepler’s first law and of the dynamical degeneracy of the Newtonian
potential—see for instance [13]). On the opposite, the three-body problem is not as is known after the seminal work of
Poincaré (for recent accounts on this topic see, e.g., [14–17]). Similarly, the above theorem asserts that lifting the Kepler
problem to the cotangent bundle and introducing the singular control term r2 breaks integrability.

This result prevents the existence of enough complex analytic (and even meromorphic) first integrals to ensure
integrability over M. Of course, it does not prevent the existence of an additional real first integral which would have a
natural frontier asymptotic to the real domain and thus, would not extend to the complex plane. Future work might be
dedicated to investigate either or not Theorem 2 holds for real first integrals.

3. Proof of Theorem 2

The rest of the article is devoted to proving the theorem. Our proof consists in studying the variational equation along
some integral curve of (7). In order to carry out this computation, we choose a collision orbit, with the drawback that it
requires some regularization.Wealso note that there exist effective tools to perform this kind of computations (see, e.g., [18]).
The algebraic obstruction to Liouville integrability comes from the theorem below of Moralès and Ramis, which we now
recall. We follow the presentation of Singer in [19].

3.1. Some facts of galois differential theory

Consider a linear differential equation (L) : Y ∝ = AY , A ↑ Mn(k), k being a differential field whose field of constants k0
is algebraically closed, and of characteristic zero. We want the Galois group to be the group of symmetries preserving all
algebraic and differential relations of a basis of solutions. We consider the polynomial ring

S = k[Y1,1, . . . , Yn,n, 1/det(Y )]
where Y is an n ≃ n matrix. This ring has a derivation provided by the differential system Y ∝ = AY . We now consider a
maximal differential idealM of S, and the quotient R = S/M . This quotient satisfies the following

Definition 2 (Picard–Vessiot Field). A Picard–Vessiot ring for Y ∝ = AY is a differential ring R over k such that

(i) The only differential ideals of R are (0) and R.
(ii) There exists a fundamental matrix Z ↑ GLn(R) for the equation Y ∝ = AY .
(iii) R is generated as a ring by k, the entries of Z and 1/det(Z) .

It turns out that the choice of the maximal differential ideal M always gives the same Picard–Vessiot ring up to
isomorphism. This ring is also a domain, thus allowing to consider the quotient field, the Picard–Vessiot field.

Definition 3 (Galois Group). The differential Galois group of R over k is the group of differential automorphismof R preserving
k, noted Gal(R/k).

For a differential system Y ∝ = AY , if there is no ambiguity on the base field k. (For the case treated in this paper, the base
field k is C(z).) Given a fundamental matrix of solution Z and a Galois group element ϖ , we have Z ∝ = AZ , and thus applying
ϖ , we also have ϖ (Z)∝ = Aϖ (Z). Thus ϖ (Z) is also a matrix of solutions; there exists a constant matrix C such that ϖ (Z) = ZC ,
and as ϖ is an automorphism, C has to be invertible. So Gal(R/k) can be represented as a group of n ≃ n matrices.

Proposition 2. The Galois group Gal(R/k) ′ GLn(k0) is a linear algebraic group, i.e. the zero set in GLn(k0) of a system of
polynomials over k0 in n2 variables.

Proof. This can be obtained by letting a Galois group element ϖ act (rightmultiplication by amatrix) on the differential ideal
I = (f1, . . . , fp). We can moreover assume that fi ↑ k[Y ]. As this does not change the degrees in the Yi,j and since I must be
stabilized, ϖ (fi) must belong to I ∞ kmax(deg f1,...,deg fp)[Y ]. This condition is a condition of membership to a vector space, which
provides algebraic conditions on the entries of the matrix ϖ .

Proposition 3 (Fundamental Theorem of Differential Galois Theory). Let K be a Picard–Vessiot field with differential Galois group
G over k.
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(i) There is a one-to-one correspondence between Zariski-closed subgroups H ′ G and differential subfields F , k ′ F ′ K ,
given by

H ′ G ↘ KH = {a ↑ K , ϖ (a) = a ∈ϖ ↑ H}

F ↘ Gal(K/F ) = {ϖ ↑ G, ϖ (a) = a ∈a ↑ F}
(ii) A differential subfield F , k ′ F ′ K, is a Picard–Vessiot extension of k if and only if Gal(K/F ) is a normal subgroup of G, in

which case Gal(F/k) ∋ G/Gal(K/F ).

We are interested in non integrability for nonlinear Hamiltonian systems. The link with the Hamiltonian world is given
by the celebrated theorem of Moralès–Ramis below. We recall that an algebraic group G is said to be virtually Abelian if its
connected component containing the identity is an Abelian subgroup of G.

Theorem 3 (Moralès–Ramis [8]). Let H be an analytic Hamiltonian on a complex analytic symplectic manifold and ϱ be a non
constant solution. If H is integrable in the Liouville sense with meromorphic first integrals, then the first order variational equation
along ϱ has a virtually Abelian Galois group over the base field of meromorphic functions on ϱ .

The main idea behind this theorem is that if H is Liouville integrable, then so are the linearized equations near a non
constant solution ϱ . More precisely, thanks to Ziglin’s lemma below, the first integrals of H can be transformed in such a
way that their first non trivial term in their series expansion near ϱ is functionally independent.

Lemma 1 (Ziglin’s Lemma). Let ς1, . . . , ςr ↑ k(x1, . . . , xn) be functionally independent functions. We consider ς0
1 , . . . , ς0

r the
lowest degree homogeneous term for some fixed positiveweight homogeneity in x1, . . . , xn. Assumeς0

1 , . . . , ς0
r↓1 are functionally

independent. Then there exists a polynomial ϕ such that the lowest degree homogeneous term ϕ 0 of ϕ (ς1, . . . , ςr ) is such that
ς0

1 , . . . , ς0
r↓1, ϕ 0 are functionally independent.

Applying this lemma recursively, we prove that if a Hamiltonian system admits a set of commuting, functionally
independentmeromorphic first integrals on a neighborhood of a curve, then their first order terms, after possibly polynomial
combinations of them, are also commuting, functionally independent meromorphic first integrals of the linearized system
along the curve. Moralès–Ramis [8] precisely proved that symplectic linear differential systems having such first integrals
have a Galois group whose identity component is Abelian. This result can be expected knowing that the Galois group leaves
invariant every first integral, so the more first integrals, the smaller the Galois group.

Wewill need the definition of themonodromy group of a linear differential equation. Let us consider a differential system
Y ∝ = AY , A ↑ Mn(C(x)).Wenote S = P1\{singularities of A}. Let us consider a point z0 ↑ S and a closed oriented curve ↼ ′ S,
with x0 ↑ ↼ . There exists a basis of solutions Z on a neigbourhood of x0, holomorphic in z. We now use analytic continuation
along the loop ↼ to extend this basis of solutions. However, it cannot a priori be extended to a whole neighborhood of ↼ ,
because after one loop, the basis of solutions Z↼ at x0 could be different. This defines amatrixD↼ ↑ GLn(C) such that Z↼ = ZD↼

and thus a homomorphism

Mon : ↽1(S, x0) ↘ GLn(C), Mon(↼ ) = D↼ .

This homomorphism carries the group structure of ↽1(S, x0), and thus its image is also a group.

Definition 4. The image of the application Mon is called the monodromy group.

Note that the monodromy group depends on the choice of Z , so it is only determined up to conjugation. Since analytic
continuation preserves analytic relations, the monodromy group is a subset of the differential Galois group over the base
field of meromorphic functions on S; in particular, it is included in the differential Galois group over the base field of rational
functions. For Fuchsian systems (all singularities are regular singularities, i.e. the growth at singularities of solutions is at
most polynomials), we have moreover the following.

Theorem 4 (Schlesinger Density Theorem [20]). Let (E) : Y ∝ = AY be a Fuchsian differential linear equation with coefficients
in C(x) and let ⇀ be its monodromy group. Then ⇀ is dense for the Zariski topology in the Galois group of the Picard–Vessiot
extension of (E) over the base field of rational functions: ⇀ = Gal(A).

3.2. A collision orbit

In order to find an explicit solution of (6), let us define the 4-dimensional symplectic submanifold

S = {(x, p, r) ↑ M | x2 = x4 = p2 = p4 = 0, r1 = x1, r2 = ↓p3}.
As S is the phase space of the controlled Kepler problem on the line (collision orbit) parameterized by q1, it is invariant. On
the interior of S, (x1, x3, p1, p3) is a set of (Darboux) coordinates and, in restriction to S, the Hamiltonian reduces to

H(x, p) = p1x3 ↓ p3
x21

↓ p3,



M. Orieux et al. / Journal of Geometry and Physics 132 (2018) 452–459 457

so the Hamiltonian vector field on S is
]
⌊⌊⌊⌊⌊⌋

⌊⌊⌊⌊⌊⌈

ẋ1 = x3
ẋ3 = ↓1 ↓ 1

x21
ṗ1 = ↓2p3

x31
ṗ3 = ↓p1.

In particular,
]
⌊⌋

⌊⌈

ẍ1 = ↓1 ↓ 1
x12

p̈3 ↓ 2p3
x31

= 0.
(8)

As is known since thework of Charlier and Saint Germain on the Kepler problemwith a constant force (see [21]), the function

C = 1
2
x23 + x1 ↓ 1

x1
is a first integral on S and H|S is integrable. Let us change time to s = x1(t) and denote by ∝ = d

ds the derivation with respect
to this new time. It suffices to find an obstruction in this modified time, as explained at the end of the proof.

Using (8), we see that the variable p3 satisfies the linear differential equation

2
{
C + 1

x1
↓ x1

}
p∝∝
3(x1) ↓

{
1 + 1

x21

}
p∝
3(x1) ↓ 2p3(x1)

x31
= 0,

which yields

p3(x1) =

⌉
↓Cx1 + x21 ↓ 1

△
x1

⟨
c1

[
x3/21

(↓Cx1 + x21 ↓ 1)3/2
dx1 + c2

⟩

for some constants of integration c1 and c2. Here the symbol
/
f (x1)dx1 denotes some primitive of f with respect to the

variable x1. It suffices to find one particular integral curve along which the variational equation has a non virtually Abelian
Galois group. To this end, we consider the simple – but rich enough – case c1 = 0, c2 = 1.

p3(x1) =

⌉
↓Cx1 + x21 ↓ 1

△
x1

·

Using the expression of the first integral C and of the vector field, we deduce

x3(x1) =
△
2

⌉
↓Cx1 + x21 ↓ 1

△
x1

, p1(x1) = ↓ 1△
2
x21 + 1
x21

·

Choosing C = 2i and some determination of the squares yields a particularly simple solution ϱ drawn on S ′ M,

]
⌊⌊⌊⌋

⌊⌊⌊⌈

x1 = x1,
x2 = 0,

x3 =
△
2
x1 ↓ i△

x1
,

x4 = 0,

]
⌊⌊⌊⌊⌊⌊⌋

⌊⌊⌊⌊⌊⌊⌈

p1 = ↓x21 + 1△
2x21

,

p2 = 0,

p3 = x1 ↓ i△
x1

,

p4 = 0.

(9)

3.3. Normal variational equation

In the initial time, the linearized equation along ϱ is the Hamiltonian vector field associated with the Hamiltonian DH
along ϱ :

Ż(t) = A(t)Z(t), A(t) = J D2H(ϱ (t)),

where J is the Poisson structure. In the coordinates (x1, . . . , x4, p1, . . . , p4),

J =
{

04 I4
↓I4 04

}
.
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We will keep on using time x1, instead of the initial time t , writing

Z ∝(x1(t)) = 1
x3(t)

A(x1(t))Z(x1(t)).

Let us now reorder coordinates according to (x1, x3, p1, p3, x2, x4, p2, p4). Since S is an invariant submanifold, the 8≃ 8matrix
A has an upper triangular bloc structure

A =
{
A1 A2
0 A3

}

with

A3 =

\

//////////\

0 0 0
1△
2p3

↓ 1△
2p23

0 ↓ 1△
2x31p3

0

0
1△
2p3

0 0

↓ 1△
2x31p3

0
3△
2x41

0

⎛

⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎡

.

Moralès–Ramis Theorem gives necessary conditions for Liouville integrability in terms of the Galois group of this linear
differential system over the base field of meromorphic functions on ϱ . Looking at the expression (9) of ϱ , we see that
meromorphic functions on ϱ are just meromorphic functions in

△
x1 ↑ C \ {0, ±

△
i}. The block A3 corresponds to

infinitesimal variations in the normal direction to S, which is the part where interesting phenomena might occur. As the
Picard–Vessiot field is generated by all the components of the solutions, the Picard–Vessiot field K generated by the normal
variational equation

(L) : X ∝ = A3X, X = (X1, X2, X3, X4)

is a subfield of the Picard–Vessiot field of the whole variational equation, and thus Gal(A) ▽ Gal(A3). That Gal(A3) is not
virtually Abelian will thus imply that Gal(A) itself is not virtually Abelian. In order to reduce the system to a one dimensional
linear equation, we use the cyclic vector method on A3: From (L) we get X ∝

1 = L1(X1, X2, X3, X4), where L1 is a linear form on
R4, thus by derivation,

X ∝∝
1 = L1(X ∝

1, X2, X3, X4) + L1(X1, X ∝
2, X3, X4)

+ L1(X1, X2, X ∝
3, X4) + L1(X1, X2, X3, X ∝

4)
= L2(X1, X2, X3, X4).

Iterating, we obtain
]
⌊⌊⌊⌋

⌊⌊⌊⌈

X1 = X1,
X ∝
1 = L1(X1, X2, X3, X4),

X ∝∝
1 = L2(X1, X2, X3, X4),

X (3)
1 = L3(X1, X2, X3, X4),

X (4)
1 = L4(X1, X2, X3, X4).

The Li’s are five linear forms on R4, so X1 must satisfy some linear differential equation of order 4 that we compute to be

X (4)
1 + 2(3i ↓ 5x1)

x1(i ↓ x1)
X (3)
1 + (↓3x1 + i)(↓29x1 + 23i)

4(x1 ↓ i)2x21
X ∝∝
1

↓ (i ↓ 3x1)(7x1 + i)
4(x1 ↓ i)2x31

X ∝
1 + 3x1 + i

4(x1 ↓ 1)3x41
X1 = 0. (10)

We find a solution of this equation of the form

X1(x1) = i ↓ x1△
x1

{
c1 + c2

[ △
x1(1 + ix1)↓

3
2 ↓i

△
3
2 .2F1(↼ (x1))dx1

}
,

where 2F1 is the Gauss hypergeometric function and

↼ (x1) =
⟨
5
2

↓ i
△
3
2

,
1
2

+ i
△
3
2

, 1 + i
△
3, 1 + ix1

⟩
.

The Picard–Vessiot field K contains this solution and, as it is a differential field, it also contains
△
x1(1 + ix1)↓

3
2 ↓i

△
3
2 2F1(↼ (x1)).
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Noting K̃ the differential field generated by this function, we have K̃ ′ K . Now the Galois group of 2F1(↼ (x1)) over C(x1)
is SL2(C) (see Kimura’s table, [22]). By Galois correspondence, the Galois group of (10) over the rational functions in x1
admits SL2(C) as a subgroup. The hypergeometric equation (10) is Fuchsian (all its singular points are regular), so thanks to
Theorem 4, we know that its Galois group over the field of rational functions is the closure of its monodromy group. Besides,
the Galois group over meromorphic functions contains the monodromy group, and of course, is included in the Galois group
over rational functions. Eventually, the Galois group of (10) over meromorphic functions in x1 also contains SL2(C). Thus,
adding the algebraic extension

△
x1, the Galois group can be reduced to at most one subgroup of index 2: The only possibility

is that the identity component contains SL2(C) again. So the Galois group of K over the base field of meromorphic functions
in

△
x1 ↑ C \ {0, ±

△
i} contains SL2(C) and is not virtually Abelian. According to Moralès–Ramis, this concludes the proof.
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