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3D Geosynchronous Transfer of a Satellite:
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Abstract. The minimum-time transfer of a satellite from a low and
eccentric initial orbit toward a high geostationary orbit is considered.
This study is preliminary to the analysis of similar transfer cases with
more complicated performance indexes (maximization of payload, for
instance). The orbital inclination of the spacecraft is taken into account
(3D model), and the thrust available is assumed to be very small (e.g.
0.3 Newton for an initial mass of 1500 kg). For this reason, many
revolutions are required to achieve the transfer and the problem
becomes very oscillatory. In order to solve it numerically, an optimal
control model is investigated and a homotopic procedure is introduced,
namely continuation on the maximum modulus of the thrust: the solu-
tion for a given thrust is used to initiate the solution for a lower thrust.
Continuous dependence of the value function on the essential bound of
the control is first studied. Then, in the framework of parametric opti-
mal control, the question of differentiability of the transfer time with
respect to the thrust is addressed: under specific assumptions, the
derivative of the value function is given in closed form as a first step
toward a better understanding of the relation between the minimum
transfer time and the maximum thrust. Numerical results obtained by
coupling the continuation technique with a single−shooting procedure
are detailed.
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1. Introduction

We are interested in the application of optimal control to spaceflight
dynamics. More precisely, we consider the minimum-time transfer of a satel-
lite in the gravitation field of the Earth. Contrary to the case of aeroassisted
orbital transfers (see Ref. 2), we start from a low initial orbit and aim at
reaching a high geosynchronous orbit (nonatmospheric transfer). As in Ref.
3, the transfer time is minimized and both the eccentricity and the incli-
nation have to be corrected (3D transfer; see Refs. 4–5 for the coplanar
case). In the context of electro-ionic propulsion (Refs. 6–7), the maximum
thrust of the engine is very small: while in Ref. 2 the thrust varies from
1270000 Newtons (impulsive control) to 5000 Newtons for an initial mass
of 15000 kg, we shall work with thrusts between 60 Newtons and 0.14
Newton with a satellite of 1500 kg (that is, with an acceleration 2000 times
smaller in the lower case). As a result, the transfer times are very long (up to
several months) and the numerical solution of the problem requires specific
techniques. A natural idea is then to connect the simple problems (with
strong thrusts) to the difficult ones (with low thrusts): this well-known pro-
cedure is often referred to as homotopy or continuation (Refs. 8–9). Actu-
ally, as we shall see in Section 3, it turns out that this continuation on the
maximum thrust is all the more relevant here that the dependence of the
transfer time on the thrust proves to be quite smooth.

We formulate first the transfer as an optimal control problem in Section
2 and give some preliminary results. The continuation process is studied in
Section 3: we prove that, under reasonable assumptions, the value function
of a general optimal control problem is right-continuous with respect to the
essential bound on the control. In the transfer case, the specific structure of
the problem allows even a C1-sensitivity analysis, and the derivative of the
transfer time as a function of the maximum thrust can be explicited in
Section 4 under assumptions typical of parametric control (Refs. 10–11).
The numerical computation of the optimal trajectories using single shoot-
ing(see Ref. 12 for a direct transcription approach on similar problems)
coupled with continuation on the bound on the control is described in Sec-
tion 5. The results are given for the 3D model and very low thrusts, down
to 0.14 Newton.

2. Statement of the Problem and Preliminary Results

In order to give the mathematical formulation of the transfer problem,
we suppose that the satellite can be modeled as a mass point and we neglect
the high-order terms of the Earth gravitational field (we just consider an
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Fig. 1. Local frame (q, s, w) for the thrust; (r, û) is the rain position-speed of the satellite S.

inverse square law field). Hence, in the so-called Cartesian coordinates,
rG(r1 , r2 , r3) being the position vector and uG(u1 , u2 , u3) the thrust of the
engine, the dynamics is

r̈GAµ0r��r�3Cu�m. (1)

In (1), µ0GG mT�398600.47 km3 s−2 is the Earth gravitation constant,5 m
the mass of the satellite, and � · � the Euclidean norm, �r�G(r2

1Cr2
2Cr2

3)
1�2; the

same convention will be used for all finite-dimensional norms in the rest of
the paper. But rather than using the position-speed variables, we prefer to
use the Gauss coordinate’s that describe the ellipse osculating to the trajec-
tory (Ref. 13). In these coordinates, the dynamics is still affine in the control,
which is expressed in a local frame attached to the ellipse [reference (q, s,
w), see Fig. 1]:

ẋGf0(x)C(1�m) ∑
iG1

3

uifi (x). (2)

5
G is the universal gravitation constant and mT the mass of the Earth.
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The state is xG(P, ex , ey , hx , hy , L), where the variables define the geometry
of the osculating ellipse and the position of the satellite on at: P is the
semilatus rectum; (ex , ey) is the eccentricity vector; (hx , hy) is the inclination
vector; L is the true longitude. These coordinates are well suited, since all
but L are first integrals of the free motion (i.e., without control): hence,
contrary to the Cartesian coordinates, they vary slowly for low thrust
transfers [in the 2D case, the lowest thrust solvable by shooting when using
Cartesian coordinates is only 0.7 Newton (see Ref. 14)]. The vector fields in
(2) are

f0G1µ0�P�
0

0

0

0

0

W2�P

�, (3)

f1G1P�µ0�
0

sin L

−cos L

0

0

0

�, (4)

f2G1P�µ0�
2P�W

cos LC(exCcos L)�W

sin LC(eyCsin L)�W

0

0

0

�, (5)

f3G1�W 1P�µ0�
0

−Zey

Zex

(C�2) cos L

(C�2) sin L

Z

�, (6)
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with

WG1Cex cos LCey sin L,

ZGhx sin LAhy cos L,

CG1Ch2
xCh2

y .

Accordingly, the dynamics is well defined and smooth6 on the following
open (smooth) submanifold of �6:

MG{x∈�6�PH0, e2
xCe2

yF1}.

Note that, with

e2
xCe2

yF1,

we restrict ourselves to elliptic trajectories. We also take into account the
fact that the mass flow is proportional to the modulus of the thrust,

ṁGAβ �u�, (7)

so that the state of the satellite is in fact (x, m)∈MB�*C . To ensure com-
pactness of the set of admissible trajectories, we restrict ourselves to a secur-
ity zone A⊂�BM of the tx-plane defined by

t¤0, P¤Π0, (8)

with Π0H0 (the path constraint P¤Π0 prevents the satellite from colliding
with the Earth). Analogously, the mass of the satellite has to remain greater
than the mass without fuel χ0,

m¤χ0. (9)

The initial and the terminal orbits are prescribed, so we have the boundary
constraints

x(0)Gx0, m (0)Gm0, h (x(tf ))G0, (10)

with

x0G(P0, e0
x , e0

y , h
0
x , h0

y , L
0)∈�6,

h(x)G(PAP f, exAe f
x , eyAe f

y , hxAh f
x , hyAh f

y)∈�5,

and

P0G11625 km, P fG42165 km, (11a)

e0
xG0.75, e f

xG0, (11b)

6Smooth stands for CS–smooth.
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e0
yG0, e f

yG0, (11c)

h0
xG0.0612, h f

xG0, (11d)

h0
yG0, h f

yG0, (11e)

L0Gπ , L f free , (11f)

m0G1500 kg, h f free. (11g)

According to (11), the initial orbit is very eccentric [one has
� (e0

x , e0
y) �G0.75]. On the contrary, the inclination with respect to the equa-

torial plane is weak, since � (h0
x , h0

y) �G0.0612 corresponds to an angle of 7
degrees. Here, the final longitude is free, so we do have an orbit transfer
problem, not a rendezvous problem.7 Finally, we consider the constraint on
the control,

�u�⁄Tmax, (12)

meaning that the thrust is limited in intensity by Tmax . As before, (12) is
equivalent to

u2
1Cu2

2Cu2
3⁄T2

max.

Our transfer problem, parameterized by the maximum thrust Tmax , is thus
to find an absolutely continuous state (x, m) in W1,S

7 ([0, tf ])G
W1,S([0, tf ], �7) and an essentially bounded control u in the space
LS

3 ([0, tf ])GLS([0, tf ], �3) that minimize the transfer time tf ,

min tf ,

and that match the dynamics (2), (7), the path constraints (8)–(9), the
boundary constraints (10), and the control constraint (12). For a given Tmax ,
the problem will be referred to as (SP)Tmax

.
It is proven in Ref. 5 that, no matter how low the thrust might be, the

system remains controllable provided the mass of the satellite without fuel
χ0 is small enough. This property comes from the fact that the Lie algebra
defined by the vector fields (3)–(6) has maximal rank and that the drift [that
is, the Keplerian action modeled by f0] is periodic. Hence, the set of admiss-
ible trajectories and controls is nonempty and the existence of optimal con-
trols proceeds from the Filippov theorem (Ref. 15). Indeed, the dynamics is
clearly convex in the control; the control set UGBc (0, Tmax) is also convex;
Bc (a, ρ) denotes the closed Euclidean ball with center a and (strictly posi-
tive) radius ρ; and though the txm–space is unbounded, one can construct
a Lyapunov function to show that x and m remain in a fixed compact subset

7In (11), the initial longitude is assumed to be prescribed for convenience.
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of MB� (moreover, since the criterion is tf and since there are admissible
trajectories, one can always assume that tf is smaller than a given T, with T
big enough).

Now, consider the following assumption:

(A1) Any optimal trajectory (including the mass) is interior to the
path constraints (8)–(9).

Under (A1), the necessary condition for optimality (Refs. 15–16)
applies and, if (tf , x, m, u) in �BW1,S

7 ([0, tf ])BLS
3 ([0, tf ]) is optimal, there

exists an absolutely continuous adjoint state p such that the control verifies

uGATmaxψ��ψ �, (13)

whenever ψ does not vanish, where ψ (t)GB (x(t))Tp(t) is the so-called
switching function of the problem [B (x) is the 6B3 matrix [ f1 , f2 , f3 ], and
T denotes the transpose operator]. Indeed, it is proven in Ref. 5 that,
although we take into account the mass variation [Eq. (7)], the control is
almost everywhere of maximum modulus.8 Furthermore, the geometric
analysis implies that there is only a finite number of switching points. More
precisely, consider the next assumption:

(A2) the constraints of (SP)Tmax
are qualified.

Under (A2), we are able to give precise bounds on the number of con-
secutive switchings located at the perigee of the osculating ellipse. As
explained in Ref. 5, this is the justification for the practical assumption that
there is no switching at all, namely:

(A3) any optimal control is continuous.

Remark 2.1. By the Pontryagin maximum principle,9 �u�GTmax almost
everywhere [that is, everywhere, with (A3)]. Hence, the mass is known
explicitly as a function of the time,

m(t)Gm0AtβTmax , (14)

and (SP)Tmax
can be given an equivalent nonautonomous formulation. How-

ever, we will sometimes need to consider the original formulation where,
contrary to (14), the parameter Tmax does not appear in the dynamics (e.g.,
at the end of Section 3).

Before going to the next section, devoted to the continuation process,
we finish by connecting the 3D model to the 2D model previously studied

8The coplanar study extends straightforwardly to the 3D case; see Ref. 14.
9Though we minimize the Hamiltonian, we still refer to the usual first-order necessary condition
as the Pontryagin maximum principle.
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in Refs. 4–5. The latter is not an approximation of the former but truly a
particular case (in this sense, it is still an exact 3D model). Indeed, it is
obtained by adding the path constraint that the inclination is constant, that
is,

� (hx , hy) �Gconst. (15)

According to (15), one then has

hxḣxChyḣyG0,

and since the trajectory has also to verify the dynamics,

� (hx , hy) �1P�µ0(1C� (hx , hy) �2) u3 cos (LAΩ )�2 WG0, (16)

where Ω is the so-called longitude of the ascending node [that is,
(hx , hy)G� (hx , hy) �(cosΩ, sinΩ ), see Ref. 13]. In all cases, (16) implies that
u3 is identically zero (no offplane component of the thrust), in order that
the variables hx and hy can be eliminated from the dynamics (since they
appear only in the vector field f3).

A remarkable feature of the 2D optimal trajectories is that they remain
extremal for the 3D model whenever the inclination has to be the same at
the initial and final times.

Proposition 2.1. Under the additional boundary constraint that the
inclination is the same at tG0 and tGtf , the 2D optimal trajectories are
extremals of the 3D model.

Proof. Let us consider the constraint (hx , hy)(0)G(hx , hy)(tf ), same
inclination at the times 0 and tf. If ūG(ū1 , ū2) is an optimal control of the
2D problem, let uG(ū1 , ū2 , 0); u remains admissible thanks to the linearity
of the dynamics in the control and to the fact that neither u1 nor u2 appear
in the equations for ḣx and ḣy [see Eqs. (3)–(6)] in order that h is constant
(thus verifying the new boundary constraint). Besides, since the vector fields
f0 , f1 , f2 do not depend on (hx , hy), the associated adjoint equations are
written as

ṗhxGAu3�m∂hx f T
3 p, (17)

ṗhyGAu3�m∂hy f T
3 p. (18)

Hence, it is enough to choose phx and phy identically zero to satisfy (13), (17,
18), as well as the transversality condition

( phx , phy ) (0)G( phx , phy ) (tf ). �
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At this point, it is not yet clear whether an optimal 2D trajectory is,
more than extremal, optimal under the previous additional boundary con-
straint on the inclination. Indeed, one can imagine that there are better
strategies that use an offplane thrust during the transfer. Nevertheless, the
extremality given by Proposition 2.1 is important, since in practice the con-
trol problem is solved by means of indirect methods (e.g. single shooting;
see Section 5) that actually find the extremals.

3. Continuation on the Essential Bound

We consider in this section the following general optimal control prob-
lem: find a real tf (the final time is supposed to be free10), an absolutely
continuous state x in Wt,S

n ([0, tf ]), and an essentially bounded control u in
LS

m ([0, tf ]) such that the criterion below is minimized (Mayer form),

min g(tf , x(tf )). (19)

The dynamics is smooth on an open submanifold M of �n,

ẋGf (t, x, u), t∈[0, tf ], (20)

and we consider the boundary constraints

x(0)Gx0, h(x(tf ))G0, (21)

where h is a smooth submersion of �BM on �l, together with the state and
control constraints

(t, x)∈A, u∈Uρ (t, x), (22)

where A is a closed subset of �BM. The parameter ρ acts in (22) according
to

Uρ (t, x)GU(t, x)∩Bc (0, ρ),

with as before Bc (0, ρ) the closed Euclidean ball of radius ρH0 centered at
the origin. The parametric control problem (19)–(22) will be referred to as
(OCP)ρ . The control constraint u∈Uρ (t, x) is a priori all the more difficult
as ρ is smaller (and so is the numerical computation). For this reason, we
consider homotopy on the parameter ρ, so as to connect the complicated
problems with ρ small to simpler ones with ρ big. What we do practically
(see Section 5) is discrete continuation; that is, we use a decreasing sequence
of positive values (ρk)k in order to generate a sequence of optima. Such

10The results given here remain valid for problems with fixed final time with obvious
modifications.
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techniques are commonly used in numerical optimal control (see e.g. Refs.
8–9). The minimal property required to justify this kind of process in our
case is that, if (ρk)k decreases toward ρH0, the sequence of optimum values
tends to the optimum value of the limit problem. Namely, what we need is
the right-continuity of the value function V that maps the parameter ρ to
the optimum value V(ρ)∈� of (OCP)ρ . We give sufficient conditions that
entail this regularity. These assumptions will be immediately verified in the
minimum-time transfer case.

(H1) The set of admissible triples (tf , x, u) for (OCP)ρ is nonempty
for any ρH0.

(H2) NρG{(t, x, u)∈�BMB�m� (t, x)∈A, u∈Uρ (t, x)} is compact.
(H3) Qρ (t, x)Gf (t, x, Uρ (t, x)) is convex for any (t, x)∈�BM and

ρH0.

These conditions are nothing else but the classical sufficient conditions
for existence so that obviously we have the following proposition.

Proposition 3.1. Under Assumptions (H1)–(H3), the value function V
is finite and decreasing.

Proof. V(ρ) is finite for any (strictly) positive ρ by the Filippov
theorem. Besides, if 0Fρ1⁄ρ2 , the set of admissible triples for (OCP)ρ1 is
clearly included in the one for (OCP)ρ2 in order that V(ρ2)⁄V(ρ1). �

As a consequence, V which is monotonous has only a countable num-
ber of discontinuities. To ensure the right-continuity, we suppose that the
dynamics can be smoothly inverted:

(H4) There are smooth functions R and S, R(t, x) in L (�n, �m),
S(t, x) in �m, such that, if yGf (t, x, u), then uG
R(t, x)yCS(t, x).

This requirement is fulfilled, e.g., as soon as the dynamics is affine in
the control,

ẋGf0(t, x)CB (t, x) u,

with B (t, x) an embedding. Then, we have the following proposition.

Proposition 3.2. Under Assumptions (H1)–(H4), the value function V
is right-continuous on R*C .

We shall use the following fact for the proof. Let (yk)k be a bounded
sequence in LS

n ([0, T]), converging to y∈LS
n ([0, T]) in the space of Schwartz
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distributions (see Ref. 17): for any compactly supported smooth (vector-
valued) function φ on [0, T], one has

�
[0,T]

(yk �φ ) dt→�
[0,T]

(y�φ ) dt, (23)

with ( · � · ) the Euclidean dot product. Then, (yk)k is equicontinuous in
LS

n ([0, T]) identified with the dual space of L1
n ([0, T]) and weakly*

converging toward y: (23) still holds for all φ in L1
n ([0, T]).

Proof of Proposition 3.2. Let (ρk)k be a sequence decreasing toward
ρH0. We denote by (tfk , xk, uk) a solution of (OCP)k . Since A is compact by
(H2), there is a positive T such that A⊂ [0, T]B�n and we extend each xk

[resp. uk] to [0, T] by constancy and continuity (resp., by zero outside [0, T]).
The first step is to construct the limit state (this is just the classical argument
of the filippov theorem; see Ref. 15). Then, the convergence in the control
comes from Assumption (H4). Finally, the control constraint (22) passes to
the weak limit by the Banach–Steinhaus theorem in order that the value
function is right-continuous.

Hence, (ρk)k being our decreasing sequence, V is also decreasing(Prop-
osition 3.1), so (V(ρk))k is increasing, bounded from above by V(ρ), and
thus converging toward û⁄V(ρ). Since A is compact, so is

Nρ0G{(t, x, u)∈�BMB�m� (t, x)∈A, u∈Uρ0 (t, x)};

one can find a positive constant K such that

�ẋk �G�f (t, xk , uk) �⁄K, t∈[0, tfk], k∈�,

because f is continuous and because the sequence (Nρk )k is decreasing.
Hence, (xk) is equilipschitzian when extended to [0, T] by constancy and
continuity: up to a subsequence, (xk) converges uniformly toward x (also
Lipschitz) by the Ascoli theorem [the trajectories stay into a fixed compact
by virtue of (H2)]. Likewise, we can assume that (tfk )k⊂ [0, T] converges
toward some positive tf. Obviously, x(0)Gx0, (t, x)∈A (A is closed),
h(tf , x(tf ))G0 for h(tfk , xk (tfk ))G0, and (xk)k is equicontinuous. Finally, as
for any k in �,

ẋk∈Qρk (t, xk)⊂Qρ0 (t, xk), t∈[0, tfk],

we know that ẋ∈Qρ0 (t, x) (closure Theorem 8.6.i of Ref. 15). Then, let u be
a measurable selector in LS

m ([0, tf ]) (extended to [0, T] by 0 outside [0, tf ])
such that

ẋGf (t, x, u), u∈Uρ0 (t, x).
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By virtue of (H4), there are smooth functions R and S such that, if χk

denotes the indicator function of [0, tfk],

ukG(R (t, xk)ẋkCS (t, xk))χk , (24)

uGR (t, x) ẋCS (t, x), (25)

on [0, T]. Besides, xk converges to x uniformly, so that ẋk tends to ẋ in the
Schwartz distributions sense, ẋ being in LS

n ([0, T]). For all k, since
ẋk∈Qρk (t, xk), (ẋk)k is bounded in LS

n ([0, T]): as in (23), (ẋk)k is equicontinu-
ous and weakly*converges to ẋ in LS

n ([0, T]). Then, let ϕ be in L1
m ([0, T]);

since R and S are continuous, R(t, xk)
Tϕχk→R(t, x)Tϕ and (S(t, xk)χk �ϕ )

tends to (S(t, x) �ϕ ) when k→S in L1
n ([0, T]) and L1([0, T]), respectively, by

dominated convergence. Thus, S(t, xk)χk→S(t, x) weakly* and, (ẋk)k being
equicontinuous,

�
[0,T]

(ẋk �R (t, xk)
Tϕχk) dt→�

[0,T]

(ẋ�R (t, x)Tϕ ) dt,

that is,

�
[0,T]

((R (t, xk)ẋkCS (t, xk))χk �ϕ ) dt→

�
[0,T]

(R (t, x) ẋCS (t, x) �ϕ ) dt.

From (24)–(25), we get the weak convergence of uk toward u. Finally, since
(uk)k is bounded and weakly*convergent,

��u��S⁄ lim inf
k

��uk ��S⁄ρ, as ρk→ρ,

by the Banach–Steinhaus theorem. As a consequence, u belongs to
Uρ0 (t, x)∩Bc (0, ρ)GUρ (t, x) and (tf , x, u) is admissible for the limit prob-
lem (OCP)ρ . Now, by equicontinuity, we have that g(tfk · xk (tfk ))→
g(tf , x(tf )), from where we get that

(g(tf ), x(tf ))Gû⁄V (ρ),

since

V (ρk)Gg(tfk , xk (tfk )).

Necessarily, ûGV(ρ) and (tf , x, u) is solution of (OCP)ρ . Accordingly,
V(ρk)→V(ρ), whence we conclude that V is right continuous. �
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Besides the regularity of the value function, we obtain a convergence
result of the sequence of triples (tfk , xk , uk). In particular, the weak*con-
vergence in u implies the classical weak convergence of the controls in
L1

m ([0, T]) (Ref. 15): for any ϕ in LS
m ([0, T]), up to a subsequence,

�
[0,T]

(uk �ϕ ) dt→�
[0,T]

(u�ϕ ) dt.

All these results apply to the orbital transfer problem: one has just to con-
sider the original model where the mass is not explicited as a function of
time [Eq. (7), not to introduce Tmax into the dynamics as in (14)]. Indeed, we
know from Section 2 that, whatever the thrust, the problem is controllable.
Moreover, we have also mentioned that the trajectories (mass included) can
be proved to stay in a fixed compact: since the dynamics is convex, Assump-
tions (H1)–(H3) are fulfilled. Now, concerning (H4), since the matrix
BG[ f1 , f2 , f3 ] is an embedding, we can write u as smooth function of
ẋ, x, m according to

uGm (B (x)TB (x))−1B (x)T[ẋAf0(x)].

As a result, Tmax being the parameter ρ, the value function Tmax> tf (Tmax)
is right continuous and we have the associated weak convergence results.

Remark 3.1. These properties are unchanged if we consider an
additional cone constraint on the control (see Ref. 18): instead of taking
U(t, x)G�m as before, one considers the new constraint (the control has to
stay in a cone of angle α and of vertex the axis s of the frame attached to
the ellipse; see Fig. 2). If the angle is smaller than π�2, the control set is
still convex and the previous results hold provided we assume
controllability.

The next section defines a setting in which it is possible to obtain more
regularity of the value function in the transfer case.

4. Differentiability with Respect to the Maximum Thrust

In this section, the idea is to show that, under suitable assumptions,
the minimum time for the orbit transfer problem is continuously differen-
tiable with respect to the maximum thrust. To this end, we begin by
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Fig. 2. Cone constraint on the control.

recasting the problem on [0, 1], treating the free final time as an additional
constant state variable (this transformation is classical, see e.g. Ref. 19):

min tf (1), (26a)

(x, tf )∈W1,S
7 ([0, 1]), u∈LS

3 ([0, 1]), (26b)

ẋGtf � f0(x)C[1�m(tf t)] ∑
iG1

3

uifi (x)� , t∈[0, 1], (26c)

ṫf G0, (26d)

x(0)Gx0, h(x(1))G0, (26e)

�u�⁄Tmax. (26f)

We have used hypotheses (A1)–(A3) of Section 2 so as to neglect the path
constraints (8–9) and to write the mass as an explicit function of time [Eq.
(14)]. We shall still refer to (26) as (SP)Tmax

. Under these assumptions, the
Pontryagin maximum principle applies as in Section 2 (but here on [0, 1])
and, if (x, tf , u) is solution of (SP)Tmax

, there are absolutely continuous multi-
pliers pG( pP , pex , pey , phx , phy , pL ) and ptf associated to x and tf , respectively,
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such that (x, tf , p, ptf ) is the solution of the two-point boundary-value
problem

ẋG∂pH(t, x, tf , p, u (y)), t∈[0, 1], (27a)

l̇f G0, (27b)

ṗGA∂xH(t, x, tf , p, u (y)), (27c)

ṗtfGA∂tfH(t, x, tf , p, u(y)), (27d)

with boundary conditions [p0
tfG0, p f

LG0, p f
tfG1 by transversality and

because of (A2)]

P(0)GP0, P(1)GP f, (28a)

ex (0)Ge0
x , ex (1)Ge f

x , (28b)

ey (0)Ge0
y , ey (1)Ge f

y , (28c)

hx (0)Gh0
x , hx (1)Gh f

x , (28d)

hy (0)Gh0
y , hy (1)Gh f

y , (28e)

L(0)GL0, pL (1)Gp f
L , (28f)

ptf(0)Gp0
tf , ptf(1)Gp f

tf. (28g)

In (27)–(28),

H(t, x, tf , p, u)Gtf {p � f0(x)C[1�m(tf t)]B (x)u}

is the Hamiltonian of the problem. Of course, the minimization of the
Hamiltonian (13) holds unchanged and still defines the control as a smooth
function u( y) of yG(x, p) by virtue of (A3) (no-switching assumption) in
(27),

u(y)GATmaxB (x)Tp��B (x)Tp�.

Let us denote by ξ (t, x, tf , p, ptf ) the right-hand side of (27). The associated
maximal flow (Ref. 20) φ s

t (x, tf , p, ptf ) is smooth and the boundary-value
problem (27)–(28) is equivalent to the so-called shooting equation: find
( p0, tf )∈�6B� such that11

S( p0, tf )Gb (φ0
1(x

0, tf , p
0, p0

tf ))G0. (29)

11Strictly speaking, we should write t0f instead of ṫf in (29), since the latter is treated as a state
variable. Nevertheless, as tf G0, we shall not distinguish between the function and the scalar
in the sequel.
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In (29), the boundary function b is defined by [see (28)]

b(x, tf , p, ptf )G(PAP f, exAe f
x , eyAe f

y , hxAh f
x , hyAh f

y , pLAp f
L , ptfAp f

tf ).

We know from Section 3 that the minimum time tf is right-continuous
with respect to the maximum thrust Tmax . Hence, we can use continuation
on Tmax to get a good initial guess for tf in (29). Yet, this process is not very
efficient numerically: for low thrusts, if Tc

max is the current value of the
constraint, the next bound T+

max has to be taken very close to Tc
max to ensure

convergence. Fortunately, we can take advantage of the remarkable heuris-
tic (first reported in Ref. 18) that the minimum time multiplied by the bound
on the thrust is nearly constant,

tf BTmax�const. (30)

Hence, if tcf is the minimum time for Tc
max, the search for t+f is precisely

initialized by tcf Tc
max�T+

max. For the other unknown p0, we have no
additional information and we do use mere continuation: if p0,c is the value
of the solution adjoint state for Tc

max at tG0, it is used as the initial guess
for p0,C. Again, this process makes sense only provided the dependence
Tmax>p0(Tmax)Gp(0, Tmax) is well defined and has some regularity proper-
ties. Moreover, the heuristic (30) clearly suggests a smooth behavior of tf as
a function of Tmax. Accordingly, it is natural to investigate conditions that
would entail, more than continuity, differentiability of the solution with
respect to the essential bound on the control as a first step toward a deeper
understanding of (30).

To this end, we refer to the work on parametric control of Maurer et
al. in Refs. 10, 11, 19. The idea is to extend to the infinite dimension the
results of parametric mathematical programming: a family of extremals
(that is, points verifying the first-order necessary condition) is constructed,
whose (local) optimality is checked by the second-order sufficient con-
ditions. In addition to the usual over-lap between regularity and sufficient
conditions, the control setting has its own peculiarities. In particular, for
the transfer problem, the no-switching assumption (A3) plays a crucial role:
it is at the same time an assumption of regularity of the control, structure
for the set of active constraints (with respect to the inequality constraint on
the modulus of u), strict complementarity, as well as the strict Legendre–
Clebsch condition. Thus, to apply the parametric tools of Ref. 10 to
(SP)Tmax

it is enough to make only two new assumptions of regularity and
coercivity (jointly in x and u): for any Tmax , with x̃G(x, tf ), p̃G( p, ptf ),
ỹG(x̃, p̃), and S defined as in (29),

(A4) [∂pS ∂tf S]( p(0, Tmax), tf (Tmax))∈GL7(�);
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(A5) The following symmetric Riccati equation has a bounded solu-
tion:

Q̇GAQA (t)AA
T(t)QCQB (t)QAC (t), t∈[0, 1], (31a)

Q77(0)H0, (Qij)i, jG6, 7(1)F0, (31b)

with

A (t)G∂xξ1(t, ỹ(t, Tmax)),

B (t)G∂pξ1(t, ỹ(t, Tmax)),

C (t)G∂xξ2(t, ỹ(t, Tmax)).

Since the constraint on the control is a pure one, the Riccati equation in
(A5) can be rewritten in a simplified way. For details, we refer to Ref. 19
where the techniques of Ref. 10 are adapted to the free final time problem.
In the above form, the equation (31) is well suited for automatic differen-
tiation (see Ref. 21). An example of numerical verification of the coercivity
condition (A5) is described in Ref. 4 in a different but still similar case.
Here, our aim is rather to provide a formal expression of the derivative
tf ′(Tmax). Indeed, it is a remarkable feature that it is related to the switching
function ψ ; see Eq. (13).

Proposition 4.1. Under Assumptions (A1)–(A5), the value function tf
is continuously differentiable with respect to Tmax and

t′f GAtf �
1

0

(d�dt)(t�m) �ψ � dt. (32)

Proof. Let Tmax,0H0 be an arbitrary positive thrust, and let (tf 0 , x0 , u0)
be a solution of (SP)Tmax,0. The associated adjoint states p0 and ptf ,0 are absol-
utely continuous and, if H̃ is the augmented Hamiltonian,

H̃(t, x, tf , p, u, µ)Gtf �p�f0(x)C[1�m(tf t)] ∑
iG1

3

uifi (x)�
C(1�2)µ (�u�2AT2

max),

one has

∇uH̃(t, x0 , tf 0 , p0 , u0 , µ0)G0,

with

µ0Gtf 0�B (x0)
Tp0 ��(m(tf 0t)Tmax , 0). (33)
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Thanks to Assumption (A3), µ0 is strictly positive and strict complemen-
tarity holds. Moreover, the Hessian ∇2

uuH̃Gµ0I3 is positive definite (I3 being
the identity matrix of order 3) by the same argument, so that the Legendre–
Clebsch condition is also fulfilled. Since the multipliers and the control have
obviously the desired smoothness, since we have assumed the regularity and
coercivity conditions (A4) and (A5), we apply the results of Ref. 10 and
conclude that there exists an open neighborhood of Tmax,0 on which the
sensitivity functions,

Tmax> (x, tf , u)( · , Tmax)∈W1,S
7 ([0, 1])BLS

3 ([0, 1]), (34)

Tmax> ( p, ptf , µ)( · , Tmax)∈W1,S
7 ([0, 1])BLS([0, 1]), (35)

are defined and continuously differentiable. Now, because of (A3), (SP)Tmax

is equivalent to the abstract parametric optimization problem with equality
constraints

J(z)→min,

F (z, Tmax)G0,

where

zG(x, tf , u)∈ZGW1,S
7 ([0, 1])BLS

3 ([0, 1]), J(z)Gtf (1),

and

F (z, Tmax)G�
ẋAtf {f0(x)C[1�m(tf t)] ∑

iG1

3

uifi (x)}

ṫf
x(0)Ax0

h(x(1))

(1�2)(�u�2AT2
max)

�.

The associated Lagrangian (in qualified form) is

L(z, λ , Tmax)GJ(z)C〈λ , F (z, Tmax)〉Y ′, Y ,

with

λG(−p, −ptf , ν
0, ν f, µ)∈Y ′,

Y GLS
7 ([0, 1])B�6B�5BLS([0, 1]).

By virtue of (34)–(35), the functions Tmax>z(Tmax) and Tmax>λ (Tmax)
(respectively solution and multiplier for the abstract parametric problem)
are well defined and continuously differentiable in a neighborhood of
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Tmax,0. Besides, the pair (z(Tmax), λ (Tmax)) readily verifies the KKT con-
ditions in this neighborhood,

∂zL(z(Tmax), λ (Tmax), Tmax)G0,

∂λL(z(Tmax), λ (Tmax), Tmax)G0.

Accordingly, the derivative of the value function is

t′f (Tmax)G∂Tmax
L(z(Tmax), λ (Tmax), Tmax).

An obvious calculation using the fact that the mass depends explicitly on
the parameter Tmax [Eq. (14)] yields the desired conclusion. �

Since the mass is decreasing, the derivative t′f in (32) is clearly negative,
in accordance with Proposition 3.1. The last section presents the numerical
results obtained with this technique.

5. Numerical Computation

We apply to the minimum time transfer problem the process described
in Section 4: the heuristic relation (30) is used to initialize the unknown
transfer time, and we do continuation on the initial adjoint state. The first
results obtained with this approach on a 2D model are those of Ref. 22.
The physical parameters are recalled in Table 1 [more suitable units are
chosen, namely Megameters (Mm) and hours (h); compare (11)].

Single shooting is used (see e.g. Ref. 23): the Newton solver is a
Hybrid–Powell method, and the ODE solver is a Runge–Kutta integrator
of order 4 (Ref. 24). Single shooting is prefered to multiple shooting since
a previous study (Ref. 25) in the 2D case showed that multiple shooting,
when coupled with continuation, alters the convergence of the process.
Indeed, using auxiliary points seems to prevent the current solution from
converging toward the solution for the lower thrust (whose structure may
be quite different). The right-hand side of the boundary-value problem (27)
is computed by automatic differentiation (Ref. 26). The computation,

Table 1. Physical parameters.

P0 11.625 Mm Pf 42.165 Mm
e0

x 0.75 e f
x 0

e0
y 0 e f

y 0
h0

x 0.612 h f
x 0

h0
y 0 h f

y 0
L0 π β 0.0142 Mm−1 h
m0 1500 kg µ0 5165.862 Mm3 h−2
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Table 2. Minimum transfer times (in hours). Thrusts are in Newtons and compu-
tation times (on a 1 Mhz Pentium III) in seconds. The norm of the shoot-
ing function S at the solution is also given.

Comput. Tmax tf �S� Comput Tmax tf �S�

1 60 14.800 1E−8 30 1.4 606.13 1E−10
3 24 34.716 1E−10 43 1 853.31 9E−13
3 12 70.249 9E−9 63 0.7 1214.5 2E−9
7 9 93.272 4E−10 92 0.5 1699.4 1E−8
6 6 141.22 1E−9 155 0.3 2870.2 3E−8
15 3 285.77 4E−10 235 0.2 4265.7 1E−8
22 2 425.61 1E−12 263 0.14 6079.5 7E−9

started for 60 Newtons,12 is initialized by the results on the coplanar model
(Refs. 4–5). The choice of the values of the continuation parameter Tmax is
heuristic. The results are summarized in Table 2. The near constancy of the
product tf BTmax is emphasized by Fig. 3.

The optimal trajectories and controls are given for strong thrusts (60,
12 Newtons) and low thrusts (3 Newtons); see Figs. 4–6. The correction of

Fig. 3. Near constancy of the product tf BTmax.

12Of course, such a thrust is not realistic for a 1500 kilogram satellite: it is used only to ensure
convergence of the first homotopy step.



JOTA: VOL. 118, NO. 3, SEPTEMBER 2003 561

Fig. 4. Optimal trajectories and controls, thrust of 60 Newtons.

Fig. 5. Optimal trajectories and controls, thrust of 12 Newtons.



JOTA: VOL. 118, NO. 3, SEPTEMBER 2003562

Fig. 6. Optimal trajectories and controls, thrust of 3 Newtons.

the eccentricity is observed in the (r1 , r2) plane, whereas the change in the
inclination is seen in (r2 , r3). The arrows picture the action of the control.
For 0.14 Newton, the result is analogous: the transfer is more than six
month long and about 240 revolutions around the Earth are needed. Figure
7 illustrates the properties of the optimal control reported in Section 2:
though the control may look discontinuous, there is only one point where
µ, the multiplier associated with the control constraint and proportional to
the norm of the switching function [see Eq. (33)], is close to zero but not
vanishing.

6. Conclusions

We have considered in this paper the minimum time transfer of a satel-
lite from a low orbit toward a high geosynchronous orbit. The transfer is
3D, since both the eccentricity and the inclination have to be corrected. As
we have chosen very low thrusts to model an electro-ionic propulsion, the
resulting transfers are very long (e.g., more than six months for 0.14 New-
ton). In order to justify the use of continuation on the thrust, we have
studied the dependence of the solution with respect to the essential bound
on the control. First, it has been proved that the value function is right
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Fig. 7. Structure of the control, thrust of 0.5 Newton.

continuous. Since more is needed in practice, we have also shown to what
extent parametric control is relevant here: in particular, we have given a
closed expression for the derivative of the value function. This can be viewed
as a first attempt to understand the experimental constancy of the product
tf BTmax. Actually, whereas it is probably false that this quantity is constant,
we can conjecture that it is asymptotically preserved (asymptotic conser-
vation of the momentum13),

tf BTmax→c, Tmax→0,

with c a positive constant depending on only the boundary conditions
defined by x0, m0, and h [Eq. (10)].

Numerically, we have used single shooting, which proved to be very
efficient when combined with (30) and continuation on the adjoint state.
Another approach that is not based on (30) is proposed in Ref. 4. New
models for the transfer that integrate other constraints (e.g., on the thrust

13The product tf BTmax is homogeneous to a momentum (product of mass and velocity).
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angle) or have different criteria (e.g., maximization of the mass) are under
consideration.
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