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SUMMARY

The goal of this paper is to show how non-parametric statistics can be used to solve some chance constrained
optimization and optimal control problems. We use the Kernel Density Estimation method to approximate
the probability density function of a random variable with unknown distribution, from a relatively small
sample. We then show how this technique can be applied and implemented for a class of problems including
the Goddard problem and the trajectory optimization of an Ariane 5-like launcher.
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1. INTRODUCTION

This paper is dedicated to a numerical approach for solving chance constrained optimal control
problems, using the Kernel Density Estimation technique. One of the earliest and most famous
examples of optimal control problems in aerospace dates back to the beginning of the twentieth
century. In 1921, American physicist Robert HutchingsGoddard published a paper [1] in which
he studied the problem of minimizing the fuel consumption of a rocket ascending vertically from
Earth’s surface, taking into account both atmospheric drag and gravitational field. In order to better
explain the nature of this kind of problems, we will give a simplified model. Consider the vertical
ascent of a rocket in one dimension. The function r(t) represents the rocket’s altitude, v(t) its speed,
and m(t) its mass. We introduce the variable u(t) ∈ [0, 1] which defines the rate of maximum thrust
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applied at a given time. The vehicle starts from a still position at ground level, at time t = 0 the
thrust force Tu(t) of the engine pushes the launcher upwards, against the force of gravity m(t)g

with a fuel consumption rate T
ve
u(t) where ve is the fuel speed. The maximum thrust T , the fuel

speed ve, the initial mass m0 and the final time tf are fixed. The controlled system describing the
launcher’s dynamics is 

ṙ(t) = v(t) t ∈ [0, tf]

v̇(t) = T
m(t)u(t)− g t ∈ [0, tf]

ṁ(t) = − T
ve
u(t) t ∈ [0, tf](

r(0), v(0),m(0)
)

= (0, 0,m0)

(1.1)

where the admissible control set is

U := {u : R+ → [0, 1] ⊂ R | u is measurable}.

We want to solve the optimal control problem of finding a particular u∗ ∈ U that maximizes the final
mass of the launcher while ensuring that it reaches at least a given altitude r̄f at time tf. Formally,
this translates to solving

max
u∈U

mf(u)

rf(u) ≥ r̄f

mf(u), rf(u) final mass and altitude associated to u by (1.1).

(1.2)

For a more general theoretical study of this kind of problems, we refer to [2]. Robust methods are
aimed at achieving consistent performance and/or stability in the presence of bounded modelling
errors. Drawing a parallel with the example, let us suppose that the thrust T is estimated with
some margin errors, and assume that we want to maximize the final payload in presence of these
uncertainties on T . One possible approach consists in the use of worst-case analysis to treat
uncertainties in order to obtain what is called a “robust” solution. Using a variation of Wald’s
maximin model [3], one can consider the so-called robust optimal control problem:

max
u∈U

min
T∈[T−,T+]

mf(u, T )

rf(u, T ) ≥ r̄f ∀T ∈ [T−, T+]

mf(u, T ), rf(u, T ) associated to (u, T ) by (1.1)

(1.3)

A solution to this problem would be a control strategy u∗ ∈ U that maximizes the final mass of the
launcher even for the worst realization of the parameter T , while satisfying the constraint for the
final altitude for any T ∈ [T−, T+]. As pointed out in [4], robust optimization requires a trade-off:
The price to obtain a solution that is feasible in every scenario often results in the suboptimality of
the value function. Moreover, there might exist problems in which the constraint function cannot be
satisfied for every realization of the model’s parameters.
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Another approach used for solving robust optimization problems consists in chance constrained
optimization. The name comes from the the idea of treating the uncertainties in the underlying
mathematical model as random variables. More precisely, in the case of our example, we assume
that T is a random variable taking values inside an interval [T−, T+], according to a given probability
distribution. As a consequence of this definition, the two functions mf(u, T ) and rf(u, T ) also
become random variables. We introduce the parameter p ∈ [0, 1] and consider the following problem

max
u∈U

E
[
mf(u, T )

]
P
[
rf(u, T ) ≥ r̄f

]
≥ p

mf(u, T ), rf(u, T ) final mass and altitude associated to (u, T ) by (1.1)

where E denotes the expectation and P the probability. Here p acts as a probability threshold for
the realization of the event rf(u, T ) ≥ rf, and the inequality P

[
rf(u, T ) ≥ r̄f

]
≥ p is called chance

or probability constraint. Optimal control problems with chance constraints are often considered if
there is a need for minimizing a cost associated to the performance of a dynamical model, while
taking into account uncertainties in the parameters defining it. (See also [5, 6] for other computations
of probabilities in a dynamical setting related to aerospace engineering.) In this paper we study an
efficient numerical solution to chance constrained optimal control problems in the form min

(x,u)∈X×U
J(x, u)

P
[
G(x, u, ξ) ≥ 0

]
≥ p.

where the functions J and G may depend on both a finite number of optimization variables x
and on a control function u. The parameter p ∈ (0, 1) is a probability threshold and ξ is an m-
dimensional random vector defined on some probability space that will be properly set later. We
explore the application of the Kernel Density Estimation (KDE). This technique is used in non-
parametric statistics to approximate the probability density function of a random variable with
unknown distribution. The main difficulty lies in the form of the constraint function: G being
dependent on both x, u and ξ, it is not a trivial task to derive an analytical representation of its
probability distribution, even if the distribution of ξ is known. The idea of applying non-parametric
density estimation (and in particular KDE) to chance constrained optimization problems is not new
(see for instance [7, 8] where this technique has been applied to an optimization problem in finite
dimension). For the same type of problem, one can also mention [9] where the authors use a different
technique, called Scenario Approach. The work in [10] features the use of KDE for solving problems
in the simpler case where the optimization variables x are separated from the random variables ξ. To
the best of our knowledge, however, KDE has not been used previously as a tool for solving optimal
control problems, where both the cost and the constraints explicitly depend on a control function u.

The goal of this paper is to show the relevance of KDE approach on some optimal control
problems. This method can lead to very good results, hopefully inspiring new developments in
the field of chance constrained optimal control. In the next Section 2 we present some existing
results on the subject of chance constrained optimization. Section 3 gives an overview of the KDE
technique and introduces the algorithm that we propose to use for solving chance constrained control
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problems. Section 4 consists of three numerical examples involving the application of KDE to
chance constrained optimization and optimal control problems.

2. CHANCE-CONSTRAINED OPTIMIZATION PROBLEMS: A SHORT STATE-OF-THE-ART

There exists a wide literature on the subject of chance constrained optimization, in particular in
the case of problems involving only an array of decision variables x in X ⊆ Rn. As already
mentioned, the robust approach to parametric optimization comes with some disadvantages: It might
be difficult to guarantee the existence of a solution due to the strictness of the constraints, and
even in the case of a relaxation approach, it might be hard to make sure that the problem satisfies
all the required controllability hypotheses. Suppose that ξ is an m-dimensional random vector
defined on some probability space (Ω,A,P). The probability distribution of ξ will be denoted by
µ := P ◦ ξ−1 ∈ P(Rm), where P(Rm) is the space of Borel probability measures on Rm. Consider
then the chance constrained problem:min

x∈X
E
[
J(x, ξ)

]
P
[
G(x, ξ) ≥ 0

]
≥ p

(2.1)

where X ⊆ Rn is the admissible set for the decision variables x, J : Rn → R is an objective,
G : Rn ×Rm → R defines a constraint inequality, p ∈ (0, 1) is a probability threshold called
confidence level. This kind of problem has been treated at least since the fifties [11]. A general
theory, however, is due to Prékopa [12, 13], who also introduced the convexity theory based on
logconcavity. Other contributions on logconcavity theory in stochastic programming can be found
in [14, 15, 16]. There exist many results on the regularity of the constraint function and on the error
between approximated solutions of chance constrained optimization problems. Two fundamental
theorems regarding continuity and convexity of the constraint function have been proven in [17, 13].
The continuity theorem proven in [17] that, if the functions Gi(., y) are upper semi-continuous
[respectively, continuous] then the function

G(x) := P
[
G(x, ξ) ≥ 0

]
is upper semi-continuous [respectively, continuous]. Additionally, the convexity theorem in [13]
states that if Gi are quasi-concave functions and ξ has a log-concave probability distribution, then
the function G is a log-concave function. Let us mention that the results presented in [17, 13] apply
to the more general case of multiple joint constraints. In [18] the authors prove that, if the random
array ξ has a Gaussian distribution, it is possible to obtain a gradient formula for the nonlinear
probabilistic constraint G. The main feature of this result is that it opens the path to many numerical
approaches based on descent algorithms. Moreover, obtaining the gradient of the chance constraint
is a crucial step towards establishing first order necessary conditions for optimality (see also [19]
and [20]). When the probability measure µ is not precisely known and it is replaced by an estimator
ν ∈ P(Rm), the result proven in [21] gives the hypotheses under which it can be possible to obtain
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an estimate on the difference between the solution of the original problem and the one where the
measure µ has been replaced by ν.

Some numerical approaches. In the literature [22], chance constrained optimal control problems
have also been treated with other techniques, such as the Scenario Approach previously mentioned.
Another alternative technique for solving chance constrained problems is the Monte Carlo method.
A Monte Carlo algorithm consists in repeatedly sampling variables and parameters of a problem in
order to obtain numerical results, treating them as random quantities. This kind of approach might
be very useful in the case of problems involving a high number of dimensions, many degrees of
freedom or unknown probability distributions. The general procedure of a method belonging to the
Monte Carlo class consists in performing the following steps:

1. Define the inputs of the problem as well as their domain.
2. Choose a probability distribution for the inputs and generate random input values over the

domain.
3. Elaborate the results using a deterministic mathematical model.

The mathematical theory supporting these methods depends on the particular type chosen, but the
main result on which the whole Monte Carlo methods’ class lays foundation is the strong law of
large numbers. This theorem can be applied to estimate probabilities of a random variable via a
sequence of samples, and we will use this application later on for the verification of the numerical
tests. Let E be a given event, relative to a single realization of a random variable X . By choosing a
number n ∈ N of tries and defining for every i ∈ {1, 2, . . . , n}

Xi =

1 if E realizes at the i-th try

0 else

we can apply the law of large numbers to obtain

P
[

lim
n→+∞

∑n
i=1Xi

n
= E[X] = P[E]

]
= 1.

There are many advantages of this class of methods. They are usually easy to implement and can
be easily parallelized if the random variables to be sampled are independent. Moreover, given
the wide variety of existing Monte Carlo methods, it is not difficult to find an implementation
specifically designed for particular field: From physics to statistics, from biology to finance, as
well as engineering and Artificial Intelligence. An important technique rising from the combination
of the Monte Carlo method with the iterative gradient method is the Stochastic Stochastic Arrow-
Hurwicz Algorithm (SAHA). This algorithm can be used to solve an optimization problem in the
form min

x∈X
E
[
J(x, ξ)

]
E
[
H(x, ξ)

]
≤ α

(2.2)

where the function H has to be regular enough to guarantee the convexity and the connectedness of
the feasible subset defined by the constraint. (See [23] for more details.)
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3. KERNEL DENSITY ESTIMATION (KDE) FOR CHANCE CONSTRAINED
OPTIMIZATION PROBLEMS

The approach we present for solving numerically the chance constrained control problems is based
on Kernel Density Estimation. This technique consists in approximating the probability density
function (PDF) of a random variable with unknown distribution from a given sample.

3.1. An Overview of KDE techniques

Let X be a random variable with an unknown distribution f that we want to estimate and let
{X1, X2, . . . , Xn} be a sample of size n from the variable X . A Kernel Density Estimator for the
PDF f is the function

f̂n,h(x) :=
1

nh

n∑
i=1

K

(
x−Xi

h

)
(3.1)

where the functionK is called kernel and the smoothing parameter h is called bandwidth. The earlier
mentions of this method in its current form date back to the early 50s in the works of Rosemblatt
[24] and Parzen [25], this is why it is also known as Parzen-Rosenblatt window. Silverman’s
book [26] represents the basic text on the subject, while [27] provides a detailed analysis on the
various properties of this technique. This method has also been applied to many other fields like
archaeology, banking, climatology, economics, genetics, hydrology and physiology (see [28] for
more references). A fundamental consistency result was obtained by Nadaraya [29]. Variations of
this theorem have been studied in [30, 31], while an earlier but less general version of this result can
also be found in [25].

Theorem 3.1 (Nadaraya [29])
If the kernelK : R→ R+ is a function of bounded variation, f : R→ R+ is a uniformly continuous

density function, and if h satisfies
+∞∑
n=1

e−γnh
2

< +∞ ∀γ > 0 then

P
[

lim
n→+∞

sup
x

∣∣f̂n,h(x)− f(x)
∣∣ = 0

]
= 1.

The approximation error between f and f̂n,h depends on the choice of both K and h. The kernel K
is generally chosen such that it satisfies the conditions∫

K(y) dy = 1 and
∫
yK(y) dy = 0 and

∫
y2K(y) dy > 0.

Bandwidth and kernel selection. Let us first define the bias and variance the density estimator
f̂n,h(x):

Bias
[
f̂n,h(x)

]
:= E

[
f̂n,h(x)

]
− f(x)

Var
[
f̂n,h(x)

]
:= E

[(
fn,h(x)− E

[
f̂n,h(x)

])2]
.
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With these definitions we can use the Mean Integrated Squared Error (MISE) as a measure of the
discrepancy between f̂ and f :

MISE
[
f̂(x)

]
:= E

[∫ (
f̂n,h(x)− f(x)

)2
dx

]
=

=

∫
Bias2

[
f̂n,h(y)

]
dy +

∫
Var
[
f̂n,h(y)

]
dy.

If the unknown density is sufficiently smooth and the kernel has a finite fourth moment (which is
true for of the Gaussian kernel) we can use Taylor expansions to show that

Bias
[
f̂n,h(x)

]
=
h2

2

∫
y2K(y) dyf ′′(x) + o(h2)

Var
[
f̂n,h(x)

]
=

1

nh

∫
K2(y) dyf(x) + o

(
1

nh

)
.

Under integrability assumptions on f (see [28]), we can define the main term in the Taylor expansion
of the MISE as the Asymptotic Mean Integrated Squared Error (AMISE):

AMISE
[
f̂n,h(x)

]
:=

1

nh

∫
K2(y) dy +

h4

4

(∫
y2K(y) dy

)2 ∫
f ′′

2
(y) dy (3.2)

which leads to the following choice for the bandwidth h minimizing (3.2)

hAMISE := 5

√ ∫
K2(y) dy

n
(∫

y2K(y) dy
)2 ∫

f ′′2(y) dy
. (3.3)

If we substitute the optimal bandwidth given by (3.3) in (3.2), we obtain

AMISE
[
f̂n,hAMISE(x)

]
=

5

4

5

√(∫
K2(y) dy

)4 (∫
y2K(y) dy

)2 ∫
f ′′2(y) dy

n4
. (3.4)

Showing that the AMISE will tend to zero at a rate n−
4
5 . Unfortunately though, the presence of the

unknown factor
∫
f ′′

2
(y) dy in (3.3) makes the expression of hAMISE almost useless. For this reason,

it might be more viable to approximate also the derivatives of f [30, 32] or use one of the many
practical ways [28, 26] for choosing the bandwidth using only information from the sample. Other
results on the rate of convergence of the KDE have been proved in [33, 34, 35, 36].

On a more practical side, a common choice for h, used in conjunction with the Gaussian kernel,
is the Simple Normal Reference (SNR): Let S be the sample standard deviation

S :=

√√√√ 1

n

n∑
1=1

(
Xi −

∑n
1=1Xi

n

)

the SNR bandwidth is then defined as

hSNR := 1.06
S
5
√
n
. (3.5)
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Even though there is no general rule for obtaining an explicit value of h leading to the best
approximation of f , it is important to point out that big values of h will probably lead to an
overestimation of the volume of the density function and thus to a loss of information. As for the
choice of the kernel, we want to show that when using the AMISE expression for the approximation
error, there is little room for improvement. In order to do this we need to define the efficiency
associated to a kernel. We first define the function

C(K) :=
5

√(∫
y2K(y) dy

)2(∫
K2(y) dy

)4

.

Substituting it in (3.4), we have that minimizing (3.4) with respect to K is equivalent to minimizing

5

4
C(K)

5

√∫
f ′′2(y) dy

n4
.

This means that we should consider kernels with small values of C(K). If we focus on kernels that
are themselves probability density functions (which are the only ones ensuring that the estimate is
everywhere non-negative), we have

∫
K(y) dy = 1. Moreover, we can also assume

∫
y2K(y) dy =

1: The fact that K is a density function guarantees that
∫
y2K(y) dy is finite, thus allowing us to

choose its normalized version in case
∫
y2K(y) dy 6= 1. Since our kernel satisfies∫

K(y) dy =

∫
y2K(y) dy = 1 (3.6)

minimizing C(K) reduces to minimizing
∫
K2(y) dy, and in [37] it has been proven that the kernel

Ke(y) :=

 3
4
√
5

(
1− 1

5y
)
|y| ≤

√
5

0 else
(3.7)

achieves the minimal value of C(K) under the constraints (3.6). The efficiency of any kernel K
satisfying (3.6) is then defined as

eff(K) :=

(
C(Ke)

C(K)

) 5
4

=
3

5
∫
K2(y) dy

√
5
∫
y2K(y) dy

where Ke is the Epanechniov kernel, defined in (3.7). Table I reports the efficiency of some of the
most used kernels. Note that even the rectangular kernel (arguably the most naive choice of K)
achieves an efficiency of ≈ 0.93. This leads us to the conclusion that, when measuring the error by
means of (3.2), the choice of the kernel is not as important as the choice of the bandwidth h.
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Kernel K(y) eff(K)

Epanechniov

{
3

4
√
5

(
1− 1

5y
)
|y| ≤

√
5

0 else
≈ 0.9939

Biweight

{
15
16 (1− y2)2 |y| ≤ 1

0 else
≈ 0.9859

Triangular

{
1− |y| |y| ≤ 1

0 else
≈ 0.9295

Gaussian 1√
2π
e−

y2

2 ≈ 0.9512

Rectangular

{
1
2 |y| ≤ 1

0 else
≈ 0.9295

Table I. Efficiency of some kernels

3.2. Application of KDE approach to chance constrained optimization

Consider the following problem  min
(x,u)∈X×U

J(x, u)

P
[
G(x, u, ξ) ≥ 0

]
≥ p.

(3.8)

where X ⊆ Rd and U are respectively the admissible sets for the decision variables x and the control
u, J : Rd × U → R and G : Rd × U ×Rm → R are respectively the cost and constraint functions.
By using KDE, we are able to produce an approximation of the PDF defining the chance constraint,
thus allowing us to replace the probability with the integral of the estimated PDF and solve the
stochastic optimization problem as a deterministic one. For given x in X and u in U , let fx,u and
f̂x,u denote respectively the PDF of G(x, u, ξ) and its approximation. One has

P
[
G(x, u, ξ) ≥ 0

]
= 1− P

[
G(x, u, ξ) < 0

]
= 1−

∫ 0

−∞
fx,u(z) dz.

We then build the estimator f̂x,u of fx,u via KDE. By defining F̂x,u(y) :=
∫ y
−∞ f̂x,u(z) dz we can

write an approximation of our chance constraint in the form min
(x,u)∈X×U

J(x, u)

F̂x,u(0) ≤ 1− p.
(3.9)

Let (x∗, u∗) and (x̂∗, û∗) be respectively the solutions of problems (3.8) and (3.9). Even in absence
of an explicit estimate for the error between x∗ and x̂∗ by means of the error between f̂x̂∗,û∗ and
fx∗,u∗ , we can always rely on the law of large numbers for the validation of our results a posteriori.
The detailed procedure for implementing the approximation of the distribution Fx,u in practice
following the steps below.

1- Draw the sample. Take a sample of size n from the random vector ξ: {ξ1, ξ2, . . . , ξn}, where each
ξi is an m-dimensional array. Note that this operation has to be done only once at the beginning of
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the optimization procedure, since the realizations of ξ are only dependent on its distribution and not
on the decision variables and control x and u.
2- Define the constraint function. Now we need to define the value of F̂x,u for any value of x and
u.

1. Given (x, u) ∈ X × U , for each element ξi of the sample, compute the constraint function
G(x, u, ξi).

2. Estimate via KDE the distribution of the new sample

{G(x, u, ξ1), G(x, u, ξ2), . . . , G(x, u, ξn)}.

Choose a kernel K, a bandwidth h and define

f̂x,u(y) :=
1

nh

n∑
i=1

K

(
y −G(x, u, ξi)

h

)
.

3. Compute F̂x,u(s) :=
∫ s
−∞ f̂x,u(y) dy.

Note that this step has to be repeated every time we need to evaluate the function F̂x,u (and thus
G) for different values of (x, u).
3- Solve the approximated problem. Now that the approximation F̂x,u of Fx,u has been defined,
we can solve problem (3.9) as a regular deterministic optimization problem.
4- Validate the solution We use Borel’s law of large numbers to check the quality of solutions. For
each n, we will call (x∗, u∗) the optimal solution found at the previous step and then draw a large
random sample of size Na from ξ. Let Ns be the number of times that the event G(x∗, u∗, ξ) ≥ 0

occurs. Simplifying, Borel’s law of large numbers states that

lim
Ns→+∞

Ns

Na
= P[G(x∗, u∗, ξ) ≥ 0].

4. NUMERICAL TESTS

This section contains some numerical applications of the KDE. The first example involves a standard
chance constrained optimization problem with a finite number of optimization variables. In the
second example though, we treat an optimal control problem in which both the cost and the
constraint functions also depend on a measurable control. Finally, the third example considers a
more realistic and complex control problem of multi-stage launcher. For the examples in this section,
the integral of the approximated density function is obtained numerically by using the composite
Simpson’s rule. Given an interval [a, b], the integral of the function f is computed by dividing [a, b]

into an even number N of sub-intervals (in our case N = 2000) and applying the formula

∫ b

a

f(y) dy ≈ 1

3

b− a
N

f(a) + 2

N
2 −1∑
i=1

f(y2i) + 4

N
2∑
i=1

f(y2i−1) + f(b)


Copyright © 2017 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2017)
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where yi := a+ b−a
N i ∀i ∈ {0, 1, . . . , N − 1}. We decided to use Simpson’s rule for this method

because it provides a good balance between ease of code implementation and precision, since the
error of this quadrature formula is bounded by

(
b−a
N

)4
(b− a) maxy∈[a,b]

∣∣f (4)(y)
∣∣. Details and

results on this formula can be found in [38].

Nonlinear optimization solvers used in the numerical simulations. The results in this section
have been obtained by using Fortran 90 to write the code interface and WORHP as solver. This
solver is designed to handle finite dimensional nonlinear optimization problem in the form

min
X∈RN

F (X)

XL ≤ X ≤ XU

GL ≤ G(X) ≤ GU

(4.1)

where N ∈ N is the number of decision (or optimization) variables, which are collected in the
array X := (X1, X2, . . . , XN ); the function F (X) : RN → R represents the cost to be minimized;
G(X) : RN → RM is the constraint function, with M ∈ N being the number of constraints to be
satisfied. The arrays XL, XU ∈ RN and GL, GU ∈ RM define respectively the lower and upper
bounds for X and G. In addition to this, the user must provide an initial guess X0 for the solution of
(4.1), while the derivatives of F and G are optional since they can be approximated by the solvers
themselves. WORHP (We Optimize Really Huge Problems) implements a Sequential Quadratic
Programming (SQP) method which is based on a descent method with line search. For more details
on this algorithm, please refer to the User’s Guide to WORHP available at www.worhp.de. The
tests in this section have been performed on a laptop equipped with an Intel i7-4558U CPU running
at 2.8 GHz and 8 GB of RAM. Throughout the three examples the performances are mostly constant:
the number of iterations required by WORHP to converge does not depend on n and it falls in the
range of 5 to 10. On the other hand, the CPU time per iteration grows as n increases, varying from
less than a tenth of a second when n is less than 100 to a maximum of 5 seconds for n = 10000.

4.1. Example 1: Chance-constrained fuel load optimization of a simple three-stage launcher

Model. We first consider a simple model for a three-stage launcher. We analyze the vertical ascent
of a rocket consisting in three sections, each one has its own fuel load and engine. During the flight
the vehicle will separate the empty structure of each stage as soon as the fuel load contained is
completely exhausted. The ODE systems describing the dynamics of the i-th phase and the initial
conditions are 

ṙ(t) = v(t) t ∈ (ti−1, ti) (altitude)

v̇(t) = Ti
m(t) − g t ∈ (ti−1, ti) (speed)

ṁ(t) = − Ti
vei

t ∈ (ti−1, ti) (mass)(
r(0), v(0),m(0)

)
= (0, 0,m0).

(4.2)

For each phase i we define the final time ti, the engine thrust Ti and the fuel speed vei. g is the
gravitational acceleration of the Earth. The initial mass of the launcher is defined as the sum of the

Copyright © 2017 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2017)
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three stages fuel and structure, plus the payload:

m0 =

3∑
i=1

(1 + ki)mei +mu

where k = (k1, k2, k3) and me := (me1,me2,me3) are respectively the indexes and the fuel masses
of the three stages. m0 has to satisfy the inequality m0 <

T
g to make sure that the launcher is not

too heavy or, equivalently, that the engine is powerful enough to overcome the force of gravity.
Moreover, the final time of each phase satisfies

t1 =
ve1me1

T1
t2 = t1 +

ve2me2

T2
t3 = t2 +

ve3(me3 +mu)

T3
.

In the definition of t3, the payload mu is summed to the fuel mass of the third stage. This allows
the launcher to consume part of the payload in case the amount of fuel is not sufficient to satisfy
the constraint on the final position. We will also define T := (T1, T2, T3) and ve := (ve1, ve2, ve3).
In this simple model, for 0 ≤ t ≤ t1 the solution to the ODE system is

r(t) =

(
ve1t−

ve
2
1m(0)

T1

)
ln

(
m(0)

m(t)

)
+ ve1t−

g

2
t2

v(t) = ve1 ln

(
m(0)

m(t)

)
− gt

m(t) =

3∑
i=1

(1 + ki)mei +mu −
T1
ve1

t

otherwise, if t1 < t ≤ t2

r(t) =

(
ve1t−

ve
2
1m(0)

T1

)
ln

(
m(0)

m(t1)

)
+

+

(
ve2(t− t1)− ve

2
2(m(t1)− k1me1)

T2

)
ln

(
m(t1)− k1me1

m(t)

)
+

+ ve1t1 + ve2(t− t1)− g

2
t2

v(t) = ve1 ln

(
m(0)

m(t1)

)
+ ve2 ln

(
m(t1)− k1me1

m(t)

)
− gt

m(t) =

3∑
i=2

(1 + ki)mei +mu −
T2
ve2

(t− t1)

Copyright © 2017 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2017)
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and lastly, if t2 < t ≤ t3

r(t) =

(
ve1t−

ve
2
1m(0)

T1

)
ln

(
m(0)

m(t1)

)
+ ve1t1+

+

(
ve2(t− t1)− ve

2
2(m(t1)− k1me1)

T2

)
ln

(
m(t1)− k1me1

m(t2)

)
+

+

(
ve3(t− t2)− ve

2
3(m(t2)− k2me2)

T3

)
ln

(
m(t2)− k2me2

m(t)

)
+

+ ve1t1 + ve2(t2 − t1) + ve3(t− t2)− g

2
t2

v(t) = ve1 ln

(
m(0)

m(t1)

)
+ ve2 ln

(
m(t1)− k1me1

m(t2)

)
+

+ ve3 ln

(
m(t2)− k2me2

m(t)

)
− gt

m(t) = (1 + k3)me3 +mu −
T3
ve3

(t− t2).

Before defining the stochastic optimization problem associated to this model, let us define a
reference deterministic optimization problem.

min
me∈R3

+

3∑
i=1

(1 + ki)mei +mu

Mu(me) ≥ mu

(4.3)

where the constraint function is defined as Mu(me) := m
(
t3(me)

)
− k3me3. For a given me,

t3(me) is the solution to the equation obtained by imposing a constraint on the apogee of the
launcher’s final position r(t3) + v2(t3)

2g = ωf. Table II sums up the choice of parameters. The optimal

Parameter Ti ki vei g mu ωf

Value 150 0.1 5 9.8 0.5 0.5

Table II. Parameters for the deterministic optimization

solution found is me
∗
1 ≈ 0.2153, me

∗
2 ≈ 0.1838, me

∗
3 ≈ 0.0774, with a corresponding optimal cost∑3

i=1(1 + ki)me
∗
i +mu ≈ 1.0241. Figure 1 shows the corresponding optimal trajectory.

Problem statement. Let us now suppose that the parameters T, k and ve are arrays of uniformly
distributed random variables. For example, for each i in {1, 2, 3}, this implies Ti ∼ U(Ti−, Ti+),
where Ti− := T i(1−∆Ti), Ti+ := T i(1 + ∆Ti) and T i denotes the expected value. We also define
T := (T 1, T 2, T 3) and ∆T := (∆T1,∆T2,∆T3). The same properties and definitions hold for k

and ve. If we want to write in form (3.8) the stochastic counterpart of problem (4.3), we have to
keep in mind that now the cost to be minimized also depends on the random array k and it has to be
defined as an expectation:

E

[
3∑
i=1

(1 + ki)mei +mu

]
=

3∑
i=1

(
1 + E [ki]

)
mei +mu.

Copyright © 2017 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2017)
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Figure 1. Plot of altitude, speed, mass and constraint for the three-stage launcher.

Now, since each ki is a uniformly distributed random variable on the interval [ki−, ki+] with
expected value ki, we can write the cost as

3∑
i=1

(
1 + E [ki]

)
mei +mu =

3∑
i=1

(1 + ki)mei +mu.

This leads us to the stochastic optimization problem
min

me∈R3
+

3∑
i=1

(1 + ki)mei +mu

P
[
Mu(T,k,ve,me) ≥ mu

]
≥ p

(4.4)

with a total of nine uniform random variables (three random arrays of dimension three): T, k and
ve. The function Mu(T,k,ve,me) depends on the random arrays T, k and ve, and on the parameter
me: Mu(T,k,ve,me) := m

(
t3(T,k,ve,me)

)
− k3me3. Table III shows the choice of parameters

defined in this subsection.

Parameter p T i ∆Ti ki ∆ki vei ∆vei
Value 0.9 150 0.1 0.1 0.1 5 0.1

Table III. Additional parameters for the stochastic optimization

Copyright © 2017 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2017)
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Application of the method. We now have to reformulate the chance constraint showing its
dependency on the CDF of the random variable Mu.

min
me∈R3

+

3∑
i=1

(1 + ki)mei +mu

Fme(mu) ≤ 1− p
(4.5)

where Fme(mu) :=
∫mu

0
fme(x) dx. For each value of me we are able to produce an approximation

F̂me of Fme via KDE by drawing a sample from the random arrays T, k and ve. Our problem
becomes 

min
me∈R3

+

3∑
i=1

(1 + ki)mei +mu

F̂me(mu) ≤ 1− p
(4.6)

The procedure used for solving problem (4.6) is described in 3.2. We choose to use the SNR method
(see 3.5) for computing the bandwidth combined with the Gaussian kernel.

Numerical results. Figure 2 shows the behavior of ten sequences of optimal costs for n ∈
{100, 200, . . . , 10000} and the corresponding rates of success R := Ns

Na
computed a posteriori with

Na = 105. For this example, we decided to use samples of size up to 10000 because of the higher
number of random variables the constraint function depends on. Figure 3 instead shows the the
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Figure 2. Plot of the optimal cost J and R as functions of n (ten simulations).

average value and variance of the ten sequences previously shown for each n. For instance, for
n = 500 the optimal solution is me

∗
1 ≈ 0.2222, me

∗
2 ≈ 0.1835, me

∗
3 ≈ 0.1029, with a corresponding

optimal cost of
∑3

i=1(1 + ki)me
∗
i +mu ≈ 1.0595. This solution allows us to deliver the payload

mu = 0.5 with a success rate R ≈ 90% even if the maximum thrust Ti, the stage index ki and the
fuel speed vei of each stage are subject to random uniform oscillations. Figure 4 shows the related
plots. Table IV compares the solution we just found for the stochastic optimization problem to the
two solution we obtain from the deterministic one in the best and worst case. We observe again that
the optimal mass of the stochastic problem is smaller than the one obtained in the worst deterministic
case but bigger than the one of the best case. Table V shows the comparison between the solution
of the deterministic problem (4.3) and its stochastic counterpart (4.4) when p is close to 1 and ∆Ti,
∆ki and ∆vei are close to 0. Unfortunately though, this method does not allow arbitrarily small
values of ∆Ti, ∆ki or ∆vei. As reported in the table, when we don’t provide enough variation to
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Figure 3. Plot of the average value and variance of optimal cost J and R as functions of n.
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Figure 4. Plot of the Kernel Density Estimator f̂ of Mu(T,m∗e ) and its integral F̂ .

Case Ti ki vei m∗0
Random ∼ U(Ti−, Ti+) ∼ U(ki−, ki+) ∼ U(vei−, vei+) 1.0595
Best Ti+ ki− vei+ 0.9497
Worst Ti− ki+ vei− 1.1246

Table IV. Result comparison for extremal values of T, k and ve.

the sample, the success rate does not match the chosen probability. This is likely due to two issues
related to the presence of the sample variance in (3.5), and therefore to ∆Ti, ∆ki or ∆vei. First, if
they are too small, the Gaussian distributions summed in (3.1) tend to superimpose over the same
points and do not spread on the real axis. This adds probability mass outside the domain of the
distribution to be estimated. A negligible manifestation of this symptom can be observed even with
∆Ti = ∆ki = ∆vei = 0.1 in Figure 4: Notice the space beneath the red graph on the left and right
sides of the vertical sample lines. Secondly, because the bandwidth depends on the sample variance,
the accuracy of the estimator might decrease if h is too small, as h appears as a denominator in (3.1).
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The results showed in Table V confirm that it is possible to increase the variance of the sample by
increasing the number of random variables.

n p
∆Ti
∆ki
∆vei

h me1 me2 me3 m∗0 R

Stochastic

104

0.8

0.5 0.0117 0.218 0.191 0.202 1.1714 0.7966
0.25 0.00508 0.226 0.185 0.124 1.0887 0.8120
0.1 0.00191 0.237 0.158 0.103 1.0477 0.8055
0.01 0.00019 0.214 0.166 0.098 1.0259 0.8024

0.001 0.00002 0.209 0.167 0.101 1.0239 0.8281

0.9

0.5 0.01472 0.186 0.281 0.271 1.3115 0.9052
0.25 0.00517 0.227 0.205 0.133 1.1215 0.8993
0.1 0.00192 0.218 0.184 0.106 1.0596 0.9018
0.01 0.00018 0.215 0.166 0.098 1.0271 0.9013

0.001 0.00002 0.214 0.166 0.097 1.0241 0.9397

0.995

0.5 no convergence
0.25 0.00579 0.261 0.214 0.197 1.2394 0.9960
0.1 0.00202 0.220 0.212 0.106 1.0919 0.9951
0.01 0.00019 0.216 0.168 0.098 1.0298 0.9959

0.001 0.00002 0.212 0.169 0.096 1.0244 0.9996
Deterministic

— 0.215 0.184 0.077 1.0241 —

Table V. Result comparison for different values of n, p and ∆T .

4.2. Example 2: Chance-constrained Goddard problem

We now apply the KDE technique to the Goddard problem. Formally, the structure of the model
is the same as the example illustrated in the introduction: The vertical ascent of a launcher in one
dimension, in presence of a control u(t) ∈ [0, 1] proportional to the thrust applied at time t. The main
difference between Goddard problem and (1.2) is the addition of the drag force to the dynamics. For
the purpose of defining a probabilistic constraint, we consider the thrust T as the only random
parameter and our objective is to maximize the final mass of the launcher while making sure that its
altitude is higher than a given value rf with a probability of at least p. In contrast with Example 1
which boiled down to a finite dimensional optimization problem, a solution now consists in an
optimal control function u∗ : R+ → [0, 1] such that, if we apply u∗ irregardless of the value of T ,
the probability of the final altitude being greater than rf is greater than p.

Model. The original formulation of the Goddard problem can be found in [1]. We will consider a
one-dimensional version of the one treated in [39]. The ODE system is

ṙ(t) = v(t) t ∈ [0, tf]

v̇(t) = Tu(t)−Av2(t)e−κ
(
r(t)−r0

)
m(t) − 1

r2(t) t ∈ [0, tf]

ṁ(t) = −bu(t) t ∈ [0, tf](
r(0), v(0),m(0)) = (r0, 0,m0)

Copyright © 2017 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2017)
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where the final time tf > 0 is free. The control function u belongs to U , where

U := {u : R+ → [0, 1] ⊂ R | u is measurable}.

We will integrate the equations numerically by using fourth-order Runge-Kutta method, as we did in
the previous example, where the control is approximated by means of piecewise constant functions.
Before defining our stochastic optimization problem, we first show the solution to the deterministic
one:  max

(tf,u)∈R+×U
m(tf)

r(tf) ≥ rf.
(4.7)

Table VI sums up the choice of parameters for this model. The optimal final time and cost found by

Parameter T A κ b r0 m0 rf nt
Value 3.5 310 500 7 1 1 1.01 100

Table VI. Parameters for the deterministic optimization

WORHP are t∗f ≈ 0.1742 andm(t∗f ) ≈ 0.6297. Figure 5 shows the corresponding optimal trajectory.
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Figure 5. Plot of control, altitude, speed and mass for the Goddard problem.

Problem statement. Our goal to reach at least the altitude rf with a 90% probability while
maximizing the final mass of the launcher. Keeping in mind that the cost to be minimized also
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depends on the random parameter T , it has to be defined as an expectation.

E [m(tf)] = E
[∫ tf

0

m0 −
T

ve
u(t) dt

]
=

∫ tf

0

m0 −
E[T ]

ve
u(t) dt.

We recall that T is a uniformly distributed random variable on the interval [T−, T+] with expected
value T , so the cost is defined as

m(tf) :=

∫ tf

0

m0 −
T

ve
u(t) dt.

This leads us to the stochastic optimization problem max
(tf,u)∈R+×U

m(tf)

P
[
Rf(T, tf, u) ≥ rf

]
≥ p

(4.8)

where Rf(T, tf, u) is the final altitude as a function of the random variable T , parameterized by u.
Table VII shows the choice of parameters defined in this subsection.

Parameter p T ∆T
Value 0.9 3.5 0.1

Table VII. Additional parameters for the stochastic optimization

Application of the method. By using the definition of the density function ftf,u of the random
variable ru(T, tf), we can rewrite problem (4.8) as max

(tf,u)∈R+×U
m(tf)

F(tf,u)(rf) ≤ 1− p.
(4.9)

If we replace Fu with its KDE approximation F̂u, our problem becomes max
(tf,u)∈R+×U

m(tf)

F̂(tf,u)(rf) ≤ 1− p.
(4.10)

The procedure used for solving problem (4.10) is described in 3.2, with the only difference that
for this example we do not take a random sample from the variable T . Since we only have one
random variable, we can take a uniform deterministic sample of T by dividing the interval [T−, T+]

into n− 1 sub-intervals. We choose to use the SNR method (see 3.5) for computing the bandwidth
combined with the Gaussian kernel.

Numerical results. Figures 6 shows the behavior of the sequence of optimal costs for n ∈
{10, 20, 30, . . . , 500} and the corresponding rate of success R := Ns

Na
computed a posteriori with

Na = 105. For instance, for n = 500 the optimal final time is t∗f ≈ 0.1881, with a corresponding cost
m(t∗f ) ≈ 0.6001 and a success rate R = 90.81%. The corresponding optimal control u∗ is shown in
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Figure 6. Plot of m(tf, u
∗) and R as functions of n.

Figure 7. Figure 8 the other related plots. Table VIII and Figure 9 compare the solution we just
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Figure 7. Optimal control for n = 500.
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Figure 8. Plot of the Kernel Density Estimator f̂ of Rf(T, t
∗
f , u
∗) and its integral F̂ .

found for the stochastic optimization problem to the two solutions we obtain from the deterministic
one in the best and worst cases. It can be seen how the solution to the chance constrained problem
is slightly better than the one in the worst case, but still lower than the one corresponding to the
best case. Interestingly, Figure 9 shows that the shape of the control strategy does not change much
between the three cases, and the main difference lies in the optimal value for the final time t∗f . Table
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Case T t∗f m(t∗f )

Random ∼ U(T−, T+) 0.1881 0.6001
Best T+ 0.1613 0.6584
Worst T− 0.1902 0.5928

Table VIII. Result comparison for extremal values of T .
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Figure 9. Comparison between stochastic, best and worst case controls.

IX shows the comparison between the solution of the deterministic problem (4.7) and its stochastic
counterpart (4.8) when p is close to 1 and Ti is close to 0. For the results in the table we set the
initial guess for u equal to the optimal solution found for the deterministic problem (see Figure 5).

n p ∆T h m(t∗f ) R

Stochastic

500

0.8

0.5 0.00517 0.4808 0.7980
0.25 0.00155 0.5701 0.8011
0.1 0.00048 0.6085 0.7996

0.05 0.00022 0.6197 0.7999
0.025 0.00010 0.6267 0.6879

0.9

0.5 0.00813 0.3866 0.9096
0.25 0.00185 0.5419 0.9090
0.1 0.00051 0.6001 0.9090

0.05 0.00023 0.6162 0.8929
0.25 0.00011 0.6222 0.9479

0.995

0.5 0.02127 0.1538 1.0000
0.25 0.00271 0.4728 1.0000
0.1 0.00057 0.5827 1.0000

0.05 0.00024 0.6075 1.0000
0.025 0.00011 0.6186 1.0000

Deterministic
— 0.6297 —

Table IX. Result comparison for different values of n, p and ∆T .
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4.3. Complex three stage launcher with one decision variable and two random variables

We now study the more complex model of a real space launcher and define a percentile optimization
problem in the form min

µ∈R
µ

P
[
G(ξ) ≤ µ

]
≥ p

(4.11)

The name comes from the fact that this problem aims at finding the p-percentile µ of the distribution
of G(ξ). In this case we have two random parameters: The specific impulse Isp3 and the index K3

of the third stage. As a function of both Isp3 and K3 the optimal fuel mass of the third stage is also
random, and our goal is to compute the 0.9-percentile of its distribution.

Model. We start with the frame of reference. We define the inertial equatorial frame coordinate
system S := (O, i, j,k) in Figure 10(b), where O is the center of the Earth, k is the versor of Earth
rotation axis directed towards North, i is the versor that belongs to Earth equatorial plane and points
towards the Greenwich meridian and j := k× i completes the coordinate system. In this coordinate

x

y

z

i
j

k

O

N

(a) The coordinates of G

x

y

z

φ

h

O

G

λ

(b) The coordinate system S

G

FT

Longitudinal axis

vr

−−→
Ox0

θ

α

(c) The angles θ and α

Figure 10. Reference’s frame.

system we define
x := xi + yj + zk

v := ẋ := vxi + vyj + vzk

vr(v,x) := v − (0, 0,Ω)× x

to be respectively the position, the velocity and the relative velocity of the vehicle’s center of mass
G, where Ω is the Earth’s angular speed.
Furthermore, we will denote with (φ, λ, h) the geographic coordinates of G, as shown in Figure
10(a). Where φ is the latitude, λ is the longitude and h is the height. The conversion formulas
between cartesian and geographic coordinates can be found in [40]. There is a number of variables
and parameters attached to the launcher. We first define its longitudinal axis: This axis passes
through G and points towards the edge of the launcher (see Figure 10(c)). At each time the thrust of
the launcher has the same direction of the longitudinal axis (i.e. we are assuming a perfect control).
We also define the following angles:
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- The launch azimuth ψ is the angle between the perpendicular line to the longitudinal axis
at the initial position directed towards North and the orbit plane. The launch azimuth must
satisfy the following equation in order to allow the launcher to reach the target orbit inclination
ψ = arcsin(cos(i)/ cos(φ0)), meaning that the inclination i must be greater than the launch site
latitude φ0.

- The angle of attack α between the longitudinal axis and the relative velocity vr measured in
the orbit plane;

- The pitch angle θ between the longitudinal axis and the vector
−−→
Ox0 measured in the orbit plane.

The orbit plane is the plane of the ellipse that defines the Geostationary Transfer Orbit (GTO), it is
characterized by two angles: The longitude of the ascending node and the angle of inclination with
respect to the equatorial plane of the Earth. Not all the inclinations can be reached from a given
launch site: The location has to be a point inside the target orbit plane.

Moreover, we call βi, Ispi and Si respectively the mass flow rate, the specific impulse and the area
of the nozzle’s section of the i-th stage engine. Furthermore, we denote with Ai the area of the i-th
stage reference surface involved in the computation of the drag force. Finally, we call m the total
mass of the vehicle. Depending on the flight phase, it is the sum of some of the payload mp, payload
case mc, the fairing mf, the i-th stage fuel mei(t) at time t, where the initial fuel mass of each stage
is defined as mei0 := mei(t0) ∀i ∈ {1, 2, 3}, and the i-th stage structure msi, which is defined as
msi := Kimei0, with Ki being the i-th stage index.

The launcher is subject to three forces: The force due to gravity, the drag force and the thrust
force. The gravity force is

FG(m,x) = −

FGx(m,x) 0 0

0 FGy(m,x) 0

0 0 FGz(m,x)

 x

||x||

where

FGx(m,x) = FGy(m,x) = m
µ0

||x||2

(
1 + J2

3

2

R2
e

||x||2

(
1− 5

z2

||x||2

))
FGz(m,x) = m

µ0

||x||2

(
1 + J2

3

2

R2
e

||x||2

(
3− 5

z2

||x||2

))
µ0 is the standard gravitational parameter of the Earth and J2 is the correction factor due to its
oblateness. The drag force is

FD(x,v) = −FD(x,v)
vr(x,v)

||vr(x,v)||

where FD(x,v) = 1
2ρ(x)||vr(x,v)||2ACD(x,v), ρ is the air density and CD is the drag coefficient,

depending on the Mach number Ma(x,v) = ||vr(x,v)||
vs(x)

, which itself depends on the speed of sound
vs. The thrust force is

FT(θ,x,v) = FT(x)iT(θ,x,v)
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where FT(x) = g0βIsp − SP (x), g0 is the Earth gravitational acceleration and P is the atmospheric
pressure. The direction iT is given by

iT(θ,x,v) =


vr(x,v)
||vr(x,v)|| α = 0

Rλ0,φ0
RψR(θ)e1 α 6= 0

where

Rλ0,φ0
=

− sin(λ0) − cos(λ0) sin(φ0) cos(λ0) cos(φ0)

cos(λ0) − sin(λ0) sin(φ0) sin(λ0) cos(φ0)

0 cos(φ0) sin(φ0)


Rψ =

0 sin(ψ) − cos(ψ)

0 cos(ψ) sin(ψ)

1 0 0


R(θ) =

cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1


e1 = (1, 0, 0)ᵀ

λ0 and φ0 are the longitude and the latitude of the launch site and ψ is the launch azimuth. We can
now write the equations of motion in cartesian coordinates:

ẋ(t) = v(t)

m(t)v̇(t) = FG
(
m(t),x(t)

)
+ FD

(
x(t),v(t)

)
+ FT

(
θ(t),x(t),v(t)

)
ṁ(t) = −β.

(4.12)

We can control the direction of the launcher by acting on the pitch angle θ at any time t. For a given
position x and velocity v, the perigee and apogee of the associated orbit are given by

Lp(x,v) =
(
1− ε(x,v)

)
a(x,v)−Re La(x,v) =

(
1 + ε(x,v)

)
a(x,v)−Re

where ε is the eccentricity of the orbit ε(x,v) =
√

1− ||x×v||
2

µ0a(x,v)
and a is the semi-major axis

a(x,v) = 1
2
||x||−

||v||2
µ0

. The flight sequence consists in several phases, we will use the following

notation to denote duration and final time of each flight phase: t0 is the initial time, τi is the duration
of the phase i, τi.j is the duration of the sub-phase i.j, ti is the final time of the phase i and ti.j is
the final time of the sub-phase i.j.

- Phase 1: The launch azimuth is fixed at the value ψ and the initial position at the geographic
coordinates (φ0, λ0, h0). During this phase the mass of the launcher is m(t) = mp +mc +mf +∑3

i=1(1 +Ki)mei(t) ∀t ∈ [t0, t1). The engine of the first stage is ignited and the launcher
accelerates vertically (i.e. with the same direction of

−−→
OG) leaving the service structure. The pitch

angle for this sub-phase is θ(t) ≡ 0 ∀t ∈ [t0, t1.1). Then the launcher rotates with constant speed
changing its orientation:

θ(t) =
θ1
τ1.2

(t− t1.1) ∀t ∈ [t1.1, t1.2).
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After the tilt, direction of the thrust is fixed at the final values of the previous sub-phase until the
angle of incidence α is zero:

θ(t) = θ1 ∀t ∈ [t1.2, t1.3),

where t1.3 := min
t∈(t1.2,+∞)

{
t | α(t) = 0

}
.

The final sub-phase is a zero incidence flight until complete consumption of the first stage fuel
τ1 =

me10

β1
. This sub-phase ends with the separation of the first stage.

- Phase 2: At the beginning of this phase the mass of the launcher is m(t) = mp +mc +mf +∑3
i=2(1 +Ki)mei(t) ∀t ∈ [t1, t2.1). The second stage engine ignites. This sub-phase ends with

the release of the fairing, as soon as the heat flux decreases to a given value:

θ(t) = θ2 + θ′2(t− t1) ∀t ∈ [t1, t2.1)

where t2.1 := min
t∈(t1,+∞)

{
t | Γ

(
x(t),v(t)

)
≤ Γ∗

}
where Γ(x,v) = 1

2ρ(x)||vr(x,v)||3 represents the heat flux. The mass changes to m(t) = mp +

mc +
∑3

i=2(1 +Ki)mei(t) ∀t ∈ [t2.1, t2). The flight continues without fairing until complete
consumption of the fuel in the second stage: τ2 =

me20

β2
. This sub-phase ends with the jettison of

the second stage, and the pitch angle is θ(t) = θ2 + θ′2τ2.1 + θ′2(t− t1) ∀t ∈ [t2.1, t2).
- Phase 3: During this phase the mass of the launcher is m(t) = mp +mc + (1 +

K3)me3(t) ∀t ∈ [t2.2, tf). The third stage engine ignites, and this phase ends when the third stage’s
fuel is exhausted: τ3 =

me30

β3
. At final time tf := t3 the the final position and velocity have to be

compatible with the target orbit:

θ(t) = θ3 + θ′3(t− t2) ∀t ∈ [t2.2, tf)

Lp
(
x(tf),v(tf)

)
= L∗p

La
(
x(tf),v(tf)

)
= L∗a .

We can now formulate the following deterministic optimization problem.
min

(me30,θ1,θ2,θ
′
2,θ3,θ

′
3)∈R6

+

me30

Lp(me30, θ1, θ2, θ
′
2, θ3, θ

′
3) = L∗p

La(me30, θ1, θ2, θ
′
2, θ3, θ

′
3) = L∗a

(4.13)

where, with a slight abuse of notation, the functions Lp and La denote, respectively, the
perigee and apogee associated to the final state

(
x(tf),v(tf)

)
, according to the decision variables

(me30, θ1, θ2, θ
′
2, θ3, θ

′
3).

Table X summarizes the choice of all the fixed parameters of the problem while Figure 11 shows
the profile of the speed of sound, the air density, the atmospheric pressure (each one depending on
altitude) and drag coefficient (depending on the Mach number). With this choice of the duration of
the first two flight phases, the fuel load of the corresponding stages can be computed easily (see
Table XI) because of the relation mei0 = βiτi for i ∈ {1, 2, 3}. The parameters for the Earth and
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Fairing
mf 1.100 kg

Case
mc 858.86 kg

Payload
mp 4500 kg

Stage 1
K1 0.13
β1 1896.58 kg/s
Isp1 345.32 s
S1 7.18 m2

A1 17.35 m2

Stage 2
K2 0.13
β2 273.49 kg/s
Isp2 349.4 s
S2 5.16 m2

A2 17.35 m2

Stage 3
K3 0.13
β3 42.18 kg/s
Isp3 450.72 s
S3 1.97 m2

A3 17.35 m2

Table X. Mechanical and structural parameters
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Figure 11. Speed of sound vs, air density ρ, atmospheric pressure P and drag coefficient CD.

the flight sequence are defined in Tables XII and XIII respectively. The optimal values found

me10 278797.26 kg
me20 60714.78 kg

Table XI. Values for the initial fuel masses

Ω 7.292155·10−5 rad/s
Rp 6356752 m
Re 6378137 m
µ0 3.986005·1014 m3/s2

J2 1.08263·10−3

g0 9.80665 m/s2

Table XII. Earth’s parameters
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Phase 1
Sub-phase 1.1

t0 0 s
ψ 90 deg
φ0 5.159722 deg
λ0 -52.650278 deg
h0 0 m
τ1.1 5 s

Sub-phase 1.2 τ1.2 2 s
τ1 147 s

Phase 2 Sub-phase 2.1 Γ∗ 1135 W/m2

τ2 222 s

Phase 3 L∗p 200000 m
L∗a 35786000 m

Table XIII. Parameters for the flight sequence

by WORHP for the optimization variables are reported in Table XIV and Figure 12 shows the
corresponding optimal trajectory. The ODE system (4.12) is integrated by using the Fortran 90
subroutine DOP853 described in [41].

me30 2627.1511 kg
θ1 1.98164037 deg
θ2 74.24468871 deg
θ′2 0.14736836 deg/s
θ3 99.15421943 deg
θ′3 0.30801744 deg/s

Table XIV. Optimal values for the free variables

Problem statement. Let Me30(π,mp) be the value function of (4.13), depending on π :=

(Isp3,K3) and the dimensioning parameter mp. Consider the following chance constrained
optimization problem min

µ∈R+

µ

P
[
Me30(π,mp) ≥ µ

]
≥ p

(4.14)

where Isp3 and K3 are uniformly distributed random variables, respectively on the intervals
[Isp3−, Isp3+] and [K3−,K3+], with expected values Isp3 and K3:

Isp3 ∼ U(Isp3−, Isp3+) K3 ∼ U(K3−,K3+).

Here Isp3− := Isp3(1−∆Isp3), Isp3+ := Isp3(1 + ∆Isp3) (similar definitions hold for K3). Note
that (4.14) matches the definition of the percentile optimization problem (4.11). We remark that
this problem, and thus its solution, depends on two dimensioning parameters: The payload mp and
the probability of success p. Table XV shows the choice of parameters defined in this subsection.
The main difference between this problem and the ones treated previously is that the decision

variable is separated from the random ones. More generally, if we call x and ξ respectively the
decision and the random variables, we can rewrite the chance constraint in the general form
P
[
G(x, ξ) ≤ 0

]
≥ p. In the particular case of this example’s model, the inequality above can
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Figure 12. Result of the three-stage launcher optimization

Parameter p Isp3 ∆Isp3 K3 ∆K3

Value 0.9 450.72 [s] 0.1 0.13 0.1

Table XV. Additional parameters for the stochastic optimization

be rewritten as P
[
D(π) ≤ E(µ)

]
≥ p, allowing us to improve the solver’s performances by pre-

computing the function Me30(π,mp) at given grid values for the random variables π for a fixed mp.
In the opposite case in which x and ξ are not separated, we would need to compute the constraint
function also for all the possible values of x, which can be unbounded. Figure 13 shows the plot
of Me30(π,mp) as a function of π for our choice of mp (see Table X). The function has been
evaluated at 16 values of π on an equally partitioned grid on the set [Isp3−, Isp3+]× [K3−,K3+].
The values in between gridpoints are obtained via bilinear interpolation. We also recall that, since
the constraint function is parameterized by the payload mp, every change in its value would require
a new computation of Me30 at grid values. For all the values of π in [Isp3−, Isp3+]× [K3−,K3+]

the solver WORHP was able to compute an optimal control allowing the launcher to reach its final
orbit while minimizing the initial mass.

Application of the method. In order to use the KDE we have to reformulate the chance constraint
showing its dependency on the CDF F of random variable Me30(π,mp). Let fmp be the PDF of
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Figure 13. Plot of the third stage optimal fuel mass as a function of π.

Me30, parameterized by mp. From the definition of fmp we can rewrite problem (4.14) asmin
µ∈R+

µ

Fmp(µ) ≥ 1− p.
(4.15)

As explained earlier, the remarkable feature of the problem is that, in contrast with the previous
examples, the PDF estimator does not depend on the optimization parameter µ. For each choice of
mp we are able to produce an approximation F̂mp of Fmp via KDE by drawing a sample of size from
the array of random variables π. Our problem becomesmin

µ∈R+

µ

F̂mp(µ) ≥ 1− p.
(4.16)

The procedure used for solving problem (4.16) is described in 3.2. We choose to use the SNR
method (see 3.5) for computing the bandwidth combined with the Gaussian kernel.

Numerical results. Figures 14 to 15 show the behavior of ten sequences of optimal costs for
n ∈ {10, 20, 30, . . . , 500} and the corresponding rate of successR := Ns

Na
computed a posteriori with

Na = 105. For example, for n = 500 the optimal cost and the success rate are µ∗ ≈ 2162.78 and
R ≈ 91.83%. Figure 16 shows the related plots.
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Figure 14. Plot of µ∗ and R as functions of n (ten simulations).
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5. CONCLUSION

The performances of KDE method (coupled with a nonlinear problem solver) may vary depending
on a variety of factors. The nature of the problem, first: Whether the decision variables and controls
are separable from the random variables or not has a strong impact on the method, both from the
theoretical and numerical point of view. The bandwidth selection strategy also plays an important
role: Some of the most refined methods to compute the bandwidth might require the minimization
of an error function. The quadrature formula used for the numerical integration of the density
estimator, the discretization as an optimization problem, and the choice of the optimization solver
itself strongly influence the results.
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Figure 16. Plot of the Kernel Density Estimator f̂mp of Me30 and its integral F̂ .

Throughout this paper we showed how chance constrained optimization can be relevant to solve
robust optimization and optimal control problems, especially when the traditional deterministic
techniques like the worst-case analysis cannot be applied since they are not designed to take into
account unfeasible solutions. In spite of a not yet complete theoretical framework, the numerical
results provided by Kernel Density Estimation are very promising. Even better results might be
obtained by improving the computation of the bandwidth h, for example, by substituting the second
derivative f ′′ of the unknown density in (3.3) with some approximation (this so-called plug-in
method is explained in detail in [28]). Such a method can increase the accuracy of the estimator f̂ ,
but as it involves more complex operations for the computation of h compared to the Simple Normal
Reference bandwidth (3.5), we decided to implement the latter in our tests in order to preserve
good performances. Regardless of the particular implementation of KDE, pairing it with a robust
NLP solver like WORHP has proven solid enough to handle the chance constrained optimization
problems in our examples. It is our hope that this paper will foster future research along this line.

References

1. Goddard RH. A method of reaching extreme altitudes. Smithsonian Miscellaneous Collections 1921; 71(2):2–69.
2. Vinter RB. Optimal Control. Springer, 2000.
3. Wald A. Contributions to the theory of statistical estimation and testing hypotheses. The Annals of Mathematics

1939; 10(4):299–326.
4. Berstimas D. The price of robustness. Operations Research 2004; 52(1):35–53.
5. Serra R. Opérations de proximité en orbite : évaluation du risque de collision et calcul de manoeuvres optimales

pour l’évitement et le rendez-vous. PhD Thesis, INSA Toulouse 2015.
6. Serra R, Arzelier D, Joldes M, Rondepierre A. Probabilistic collision avoidance for long-term space encounters via

risk selection. Advances in Aerospace Guidance, Navigation and Control, Bordeneuve-Guibé J, Drouin A, Roos C
(eds.). Springer, 2015.

7. Sahin KH, Diwekar UM. Better optimization of nonlinear uncertain systems (bonus): A new algorithm for
stochastic programming using reweighting through kernel density estimation. Annals of Operations Research 2004;
132(1):47–68.

8. Calfa BA, Grossmann IE, Agarwal A, Bury SJ, Wassick JM. Data-driven individual and joint chance-constrained
optimization via kernel smoothing. Computers & Chemical Engineering 2015; 78:51–69.

9. Nemirovski A, Shapiro A. Convex approximations of chance constrained programs. SIAM Journal on Optimization
2006; 17(4):969–996.

10. Zhang Y, Feng Y, Rong G. Data-driven chance constrained and robust optimization under matrix uncertainty.
Industrial & Engineering Chemistry Research 2016; 55(21):6145–6160.

Copyright © 2017 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2017)
Prepared using ocaauth.cls DOI: 10.1002/oca



32 J.-B. CAILLAU, M. CERF, A. SASSI, E. TRÉLAT AND H. ZIDANI

11. Charnes A, Cooper WW, Symonds GH. Cost horizons and certainty equivalents: an approach to stochastic
programming of heating oil. Management Science 1958; 4(3):235–263.

12. Prékopa A. On probabilistic constrained programming. Proceedings of the Princeton Symposium on Mathematical
Programming 1970; :113–138.

13. Prékopa A. Contributions to the theory of stochastic programming. Mathematical Programming 1973; 4(1):202–
221.

14. Prékopa A. Stochastic programming. Kluwer Academic Publishers, 1995.
15. Prékopa A. Probabilistic programming. Stochastic programming, vol. 10, A Ruszczuǹski AS (ed.). Elsevier, 2003.
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Statistics 1967; 29(4):373–382.
33. Giné E, Guillou A. Rates of strong uniform consistency for multivariate kernel density estimators. Annales de

l’Institut Henri Poincare: Probability and Statistics 2002; 38(6):907–921.
34. Prakasa Rao BLS. Non-Parametric Functional Estimation. Academic Press, 1983.
35. Ahmad I, Amezziane M. A general and fast convergent bandwidth selection method of kernel estimator. Journal of

Nonparametric Statistics 2007; 19(4-5):165–187.
36. Minnotte MC. Achieving higher-order convergence rates for density estimation with binned data. Journal of the

American Statistical Association 1998; 93(442):663–672.
37. Hodges JL, Lehmann EL. The efficiency of some nonparametric competitors of the t-test. The Annals of

Mathematical Statistics 1956; 27(2):324–335.
38. Young DM, Gregory RT. A survey of numerical mathematics. Addison-Wesley, 1972.
39. Bonnans JF, Martinon P, Trélat E. Singular arcs in the generalized goddard’s problem. Journal of Optimization

Theory and Applications 2008; 139(2):439–461.
40. Gerdan GP, Deakin RE. Transforming cartesian coordinates x, y, z to geographical coordinates φ, λ, h. The

Australian Surveyor 1999; 44(1):55–63.
41. Hairer E, Nørsett SP, Wanner G. Solving Ordinary Differential Equations I: Nonstiff Problems, Springer Series in

Computational Mathematics, vol. 1. 2-nd edn., Springer, 1993.

Copyright © 2017 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2017)
Prepared using ocaauth.cls DOI: 10.1002/oca


	Introduction
	Chance-constrained optimization problems: A short state-of-the-art
	Kernel Density Estimation (KDE) for chance constrained optimization problems
	An Overview of KDE techniques
	Application of KDE approach to chance constrained optimization

	Numerical tests
	Example 1: Chance-constrained fuel load optimization of a simple three-stage launcher
	Example 2: Chance-constrained Goddard problem
	Complex three stage launcher with one decision variable and two random variables

	Conclusion

