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Summary

The goal of this paper is to show how nonparametric statistics can be used to
solve some chance constrained optimization and optimal control problems. We
use the kernel density estimation method to approximate the probability den-
sity function of a random variable with unknown distribution from a relatively
small sample. We then show how this technique can be applied and imple-
mented for a class of problems including the Goddard problem and the trajectory
optimization of an Ariane five-like launcher.
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1 INTRODUCTION

This paper is dedicated to a numerical approach for solving chance constrained optimal control problems using the ker-
nel density estimation (KDE) technique. One of the earliest and most famous examples of optimal control problems in
aerospace dates back to the beginning of the twentieth century. In 1921, American physicist R. H. Goddard published a
paper1 in which he studied the problem of minimizing the fuel consumption of a rocket ascending vertically from Earth's
surface, taking into account both atmospheric drag and gravitational field. In order to better explain the nature of this
kind of problems, we will give a simplified model. Consider the vertical ascent of a rocket in one dimension. Function r(t)
represents the rock et altitude, v(t) its speed, and m(t) its mass. We introduce the variable u(t) ∈ [0, 1], which defines the
rate of the maximum thrust applied at a given time. The vehicle starts from a still position at ground level, at time t = 0
the thrust force Tu(t) of the engine pushes the launcher upwards against the force of gravity m(t)g with a fuel consump-
tion rate T

ve
u(t), where ve is the fuel speed. The maximum thrust T, the fuel speed ve, the initial mass m0, and the final time

tf are fixed. The controlled system describing the launcher's dynamics is

⎧⎪⎪⎨⎪⎪⎩

ṙ(t) = v(t) t ∈ [0, t𝑓 ],
v̇(t) = T

m(t)
u(t) − g t ∈ [0, t𝑓 ],

ṁ(t) = − T
ve

u(t) t ∈ [0, t𝑓 ],

(r(0), v(0),m(0)) = (0, 0,m0),

(1)
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where the admissible control set is

𝒰 ∶= {u ∶ R+ → [0, 1] ⊂ R | u is measurable}.

We want to solve the optimal control problem of finding a particular u∗ ∈ 𝒰 that maximizes the final mass of the launcher
while ensuring that it reaches at least a given altitude 𝜌f at time tf. Formally, this translates to solving

⎧⎪⎨⎪⎩
max
u∈𝒰

m𝑓 (u,T),

r𝑓 (u,T) ≥ 𝜌𝑓 ,
(2)

where mf (u,T) and rf (u,T) are the final mass and altitude associated to u ∈ 𝒰 and a choice of parameter T by (1). For a
general theoretical study of this kind of problems, we refer to the works of Agrachev and Sachkov2 and Vinter.3 Robust
methods are aimed at achieving consistent performance and/or stability in the presence of bounded modeling errors.
Drawing a parallel with the example, let us suppose that the thrust T is estimated with some margin errors and assume
that we want to maximize the final payload in the presence of these uncertainties on T. One possible approach consists
in the use of worst-case analysis to treat uncertainties to obtain what is called a “robust” solution. Using a variation of
Wald's maximin model,4 one can consider the so-called robust optimal control problem⎧⎪⎨⎪⎩

max
u∈𝒰

min
T∈[T−,T+]

m𝑓 (u,T),

r𝑓 (u,T) ≥ 𝜌𝑓 , T ∈ [T−,T+],
(3)

with the same notations as before for mf (u,T) and rf (u,T), associated to (u,T) by (1). A solution to this problem would be
a control strategy u∗ ∈ 𝒰 that maximizes the final mass of the launcher even for the worst realization of the parameter
T while satisfying the constraint for the final altitude, for any T ∈ [T−,T+]. As pointed out in the work of Berstimas and
Sim,5 robust optimization requires a trade-off. The price to obtain a solution that is feasible in every scenario often results
in the suboptimality of the value function. Moreover, there might exist problems in which the constraint function cannot
be satisfied for every realization of the model's parameters.

Another approach used for solving robust optimization problems consists in chance constrained optimization. The
name comes from the the idea of treating the uncertainties in the underlying mathematical model as random variables.
More precisely, in the case of our example, we assume that T is a random variable taking values inside an interval [T−,T+],
according to a given probability distribution. As a consequence of this definition, the two functions mf (u,T) and rf (u,T)
also become random variables. We introduce the parameter p ∈ [0, 1] and consider the following problem:⎧⎪⎨⎪⎩

max
u∈𝒰

E
[
m𝑓 (u,T)

]
,

P
(

r𝑓 (u,T) ≥ 𝜌𝑓
) ≥ 𝑝,

where E denotes the expectation and P the probability. Here, p acts as a probability threshold for the realization of the event
rf (u,T) ≥ 𝜌f, and the inequality P

(
r𝑓 (u,T) ≥ 𝜌𝑓

) ≥ 𝑝 is called chance or probability constraint. Optimal control problems
with chance constraints are often considered if there is a need for minimizing a cost associated to the performance of a
dynamical model while taking into account uncertainties in the parameters defining it (see also the works of Serra et al6,7

for other computations of probabilities in a dynamical setting related to aerospace engineering.) In this paper, we study
the numerical solution to chance constrained optimal control problems of the form⎧⎪⎨⎪⎩

min
(𝑦,u)∈𝒴×𝒰

J(𝑦,u),

P (G(𝑦,u, 𝜉) ≥ 0) ≥ 𝑝,

where functions J and G may depend on both a finite number of optimization variables y and on a control function u.
Note that we do not consider state constraints but only pure control constraints (these are included in the definition of
the admissible set of controls, ie, 𝒰) and endpoint constraints. As will be clear for the examples treated in Section 4, we
assume that the expectation that should define the cost can be analytically computed so that the performance index J
only depends on the deterministic decision and control variables. The parameter p ∈ (0, 1) is a probability threshold and
𝜉 is an m-dimensional random vector defined on a given probability space. We explore the application of the KDE. This
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technique is used in nonparametric statistics to approximate the probability density function (PDF) of a random variable
with unknown distribution. The main difficulty lies in the form of the constraint function. G being dependent on both y,
u, and 𝜉, it is not a trivial task to derive an analytical representation of its probability distribution even if the distribution
of 𝜉 is known. The idea of applying nonparametric density estimation (and in particular KDE) to chance constrained
optimization problems is not new (see for instance the works of Sahin and Diwekar8 and Calfa et al,9 where this technique
has been applied to an optimization problem in finite dimension). For the same type of problem, one can also mention the
work of Nemirovski and Shapiro,10 where the authors use a different technique called the scenario approach. The work
of Zhang et al11 features the use of KDE for solving problems in the simpler case where the optimization variables y are
separated from the random variables 𝜉. To the best of our knowledge, however, KDE has not been used previously as a tool
for solving optimal control problems, where both the cost and the constraints explicitly depend on a control function u.

The goal of this paper is to show the relevance of the KDE approach on some optimal control problems. This method
can lead to very good results, hopefully inspiring new developments in the field of chance constrained optimal control. In
Section 2, we present some existing results on the subject of chance constrained optimization. Section 3 gives an overview
of the KDE technique and introduces the algorithm that we propose to use for solving chance constrained control prob-
lems. Section 4 consists of three numerical examples involving the application of KDE to chance constrained optimization
and optimal control problems.

2 CHANCE CONSTRAINED OPTIMIZATIONS: A BRIEF SURVEY

There exists a wide literature on the subject of chance constrained optimization, in particular, in the case of problems
involving only an array of decision variables y in 𝒴 ⊂ Rn. As already mentioned, the robust approach to parametric
optimization comes with some disadvantages. It might be difficult to guarantee the existence of a solution due to the
strictness of the constraints, and even in the case of a relaxation approach, it might be hard to make sure that the problem
satisfies all the required controllability hypotheses. Suppose that 𝜉 is an m-dimensional random vector defined on some
probability space (Ω,𝒜 ,P). Consider then the chance constrained problem⎧⎪⎨⎪⎩

min
𝑦∈𝒴

E [J(𝑦, 𝜉)] ,

P (G(𝑦, 𝜉) ≥ 0) ≥ 𝑝,
(4)

where 𝒴 ⊂ Rn is the admissible set for the decision variables y, J ∶ 𝒴 × Rm → R is an objective, G ∶ 𝒴 × Rm → R
defines a constraint inequality, p ∈ (0, 1) is a probability threshold called confidence level. This kind of problem has been
treated since the fifties.12 A general theory is due to the work of Prékopa,13,14 who also introduced the convexity theory
based on logconcavity. Other contributions on the logconcavity theory in stochastic programming can be found in related
works.15-17 There exist many results on the regularity of the constraint function and on the error between approximated
solutions of chance constrained optimization problems. Two fundamental theorems regarding continuity and convexity
of the constraint function have been proven in the works of Prékopa14 and Raik.18 The continuity theorem has proven in
the work of Raik18 that, if the function G(., 𝜉) is upper semicontinuous (respectively continuous), then the function

Γ(𝑦) ∶= P (G(𝑦, 𝜉) ≥ 0)

is upper semicontinuous (respectively continuous). Additionally, the convexity theorem in the work of Prékopa14 states
that, if G is quasi-concave and 𝜉 has a log-concave probability distribution, then Γ is log-concave. Let us mention that
the results presented in the works of Prékopa14 and Raik18 apply to the more general case of multiple joint constraints.
In the work of van Ackooij and Henrion,19 the authors prove that, if the random array 𝜉 has a Gaussian distribution, it is
possible to obtain a gradient formula for the nonlinear probabilistic constraint Γ. The main feature of this result is that
it opens the path to many numerical approaches based on descent algorithms. Moreover, obtaining the gradient of the
chance constraint is a crucial step toward establishing first-order necessary conditions for optimality (see also the works
of Uryasev20 and Marti21). When the probability distribution of 𝜉 is not precisely known and is replaced by an estimator,
the result proven in the work of Henrion et al22 gives the hypotheses allowing to estimate the difference between the
solution of the original problem and the one where the estimator has been used.

In the literature, chance constrained optimal control problems have also been treated with other techniques, such as the
scenario approach previously mentioned.23-25 A strong asset of this method is to provide a priori certificates for the chance
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constraint. One difficulty to apply it in our optimal control context is that, for some samples, the problem is might not be
feasible (lack of controllability). As we will see further, this is not an issue for a KDE-based approach. Another technique
to deal with chance constraints is the so-called back-mapping approach.26,27 The method is appealing because it avoids
computing the probability distribution of the random variable involved in the chance constraint. One drawback, though,
is that it requires some monotonic dependence with respect to some of the uncertain variables. For the applications in
aerospace engineering we want to tackle, we do not want to rely on such an assumption. Among alternative techniques
for solving chance constrained problems, one must cite Monte Carlo algorithms. Such an algorithm consists in repeatedly
sampling variables and parameters of a problem to obtain numerical results, treating them as random quantities. This
kind of approach might be very useful in the case of problems involving a high number of dimensions, many degrees of
freedom, or unknown probability distributions. The main step of a method belonging to the Monte Carlo class consists in
choosing a probability distribution for the inputs and generating random input values over the domain. The mathematical
theory supporting these methods depends on the particular type chosen, but the main result on which Monte Carlo
methods lay foundation is the strong law of large numbers. This class of methods possesses many advantages. They are
usually easy to implement and can be easily parallelized if the random variables to be sampled are independent. Moreover,
given the wide variety of existing Monte Carlo methods, it is not difficult to find an implementation specifically designed
for a particular field. An important technique rising from the combination of the Monte Carlo method with the iterative
gradient method is the stochastic Arrow-Hurwicz algorithm (SAHA) (see the work of Andrieu et al28). This algorithm can
be used to solve an optimization problem in the form

⎧⎪⎨⎪⎩
min
𝑦∈𝒴

E [J(𝑦, 𝜉)] ,

E [H(𝑦, 𝜉)] ≤ 𝛼,
(5)

where the function H has to be regular enough to guarantee the convexity and the connectedness of the feasible subset
defined by the constraint. Unfortunately, in the case of chance constrained optimization, these regularity properties of
the feasible are not easily checked. Moreover, reformulating the chance constraint as a constraint on expectation requires
some careful regularization process to be able to evaluate gradients of the constraint. See the work of Andrieu et al28 for
a more detailed explanation of SAHA and of the aforementioned difficulties.

The approach we present in the next section for solving numerically the chance constrained control problems is based
on KDE. This technique consists in approximating the PDF of a random variable with an unknown distribution from a
given sample. Contrary to Monte Carlo–based methods that often require a large number of simulations, in practice, KDE
is able to provide good approximations of densities on the basis of a limited number of samples. In our chance constrained
optimal control setting, KDE also has the advantage over the SAHA that no fine tuning of parameters is required to obtain
a satisfactory estimation of the solution.

3 KDE FOR CHANCE CONSTRAINED OPTIMIZATION PROBLEMS

3.1 An overview of KDE techniques
Let X be a random variable with an unknown distribution f that we want to estimate and let {x1, x2, … , xn} be a sample
of size n of the variable X. A KDE for the PDF f is the function

𝑓n,h(x) ∶=
1

nh

n∑
i=1

K
(x − xi

h

)
, (6)

where the function K is the kernel and the smoothing parameter h the bandwidth. The earlier mentions of this method
in its current form date back to the early 50s in the works of Rosemblatt29 and Parzen,30 this is why it is also known as
the Parzen-Rosenblatt window. Silverman's book31 represents the basic text on the subject, whereas the work of Terrell
and Scott32 provides a detailed analysis on the various properties of this technique. This method has also been applied to
many other fields like archaeology, banking, climatology, economics, genetics, hydrology, and physiology (see the work of
Sheather33 for more references). A fundamental consistency result was obtained by Nadaraya.34 Variations of this theorem
have been studied in the works of Silverman35 and Devroye and Györfi,36 whereas an earlier but less general version of
this result can also be found in the work of Parzen.30
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Theorem 1. (See the work of Nadaraya34)
If the kernel K ∶ R → R+ is a function of bounded variation, f ∶ R → R+ is a uniformly continuous density function and,
if h satisfies

∑∞
n=1 e−𝛾nh2

<∞ for all positive 𝛾 , then

P
(
lim

n→∞
sup

x
|𝑓n,h(x) − 𝑓 (x)| = 0

)
= 1.

The approximation error between f and 𝑓n,h depends on the choice of both K and h. The kernel K is generally chosen such
that it satisfies the conditions

∫ K(x) dx = 1 and ∫ xK(x) dx = 0 and ∫ x2K(x) dx > 0.

For the sake of completeness, more details on kernel and bandwidth selection are included in Appendix A.

3.2 Application of KDE approach to chance constrained optimization
Consider the following problem: ⎧⎪⎨⎪⎩

min
(𝑦,u)∈𝒴×𝒰

J(𝑦,u),

P (G(𝑦,u, 𝜉) ≥ 0) ≥ 𝑝,
(7)

where 𝒴 ⊂ Rd and 𝒰 are respectively the admissible sets for the decision variables y and the control u, and J∶ 𝒴 d×𝒰 →
R and G∶ 𝒴 d ×𝒰 ×Rm → R are respectively the cost and constraint functions. Depending on the context, J and G might
only be defined on a proper subset of 𝒴 ×𝒰 . By using KDE, we are able to produce an approximation of the PDF, defining
the chance constraint, thus allowing us to replace the probability with the integral of the estimated PDF and solve the
stochastic optimization problem as a deterministic one. For given y in 𝒴 and u in 𝒰 , let fy,u and 𝑓𝑦,u denote respectively
the PDF of random variable G(y,u, 𝜉(·)) (which is parameterized by y and u) and its approximation. To keep notation as
clear as possible, we drop the subscripts n and h used in (6). Still, one has to remember that the approximated PDF, ie,
𝑓𝑦,u, actually depend on the number of samples, on the kernel, and on the bandwidth. One has

P (G(𝑦,u, 𝜉) ≥ 0) = 1 − P (G(𝑦,u, 𝜉) < 0) = 1 − ∫
0

−∞
𝑓𝑦,u(x) dx = 1 − F𝑦,u(0),

where, for a given (𝑦,u) ∈ 𝒴 ×𝒰 , Fy,u denotes the cumulated density function (CDF) of the random variable G(y,u, 𝜉(·)).
We then build the estimator 𝑓𝑦,u of fy,u via KDE. By defining F̂𝑦,u(s) ∶= ∫ s

−∞ 𝑓𝑦,u(x) dx, we can write an approximation of
our chance constraint in the form ⎧⎪⎨⎪⎩

min
(𝑦,u)∈𝒴×𝒰

J(𝑦,u),

F̂𝑦,u(0) ≤ 1 − 𝑝.
(8)

Let ( y∗,u∗) and (𝑦̂∗,û∗) be respectively the solutions of problems (7) and (8). Even in the absence of an explicit estimate
for the error between ( y∗,u∗) and (𝑦̂∗,û∗) by means of the error between 𝑓𝑦̂∗,û∗ and 𝑓𝑦∗,u∗ , we can always rely on the law
of large numbers for the validation of our results a posteriori. The numerical solution of the chance constrained problem
goes along the following steps.

i. Draw the sample. Take a sample {𝜉1, 𝜉2, … , 𝜉n} of size n from the random vector 𝜉. This operation has to be done
only once at the beginning of the optimization procedure because the realizations of 𝜉 are only dependent on its
distribution and not on the decision variables and control y and u. For any value of ( y,u), such a sample defines n
realizations G( y,u, 𝜉1), … ,G( y,u, 𝜉n) of the random variable G( y,u, 𝜉(·)). In the numerical simulations presented
in Section 4, for each size of sample, we draw several samples (typically ten simulations) and average. With an
exception for Example 2 where, for the scalar and uniformly distributed random parameter, a single uniform sample
is used.

ii. Compute the constraint function. We need to define the value of F̂𝑦,u for any value of y and u. Given (𝑦,u) ∈
𝒴 × 𝒰 , for each element 𝜉i of the sample, the constraint function G( y,u, 𝜉i) is evaluated. This allows to compute
the approximate of the PDF according to (6) on the basis of a choice of kernel and bandwidth. For the numerical
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computations of Section 4, we use a Gaussian kernel with the SNR bandwidth documented in Appendix A. In order
to estimate

F̂𝑦,u(s) ∶= ∫
s

−∞
𝑓𝑦,u(x) dx,

a quadrature rule is used to estimate the integral of the approximated density function. This implies a two-level
scheme of approximation of the chance constraint, ie, KDE for the PDF estimation, then a quadrature to approximate
the CDF of the estimated density. Regarding the quadrature, we employ the composite Simpson rule. Given an
interval [a, b], the integral of the function f is computed by dividing [a, b] into an even number N of subintervals (in
our case, N = 2000) and applying the formula

∫
b

a
𝑓 (x) dx ≃ 1

3
b − a

N

⎛⎜⎜⎝𝑓 (a) + 2

N
2
−1∑

i=1
𝑓 (x2i) + 4

N
2∑

i=1
𝑓 (x2i−1) + 𝑓 (b)

⎞⎟⎟⎠ ,
where xi ∶= a + b−a

N
i, i ∈ {0, 1, … ,N − 1}. We decided to use Simpson's rule because it provides a good balance

between the ease of code implementation and precision because the error of this quadrature formula is bounded by(
b−a

N

)4
(b−a)maxx∈[a,b]|𝑓 (4)(x)|. Details and results on this formula can be found in the work of Young and Gregory.37

Note that these computations have to be repeated every time we need to evaluate the constraint involving F̂𝑦,u at
some ( y,u). As this entails evaluating through KDE (involving a large enough number n of samples) the PDF inside
the quadrature, this step is the main bottleneck of the proposed method.

iii. Solve the approximated problem. Now that the approximation F̂𝑦,u of Fy,u has been defined, we can solve problem
(8) as a regular deterministic optimization problem. The numerical results in the next section have been obtained
by using Fortran 90 to write the code interface and WORHP* as an SQP solver. Some preliminary tests were also
made with IPOPT† but gave less satisfactory results. This solver is designed to handle finite dimensional nonlinear
optimization problem in the form ⎧⎪⎨⎪⎩

min
X∈RN

F(X),

XL ≤ X ≤ XU ,

GL ≤ G(X) ≤ GU ,

(9)

where N ∈ N is the number of decision (or optimization) variables, which are collected in the array X ∶=
(X1,X2, … ,XN); the function F(X) ∶ RN → R represents the cost to be minimized; and G(X) ∶ RN → RM is the
constraint function, with M ∈ N being the number of constraints to be satisfied. The arrays XL,XU ∈ RN and
GL,GU ∈ RM define respectively the lower and upper bounds for X and G. In addition to this, the user must pro-
vide an initial guess X0 for the solution of (9), whereas the derivatives of F and G are optional because they can be
approximated by the solver. We used this option so that gradients are computed using finite differences. A refine-
ment would be to use automatic differentiation, which is possible whenever the dynamics involved in the examples
are integrated by means of numerical schemes with a fixed grid (see Example 4.2 in Section 4).

iv. Validate the solution. We use Borel's law of large numbers to check the quality of solutions. For each n, let ( y∗,u∗)
denote the optimal solution (depending on n) found at step iii and draw a large random sample of size Na for 𝜉. Let
Ns be the number of times such that the event G(y∗,u∗, 𝜉) ≥ 0 occurs. Simplifying, Borel's law of large numbers
states that

lim
Na→∞

Ns

Na
= P(G(𝑦∗,u∗, 𝜉) ≥ 0),

which allows to estimate a posteriori, for each n, the actual probability that the solution ( y∗,u∗) (computed using
KDE on n samples) verifies the constraint.

All tests have been performed on a laptop equipped with an Intel i7-4558U CPU running at 2.8 GHz and 8 GB of RAM.
Throughout the three examples in Section 4, the performances are mostly constant. The number of iterations required by
WORHP to converge does not depend on the number of samples n and it falls in the range of 5 to 10. On the other hand,
the CPU time per iteration grows as n increases, varying from less than a tenth of a second when n is less than 100 to a
maximum of 5 seconds for n = 10 000.

*worhp.de
†projects.coin-or.org/Ipopt

worhp.de
projects.coin-or.org/Ipopt
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4 NUMERICAL TESTS

4.1 Example 1: Chance constrained fuel load optimization of a simple three-stage
launcher
Model. We first consider a simple model for a three-stage launcher. We analyze the vertical ascent of a rocket consisting
in three sections, each one having its own fuel load and engine. During the flight, the vehicle will separate the stage as
soon as the fuel load it contains is exhausted. The ODE systems describing the dynamics of the ith phase and the initial
conditions are ⎧⎪⎪⎨⎪⎪⎩

ṙ(t) = v(t), t ∈ (ti−1, ti), (altitude)
v̇(t) = Ti

m(t)
− g, (speed)

ṁ(t) = − Ti
vei
, (mass)

(r(0), v(0),m(0)) = (0, 0,m0).

(10)

For each phase i, we define the final time ti, the engine thrust Ti, and the fuel speed vei , g being the gravitational accel-
eration of the Earth. The initial mass of the launcher is defined as the sum of the three stages fuel and structure, plus
the payload

m0 =
3∑

i=1
(1 + ki)mei + mu,

where k = (k1, k2, k3) and me ∶= (me1,me1,me1) are respectively the indexes and the fuel masses of the three stages.
The initial mass m0 has to satisfy the inequality m0 <

T
g

in order that the engine is powerful enough to overcome gravity.
According to what has been said, the final time of each phase satisfies

t1 = ve1me1

T1
, t2 = t1 +

ve2me2

T2
, t3 = t2 +

ve3(me3 + mu)
T3

·

In the definition of t3, the payload mu is summed to the fuel mass of the third stage. This allows the launcher to consume
part of the payload in case the amount of fuel is not sufficient to satisfy the constraint on the final position. We set T ∶=
(T1,T2,T3) and (ve ∶= ve1, ve2, ve3). In this simple model, for 0 ≤ t ≤ t1, the solution to the ODE system is

r(t) =

(
ve1t −

ve
2
1m(0)
T1

)
ln
(

m(0)
m(t)

)
+ ve1t −

g

2
t2,

v(t) = ve1 ln
(

m(0)
m(t)

)
− gt,

m(t) =
3∑

i=1
(1 + ki)mei + m̄u −

T1

ve1
t.

For t1 < t ≤ t2, one has

r(t) =

(
ve1t −

ve
2
1m(0)
T1

)
ln
(

m(0)
m(t1)

)
+

+

(
ve2(t − t1) −

ve
2
2(m(t1) − k1me1)

T2

)
ln
(

m(t1) − k1me1

m(t)

)
+

+ ve1t1 + ve2 (t − t1) −
g

2
t2,

v(t) = ve1 ln
(

m(0)
m(t1)

)
+ ve2 ln

(
m(t1) − k1me1

m(t)

)
− gt,

m(t) =
3∑

i=2
(1 + ki)mei + m̄u −

T2

ve2
(t − t1),
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and if t2 < t ≤ t3,

r(t) =

(
ve1t −

ve
2
1m(0)
T1

)
ln
(

m(0)
m(t1)

)
+ ve1t1+

+

(
ve2(t − t1) −

ve
2
2(m(t1) − k1me1)

T2

)
ln
(

m(t1) − k1me1

m(t2)

)
+

+

(
ve3(t − t2) −

ve
2
3(m(t2) − k2me2)

T3

)
ln
(

m(t2) − k2me2

m(t)

)
+

+ ve1t1 + ve2(t2 − t1) + ve3(t − t2) −
g

2
t2,

v(t) = ve1 ln
(

m(0)
m(t1)

)
+ ve2 ln

(
m(t1) − k1me1

m(t2)

)
+

+ ve3 ln
(

m(t2) − k2me2

m(t)

)
− gt,

m(t) = (1 + k3)me3 + m̄u −
T3

ve3
(t − t2).

Before defining the stochastic optimization problem associated to this model, let us define the reference deterministic
optimization problem ⎧⎪⎨⎪⎩

min
me∈R3

+

3∑
i=1

(1 + ki)mei + mu,

Mu(me) ≥ mu,

(11)

where the constraint function is defined as

Mu(me) ∶= m(t3(me)) − k3me3.

For a given me, t3(me) is the solution to the equation obtained by imposing a constraint on the apogee of the launcher
target orbit r(t3) +

v2(t3)
2g

= 𝜔𝑓 . Table 1 sums up the choice of parameters. The optimal solution found is me
∗
1 ≃ 0.2153,

me
∗
2 ≃ 0.1838, and me

∗
3 ≃ 0.0774, with a corresponding optimal cost

∑3
i=1(1 + ki)me

∗
i + m̄u ≃ 1.0241. Figure 1 shows the

corresponding optimal trajectory.

Problem statement. Let us now suppose that the parameters T, k, and ve are arrays of uniformly distributed random
variables. For example, for each i in {1, 2, 3}, this implies Ti ∼ U(Ti−,Ti+), where Ti− ∶= Ti(1 −ΔTi), Ti+ ∶= Ti(1 +ΔTi),
and Ti denotes the expected value. We also define T ∶= (T1,T2,T3) and ΔT ∶= (ΔT1,ΔT2,ΔT3). The same properties
and definitions hold for k and ve. If we want to write in form (7) the stochastic counterpart of problem (11), we have to
keep in mind that the cost to be minimized now depends on the random array k and it has to be defined as an expectation

E

[ 3∑
i=1

(1 + ki)mei + mu

]
=

3∑
i=1

(1 + E [ki])mei + mu.

Since each ki is a uniformly distributed random variable on the interval [Ki−,Ki+] with expected value ki, we can write
the cost as

3∑
i=1

(1 + E [ki])mei + mu =
3∑

i=1
(1 + ki)mei + mu.

This leads us to the stochastic optimization problem⎧⎪⎨⎪⎩
min

me∈R3
+

3∑
i=1

(1 + ki)mei + mu,

P(Mu(T,k, ve,me) ≥ mu) ≥ 𝑝,

(12)

TABLE 1 Parameters for the deterministic optimization
Parameter Ti ki 𝑣e𝑖 g mu 𝜔f

Value 150 0.1 5 9.8 0.5 0.5
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FIGURE 1 Plot of altitude, speed, mass, and constraint for the three-stage launcher [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Additional parameters for the stochastic optimization
Parameter p 𝑇 i ΔTi 𝑘i Δki 𝑣ei Δvei

Value 0.9 150 0.1 0.1 0.1 5 0.1

with a total of nine uniform random variables (three random arrays of dimension three), ie, T, k, and ve. The function
Mu(T,k, ve,me) depends on the random arrays T, k, and ve, and on the parameter me

Mu(T,k, ve,me) ∶= m (t3(T,k, ve,me)) − k3me3.

Table 2 summarizes the choice of parameters for this example.

Application of the method. Let us denote Fme(mu) the CDF of the random variable Mu

Fme(mu) ∶= ∫
mu

0
𝑓me(x) dx.

For each value of me, we are able to produce an approximation F̂me of Fme via KDE (and quadrature) by drawing a sample
from the random arrays T, k, and ve. Our problem becomes

⎧⎪⎨⎪⎩
min

me∈R3
+

3∑
i=1

(1 + ki)mei + mu,

F̂me (mu) ≤ 1 − 𝑝.
(13)

The procedure used for solving problem (13) is described in Section 3.2. As indicated for step ii in Section 3.2, we choose
to use the SNR method (see (A4)) for computing the bandwidth combined with the Gaussian kernel.

Numerical results. Figure 2 shows the behavior of 10 sequences of optimal costs for n ∈ {100, 200, … , 10 000} and
the corresponding rates of success computed a posteriori with Na = 105. Figure 3 instead shows the average value and
variance of the ten sequences previously shown for each n. For instance, for n = 500, the optimal solution is me

∗
1 ≃ 0.2222,

me
∗
2 ≃ 0.1835, and me

∗
3 ≃ 0.1029, with a corresponding optimal cost of

∑3
i=1(1+ki)me

∗
i +mu ≃ 1.0595. This solution allows

http://wileyonlinelibrary.com
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FIGURE 2 Plot of the optimal cost J and R as functions of n (10 simulations) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 Plot of the average value and variance of optimal cost J and R as functions of n [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 4 Plot of the kernel density estimator 𝑓 of Mu(T,m∗
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us to deliver the payload mu = 0.5 with a success rate R ≃ 90% even if the maximum thrust Ti, the stage index ki, and the
fuel speed vei of each stage are subject to random uniform variations. Figure 4 shows the related plots. Table 3 compares
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TABLE 3 Result comparison for extremal values of T, k, and ve

Case Ti ki mei m∗
𝟎

Random ∼ U(Ti−,Ti+) ∼ U(Ki−,Ki+) ∼ U(vei−, vei+) 1.0595
Best Ti+ ki− vei+ 0.9497
Worst Ti− ki+ vei− 1.1246

TABLE 4 Result comparison for different values of n, p, and ΔT

𝚫Ti
n p 𝚫ki h me𝟏 me𝟐 me𝟑 m∗

𝟎 R
𝚫vei

Stochastic
0.5 0.0117 0.218 0.191 0.202 1.1714 0.7966

0.25 0.00508 0.226 0.185 0.124 1.0887 0.8120
0.8 0.1 0.00191 0.237 0.158 0.103 1.0477 0.8055

0.01 0.00019 0.214 0.166 0.098 1.0259 0.8024
0.001 0.00002 0.209 0.167 0.101 1.0239 0.8281

0.5 0.01472 0.186 0.281 0.271 1.3115 0.9052
0.25 0.00517 0.227 0.205 0.133 1.1215 0.8993

104 0.9 0.1 0.00192 0.218 0.184 0.106 1.0596 0.9018
0.01 0.00018 0.215 0.166 0.098 1.0271 0.9013

0.001 0.00002 0.214 0.166 0.097 1.0241 0.9397
0.5 no convergence

0.25 0.00579 0.261 0.214 0.197 1.2394 0.9960
0.995 0.1 0.00202 0.220 0.212 0.106 1.0919 0.9951

0.01 0.00019 0.216 0.168 0.098 1.0298 0.9959
0.001 0.00002 0.212 0.169 0.096 1.0244 0.9996

Deterministic
— 0.215 0.184 0.077 1.0241 —

the solution we just found for the stochastic optimization problem to the two solution we obtain from the deterministic
one in the best and worst case. We observe again that the optimal mass of the stochastic problem is smaller than the one
obtained in the worst deterministic case but bigger than the one of the best case. Table 4 shows the comparison between
the solution of the deterministic problem 11 and its stochastic counterpart (12) when p is close to 1 and ΔTi, Δki, and Δvei
are close to 0. Unfortunately though, this method does not allow arbitrarily small values ofΔTi,Δki, orΔvei. As reported in
the table, when we do not provide enough variation to the sample, the success rate does not match the chosen probability.
This is likely due to two issues related to the presence of the sample variance in (A4), and therefore to ΔTi, Δki, or Δvei.
First, if they are too small, the Gaussian distributions summed in (6) tend to superimpose over the same points and do
not spread on the real axis. This adds probability mass outside the domain of the distribution to be estimated. A negligible
manifestation of this phenomenon can be observed even with ΔTi = Δvei = Δki = 0.1 in Figure 4. Notice the space
beneath the red graph on the left and right sides of the vertical sample lines. Secondly, because the bandwidth depends on
the sample variance, the accuracy of the estimator might decrease if h is too small, as h appears as a denominator in (6).
The results showed in Table 4 confirm that it is possible to increase the variance of the sample by increasing the number
of random variables.

4.2 Example 2: Chance constrained Goddard problem
We now apply the KDE technique to the Goddard problem. Formally, the structure of the model is the same as the example
illustrated in the introduction. The vertical ascent of a launcher in one dimension is controlled by u(t) ∈ [0, 1] (propor-
tional to the thrust applied at time t). The main difference between the Goddard problem and (2) is the addition of the
drag force to the dynamics. For the purpose of defining a probabilistic constraint, we consider the thrust T as the only
random parameter and our objective is to maximize the final mass of the launcher while making sure that its altitude
is higher than a given value 𝜌f with a probability of at least p. In contrast with Example 1 that boiled down to a finite
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dimensional optimization problem, a solution now consists in an optimal control function u∗ ∶ R+ → [0, 1] such that, if
we apply u∗ regardless of the value of T, the probability of the final altitude being greater than 𝜌f is greater than p.

Model. The original formulation of the Goddard problem can be found in the work of Goddard.1 We will consider a
one-dimensional version of the one treated in the work of Bonnans et al.38 The ODE system is⎧⎪⎪⎨⎪⎪⎩

ṙ (t) = v(t) t ∈ [0, t𝑓 ]
v̇(t) = Tu(t)−Av2(t)e−𝜅(r(t)−r0)

m(t)
− 1

r 2(t)
t ∈ [0, t𝑓 ]

ṁ(t) = −bu(t) t ∈ [0, t𝑓 ]
(r (0), v(0),m(0)) = (r0, 0,m0),

where the final time tf > 0 is free. The control function u belongs to 𝒰 , where

𝒰 ∶= {u ∶ R+ → [0, 1] ⊂ R | u is measurable} .

We will integrate the equations numerically by using the standard fourth-order Runge-Kutta method, as we did in the
previous example, the control being now approximated by means of piecewise constant functions. Before defining our
stochastic optimization problem, we first show the solution to the deterministic one⎧⎪⎨⎪⎩

max
(t𝑓 ,u)∈R+×𝒰

m(t𝑓 ),

r(t𝑓 ) ≥ 𝜌𝑓 .

(14)

Table 5 sums up the choice of parameters for this model. The optimal final time and cost found by WORHP are t∗
𝑓
≃

0.1742 and m(t∗
𝑓
) ≃ 0.6297. Figure 5 shows the corresponding optimal trajectory.

TABLE 5 Parameters for the deterministic optimization
Parameter T A 𝜅 b r0 m0 𝜌f nt

Value 3.5 310 500 7 1 1 1.01 100
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FIGURE 5 Plot of control, altitude, speed, and mass for the Goddard problem [Colour figure can be viewed at wileyonlinelibrary.com]
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Problem statement. Our goal to reach at least the altitude 𝜌f with a 90% probability while maximizing the final mass of
the launcher. Keeping in mind that the cost to be minimized also depends on the random parameter T, it has to be defined
as an expectation.

E
[
m(t𝑓 )
]
= E
[
∫

t𝑓

0
m0 −

T
ve

u(t)dt
]
= ∫

t𝑓

0
m0 −

E[T]
ve

u(t)dt.

We recall that T is a uniformly distributed random variable on the interval [T−,T+] with expected value T, so the cost is
defined as

m(t𝑓 ) ∶= ∫
t𝑓

0
m0 −

T
ve

u(t)dt.

This leads us to the stochastic optimization problem

⎧⎪⎨⎪⎩
max

(t𝑓 ,u)∈R+×𝒰
m(t𝑓 ),

P
(

r𝑓 (t𝑓 ,u,T) ≥ 𝜌𝑓
) ≥ 𝑝,

(15)

where rf (tf,u,T) is the final altitude as a function of the random variable T, parameterized by u. Table 6 shows the choice
of parameters defined in this section.

TABLE 6 Additional parameters for the stochastic optimization
Parameter p T ΔT
Value 0.9 3.5 0.1
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FIGURE 6 Plot of m(tf ,u∗) and R as functions of n [Colour figure can be viewed at wileyonlinelibrary.com]
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Application of the method. By using the definition of the density function 𝑓t𝑓 ,u of the random variable rf (tf,u,T) and
using as previously an approximation by quadrature F̂t𝑓 ,u of its CDF, we consider

⎧⎪⎨⎪⎩
max

(t𝑓 ,u)∈R+×𝒰
m(t𝑓 ),

F̂(t𝑓 ,u)(𝜌𝑓 ) ≤ 1 − 𝑝.
(16)

The procedure used for solving problem (16) is described in Section 3.2, with the only difference that, for this example,
we do not take a random sample from variable T. Because we only have one random variable, we can take a uniform
deterministic sample of T by dividing the interval [T−,T+] into n − 1 subintervals. As before, we choose to use the SNR
method (A4) to compute the bandwidth combined with the Gaussian kernel.

Numerical results. Figure 6 shows the behavior of the sequence of optimal costs for n ∈ {10, 20, 30, … , 500} and the
corresponding rate of success computed a posteriori with Na = 105. For instance, for n = 500, the optimal final time is
t∗
𝑓
≃ 0.1881, with a corresponding cost m(t∗

𝑓
) ≃ 0.6001 and a success rate R = 90.81%. The corresponding optimal control

u∗ is shown in Figure 7, whereas estimations of the density of its CDF are shown in Figure 8. Table 7 and Figure 9 compare
the solution we just found for the stochastic optimization problem to the two solutions we obtain from the deterministic
one in the best and worst cases.

It can be seen how the solution to the chance constrained problem is slightly better than the one in the worst case, but
still lower than the one corresponding to the best case. Interestingly, Figure 9 shows that the shape of the control strategy
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TABLE 7 Result comparison for extremal values of T

Case T t∗f m̄(t∗f )

Random ∼ U(T−,T+) 0.1881 0.6001
Best T+ 0.1613 0.6584
Worst T− 0.1902 0.5928
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FIGURE 9 Comparison between stochastic, best, and worst case controls [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 8 Result comparison for different values of n, p, and ΔT

n p 𝚫T h m̄(t∗f ) R
Stochastic

0.5 0.00517 0.4808 0.7980
0.25 0.00155 0.5701 0.8011

0.8 0.1 0.00048 0.6085 0.7996
0.05 0.00022 0.6197 0.7999

0.025 0.00010 0.6267 0.6879
0.5 0.00813 0.3866 0.9096

0.25 0.00185 0.5419 0.9090
500 0.9 0.1 0.00051 0.6001 0.9090

0.05 0.00023 0.6162 0.8929
0.25 0.00011 0.6222 0.9479
0.5 0.02127 0.1538 1.0000

0.25 0.00271 0.4728 1.0000
0.995 0.1 0.00057 0.5827 1.0000

0.05 0.00024 0.6075 1.0000
0.025 0.00011 0.6186 1.0000

Deterministic
— 0.6297 —

does not change much between the three cases, and the main difference lies in the optimal value for the final time t∗
𝑓

.
Table 8 shows the comparison between the solution of the deterministic problem (14) and its stochastic counterpart (15)
when p is close to 1 and Ti is close to 0. For the results in the table, we set the initial guess for u equal to the optimal
solution found for the deterministic problem (see Figure 5).

4.3 Complex three-stage launcher with one decision variable and two random variables
We eventually address the more complex model of a real space launcher and consider the following percentile optimiza-
tion problem: ⎧⎪⎨⎪⎩

min
𝜇∈R

𝜇,

P (G(𝜉) ≤ 𝜇) ≥ 𝑝.
(17)

There are two random parameters. The specific impulse Isp3 and the index K3 of the third stage. As a function of both
Isp3 and K3, the optimal fuel mass of the third stage is also random, and our goal is to compute the 0.9 percentile of its
distribution.

Model. The inertial equatorial frame coordinate system ℱ ∶= (O, i, j,k) is defined Figure 10B. O is the center of the
Earth, k is the versor of Earth rotation axis directed toward north, i is the versor that belongs to Earth equatorial plane
and points toward the Greenwich meridian, and j ∶= k × i completes the coordinate system. In this coordinate system,
we define

x ∶= xi + 𝑦j + zk
v ∶= ẋ ∶= vxi + v𝑦j + vzk

vr(v, x) ∶= v − (0, 0,Ω) × x

to be respectively the position, the velocity, and the relative velocity of the launcher center of mass G, where Ω is the
Earth's angular speed. We denote (𝜙, 𝜆, h) the geographic coordinates of G, as shown in Figure 10A. 𝜙 is the latitude, 𝜆
the longitude, and h the height. The conversion formulas between cartesian and geographic coordinates can be found in
the work of Gerdan and Deakin.39 There is a number of variables and parameters attached to the launcher. We first define
its longitudinal axis. This axis passes through G and points toward the edge of the launcher (see Figure 10C). We define
the following angles.

i. The launch azimuth. 𝜓 is the angle between the perpendicular line to the longitudinal axis at the initial position
directed toward north and the orbit plane. The launch azimuth must satisfy the following equation to allow the
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(A) (B) (C)

FIGURE 10 Reference's frame. A, Coordinates of G; B, The coordinate system ℱ ; C The angles 𝜃 and 𝛼

launcher to reach the target orbit inclination. 𝜓 = arcsin(cos(i)∕ cos(𝜙0)), meaning that the inclination i must be
greater than the launch site latitude 𝜙0.

ii. The angle of attack. 𝛼 is the angle between the longitudinal axis and the relative velocity vr measured in the orbit
plane.

iii. The pitch angle. 𝜃 is the angle between the longitudinal axis and the vector
−−→
Ox0 measured in the orbit plane. The

orbit plane is the plane of the ellipse that defines the geostationary transfer orbit, it is characterized by two angles,
ie, the longitude of the ascending node and the angle of inclination with respect to the equatorial plane of the Earth.
Not all the inclinations can be reached from a given launch site. The location has to be a point inside the target orbit
plane.

Moreover, we call 𝛽 i, Ispi, and Si respectively the mass flow rate, the specific impulse, and the area of the nozzle's section of
the ith stage engine. Furthermore, we denote Ai the as area of the ith stage reference surface involved in the computation
of the drag force. We denote m as the total mass of the vehicle. Depending on the flight phase, it is the sum of some of
the payload mp, payload case mc, the fairing mf, the ith stage fuel mei(t) at time t (the initial fuel mass of each stage is
mei0 ∶= mei(t0), i ∈ {1, 2, 3}), and the ith stage structure msi equal to msi ∶= Kimei0 (Ki is the ith stage index). The
launcher is subject to three forces, ie, the force FG due to gravity, the drag force FD, and the thrust force FT. See Appendix B
for a detailed description. In cartesian coordinates, the equations of motion write

⎧⎪⎨⎪⎩
ẋ(t) = v(t),
m(t)v̇(t) = FG (m(t), x(t)) + FD (x (t), v(t)) + FT (𝜃(t), x(t), v(t)) ,
ṁ(t) = −𝛽.

(18)

The direction of the launcher is controlled by acting on the pitch angle 𝜃 at any time t. For a given position x and velocity
v, the perigee and apogee of the associated orbit are given by

L𝑝(x, v) = (1 − 𝜀(x, v))a (x, v) − Re La(x, v) = (1 + 𝜀(x, v))a (x, v) − Re,

where 𝜀 is the eccentricity of the orbit

𝜀(x, v) =

√
1 − ||x × v||2

𝜇0a(x, v)
,

and a is the semimajor axis

a(x, v) = 1
2||x|| − ||v||2𝜇0

·
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The flight sequence consists in several phases, we will use the following notation to denote the duration and the final
time of each flight phase. t0 is the initial time, 𝜏 i is the duration of the phase i, 𝜏 i.j is the duration of the sub-phase i.j, ti is
the final time of the phase i, and ti.j is the final time of the subphase i. j.

Phase 1. The launch azimuth is fixed at value 𝜓 and the initial position at the geographic coordinates (𝜙0, 𝜆0, h0). During
this phase, the mass of the launcher is m(t) = m𝑝+mc +m𝑓 +

∑3
i=1(1+Ki)mei(t), t ∈ [t0, t1). The engine of the first stage is

ignited and the launcher accelerates vertically (ie, with the same direction of
−−→
OG), leaving the service structure. The pitch

angle for this subphase is 𝜃(t) ≡ 0, t ∈ [t0, t1.1). Then, the launcher rotates with constant speed changing its orientation

𝜃(t) = 𝜃1

𝜏1.2
(t − t1.1), t ∈ [t1.1, t1.2).

After the tilt, the direction of thrust is set to the final value of the previous subphase until the angle of incidence 𝛼 vanishes

𝜃(t) = 𝜃1, t ∈ [t1.2, t1.3),
where t1.3 ∶= min

t∈(t1.2,∞)
{t | 𝛼(t) = 0}.

The final subphase is a zero incidence flight until exhaustion of the first stage fuel, ie, 𝜏1 = me10∕𝛽1. This subphase ends
with the separation of the first stage.

Phase 2. At the beginning of this phase, the mass of the launcher is m(t) = m𝑝+mc +m𝑓 +
∑3

i=2(1+Ki)mei(t), t ∈ [t1, t2.1).
The second stage engine ignites. This subphase ends with the release of the fairing as soon as the heat flux decreases to a
given value

𝜃(t) = 𝜃2 + 𝜃′2(t − t1), t ∈ [t1, t2.1),
where t2.1 ∶= min

t∈(t1,∞)
{t | Γ (x (t), v(t)) ≤ Γ∗}

and where Γ(x, v) = 1
2
𝜌(x)||vr(x, v)||3 represents the heat flux. The mass changes to m(t) = m𝑝 + mc +

∑3
i=2(1 + Ki)mei(t),

t ∈ [t2.1, t2). The flight continues without fairing until complete consumption of the fuel in the second stage, ie, 𝜏2 =
me20∕𝛽2. This subphase ends with the jettison of the second stage, and the pitch angle is 𝜃(t) = 𝜃2+𝜃′2𝜏2.1+𝜃′2+(t−t1), t ∈
[t1, t2.1).

Phase 3. During this phase, the mass of the launcher is m(t) = m𝑝 + mc + (1 + K3)me3(t), t ∈ [t2.2, tf). The third stage
engine ignites, and this phase ends when fuel is exhausted, ie, 𝜏3 = me30∕𝛽3. At the final time t f ∶= t3, both position and
velocity must belong to the target orbit

𝜃(t) = 𝜃3 + 𝜃′3(t − t2), t ∈ [t2.2, t𝑓 )
L𝑝
(
x(t𝑓 ), v(t𝑓 )

)
= L∗

𝑝

La
(
x(t𝑓 ), v(t𝑓 )

)
= L∗

a.

We can now formulate the following deterministic optimization problem:⎧⎪⎪⎨⎪⎪⎩
min

(me30,𝜃1,𝜃2,𝜃
′
2,𝜃3,𝜃

′
3)∈R6

+

me30,

L𝑝
(

me30, 𝜃1, 𝜃2, 𝜃
′
2, 𝜃3, 𝜃

′
3
)
= L∗

𝑝,

La
(

me30, 𝜃1, 𝜃2, 𝜃
′
2, 𝜃3, 𝜃

′
3
)
= L∗

a,

(19)

where, with a slight abuse of notation, the functions Lp and La denote, respectively, the perigee and apogee associated to
the final state (x(t𝑓 ), v(t𝑓 )). Table 9 summarizes the choice of all the fixed parameters of the problem, whereas Figure 11
shows the profile of the speed of sound, the air density, the atmospheric pressure (each one depending on altitude), and
the drag coefficient (depending on the Mach number). With this choice of the duration of the first two flight phases, the
fuel load of the corresponding stages can easily be computed (see Table 10) because of the relation me0 = 𝛽i𝜏i for i ∈
{1, 2, 3}. The parameters for the Earth and the flight sequence are defined in Tables 11 and 12, respectively. The optimal
values found by WORHP for the optimization variables are reported in Table 13 and Figure 12 shows the corresponding
optimal trajectory. The ODE system (18) is integrated by using the Fortran 90 subroutine DOP853 described in the work
of Hairer et al.40
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TABLE 9 Mechanical and structural parameters
Fairing Case Payload

mf 1.100 kg mc 858.86 kg mp 4500 kg
Stage 1 Stage 2 Stage 3

K1 0.13 K2 0.13 K3 0.13
𝛽1 1896.58 kg/s 𝛽2 273.49 kg/s 𝛽3 42.18 kg/s
Isp1 345.32 s Isp2 349.4 s Isp3 450.72 s
S1 7.18 m2 S2 5.16 m2 S3 1.97 m2

A2 17.35 m2 A3 17.35 m2 A1 17.35 m2
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FIGURE 11 Speed of sound vs, air density 𝜌, atmospheric pressure P, and drag coefficient CD [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 10 Values for the initial fuel masses
me10 278797.26 kg
me20 60714.78 kg

TABLE 11 Earth's parameters
Ω 7.292155·10−5 rad/s
Rp 6356752 m
Re 6378137 m
𝜇0 3.986005·1014 m3/s2

J2 1.08263·10−3

g0 9.80665 m/s2

Problem statement. Let me30(m𝑝, 𝜉) be the value function of (19), depending on 𝜉 ∶= (Isp3,K3) and the dimensioning
parameter mp. Consider the following chance constrained optimization problem:⎧⎪⎨⎪⎩

min
𝜇∈R+

𝜇,

P
(

Me30(m𝑝, 𝜉) ≥ 𝜇
) ≥ 𝑝,

(20)

http://wileyonlinelibrary.com
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TABLE 12 Parameters for the flight sequence

Phase 1 Subphase 1.1 t0 0 s
𝜓 90 deg
𝜙0 5.159722 deg
𝜆0 −52.650278 deg
h0 0 m
𝜏1.1 5 s

Subphase 1.2 𝜏1.2 2 s
𝜏1 147 s

Phase 2 Subphase 2.1 Γ∗ 1135 W/m2

𝜏2 222 s
Phase 3 L∗

𝑝 200000 m
L∗

a 35786000 m

TABLE 13 Optimal values for the free variables
me30 2627.1511 kg
𝜃1 1.98164037 deg
𝜃2 74.24468871 deg
𝜃2

′ 0.14736836 deg/s
𝜃3 99.15421943 deg
𝜃3

′ 0.30801744 deg/s
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FIGURE 12 Result of the three-stage launcher optimization [Colour figure can be viewed at wileyonlinelibrary.com]

where Isp3 and K3 are uniformly distributed random variables, respectively, on the intervals [Isp3−, Isp3+] and [k3−k3+], with
expected values Isp3 and K3. Here, Isp3−

∶= Isp3 (1−ΔIsp3), Isp3+
∶= Isp3 (1+ΔIsp3), and similar definitions hold for K3. Note

that (20) matches the definition of the percentile optimization problem (17). The problem depends on two dimensioning
parameters, ie, the payload mp and the probability of success p. Table 14 shows the choice of parameters defined in this
section. A crucial difference between this problem and the ones treated previously is that the decision variable is separated

http://wileyonlinelibrary.com
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TABLE 14 Additional parameters for the stochastic optimization
Parameter p Isp3

ΔIsp3
K3 ΔK3

Value 0.9 450.72 [s] 0.1 0.13 0.1

from the random ones. More precisely, y and 𝜉 being the decision and the random variables, we can rewrite the chance
constraint according to

P (D(𝜉) ≤ E(𝜇)) ≥ 𝑝,

which allows us to improve drastically the solver performances by precomputing (for a given value of mp) the function
me30(m𝑝, 𝜉) at given grid values of the random variables 𝜉. Figure 13 shows the plot of me30(m𝑝, 𝜉) as a function of 𝜉
for our choice of mp (see Table 9). The function has been evaluated at 16 values of 𝜉 on an equally partitioned grid on
the set [Isp3−, Isp3+] × [k3−k3+]. The values in between gridpoints are obtained via bilinear interpolation. We also recall
that, because the constraint function is parameterized by the payload mp, every change in its value would require a new
computation of me30 at grid values. For all the values of 𝜉 in [Isp3−, Isp3+]×[k3−k3+], the solver WORHP was able to compute
an optimal control, allowing the launcher to reach its final orbit while minimizing the initial mass.

Application of the method. In order to use the KDE, we have to reformulate the chance constraint using the
approximated CDF F̂m𝑝

of the random variable me30(m𝑝, 𝜉)

⎧⎪⎨⎪⎩
min
𝜇∈R+

𝜇,

F̂m𝑝
(𝜇) ≥ 1 − 𝑝.

(21)
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FIGURE 13 Plot of the third stage optimal fuel mass as a function of 𝜉 [Colour figure can be viewed at wileyonlinelibrary.com]

 2000

 2050

 2100

 2150

 2200

 2250

 2300

 50  100  150  200  250  300  350  400  450  500

J

n

Optimal solution

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 50  100  150  200  250  300  350  400  450  500

R

n

Success rate

FIGURE 14 Plot of 𝜇∗ and R as functions of n (10 simulations) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 15 Plot of the average value and variance of 𝜇∗ and R as functions of n [Colour figure can be viewed at wileyonlinelibrary.com]

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 1316.01  1876.09  2436.18  2996.26  3556.34  4116.42

f- m
(m

u)

mu

Kernel Density Estimator

KDE
sample

 0

 0.2

 0.4

 0.6

 0.8

 1

 1316.01  1876.09  2436.18  2996.26  3556.34  4116.42

F- m
(m

u)

mu

Cumulative Distribution Function of the KDE

FIGURE 16 Plot of the kernel density estimator 𝑓m𝑝
of Me30 and its integral F̂ [Colour figure can be viewed at wileyonlinelibrary.com]

As explained earlier, the remarkable feature of the problem is that, in contrast with the previous examples, the PDF
estimator does not depend on the optimization parameter 𝜇. We again use a Gaussian kernel together with the SNR
bandwidth.

Numerical results. Figures 14 to 15 show the behavior of 10 sequences of optimal costs, for n ∈ {10, 20, 30, … , 500},
and the corresponding rate of success computed a posteriori with Na = 105. For example, for n = 500, the optimal cost
is 𝜇∗ ≃ 2162.78 and the success rate is R ≃ 91.83%. Figure 16 shows the related plots.

5 CONCLUSION

The performances of the proposed KDE approach (coupled with a nonlinear problem solver) depends on a variety of
factors, including the structure of the problem. As illustrated on the last example treated in Section 4, whether the decision
variables and controls are separable from the random variables or not has a strong impact on the method, both from the
theoretical and computational point of view. The bandwidth selection strategy also plays an important role. Some of the
most refined methods to compute the bandwidth might require the minimization of an error function. The quadrature

http://wileyonlinelibrary.com
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formula used for the numerical integration of the density estimator, the discretization as an optimization problem, and
the choice of the optimization solver itself strongly influence the results.

Throughout this paper, we showed how chance constrained optimization can be relevant to solve robust optimization
and optimal control problems, especially when the traditional deterministic techniques like the worst-case analysis cannot
be applied because they are not designed to take into account unfeasible solutions. In spite of a not yet complete theoretical
framework, the numerical results provided by KDE are very promising. Even better results might be obtained by improving
the computation of bandwidth h, for example, by substituting the second derivative f ′′ of the unknown density in (A2)
with some tailored approximation. This so-called plug-in method is explained in detail in the work of Sheather.33 Such a
method can increase the accuracy of the estimator 𝑓 , but as it involves more complex operations for the computation of
h compared to the SNR bandwidth (A4), we decided to implement the latter in our tests to preserve good performances.
Pairing KDE with a robust NLP solver-like WORHP has proven solid enough to handle the three chance constrained
optimization problems treated in Section 4. It is our hope that this paper will foster future research along this line. Further
work includes comparing the proposed KDE method with other approaches such as those cited in Section 2 (scenario
approach, back-mapping, stochastic Arrow-Hurwicz, etc) when all are applicable.
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APPENDIX A

KERNEL AND BANDWIDTH SELECTION

As a measure of the discrepancy between 𝑓 and f, one defines the mean integrated squared error (MISE)

MISE ∶= ∫
(
𝑓n,h(x) − 𝑓 (x)

)2dx.
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Under smoothness and integrability assumptions on f (see the work of Sheather33), we can define the main term in the
Taylor expansion of the MISE as the asymptotic MISE (AMISE)

AMISE ∶= 1
nh ∫ K2(x)dx + h4

4

(
∫ x2K(x) dx

)2

∫ 𝑓 ′′2(x) dx, (A1)

which leads to the following choice for the bandwidth h minimizing (A1):

hAMISE ∶= 5

√√√√ ∫ K2(x) dx

n
(∫ x2K(x) dx

)2 ∫ 𝑓 ′′2(x)dx
. (A2)

If we substitute the optimal bandwidth given by (A2) in (A1), we obtain

AMISE = 5
4

5

√(∫ K2(x) dx
)4(∫ x2K(x) dx

)2 ∫ 𝑓 ′′2(x) dx
n4 , (A3)

showing that the AMISE will tend to zero at a rate n−4/5. Unfortunately though, the presence of the unknown factor
∫ 𝑓 ′′2(x) dx in (A2) makes the expression of hAMISE almost useless. For this reason, it might be more viable to approximate
also the derivatives of f 35,41 or use one of the many practical ways31,33 for choosing the bandwidth using only information
from the sample. Other results on the rate of convergence of the KDE have been proved in other works.42-45

On the practical side, a common choice for h, used in conjunction with the Gaussian kernel, is the SNR. Let S be the
standard deviation of the sample {x1, … , xn} of X, ie,

S ∶=

√√√√ 1
n

n∑
1=1

(
Xi −
∑n

1=1 Xi

n

)
.

The SNR bandwidth is then defined according to

hSNR ∶= 1.06 S
5
√

n
. (A4)

Even though there is no general rule for obtaining an explicit value of h leading to the best approximation of f, it is
important to point out that big values of h will probably lead to an overestimation of the volume of the density function
and thus to a loss of information. As for the choice of the kernel, we want to show that, when using the AMISE expression
for the approximation error, there is little room for improvement. In order to do this, we need to define the efficiency
associated to a kernel. We first define the function

C(K) ∶= 5

√(
∫ x2K(x) dx

)2(
∫ K2(x) dx

)4

.

Substituting it into (A3), we have that minimizing (A3) with respect to K is equivalent to minimizing

5
4

C(K)
5

√
∫ 𝑓 ′′2(x) dx

n4 .

This means that we should consider kernels with small values of C(K). If we focus on kernels that are themselves PDFs
(which are the only ones ensuring that the estimate is everywhere nonnegative), we have ∫ K(x) dx = 1. Moreover, we
can also assume ∫ x2K(x) dx = 1. The fact that K is a density function guarantees that ∫ x2K(x) dx is finite, thus allowing
us to choose its normalized version in case ∫ x2K(x) dx ≠ 1. Because our kernel satisfies

∫ K(x) dx = ∫ x2K(x) dx = 1, (A5)

minimizing C(K) reduces to minimizing ∫ K2(x) dx, and in the work of Hodges and Lehmann,46 it has been proven that
the kernel

Ke(x) ∶=
⎧⎪⎨⎪⎩

3
4
√

5

(
1 − 1

5
x
) |x| ≤√5

0, else,
(A6)
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TABLE A1 Efficiency of some kernels

Kernel K(x) eff(K)

Epanechniov
⎧⎪⎨⎪⎩

3
4
√

5

(
1 − 1

5
x
) |x| ≤√5

0, else
≃ 0.9939

Biweight
⎧⎪⎨⎪⎩

15
16
(1 − x2)2 |x| ≤ 1

0, else
≃ 0.9859

Triangular
⎧⎪⎨⎪⎩

1 − |x| |x| ≤ 1

0, else
≃ 0.9295

Gaussian 1√
2𝜋

e−
x2

2 ≃ 0.9512

Rectangular
⎧⎪⎨⎪⎩

1
2

|x| ≤ 1

0, else
≃ 0.9295

achieves the minimal value of C(K) under the constraints (A5). The efficiency of any kernel K satisfying (A5) is then
defined as

eff(K) ∶=
(

C(Ke)
C(K)

) 5
4

= 3

5 ∫ K2(x) dx
√

5 ∫ x2K(x) dx
,

where Ke is the Epanechniov kernel, defined in (A6). Table A1 reports the efficiency of some of the most used kernels.
Note that even the rectangular kernel (arguably the most naive choice of K) achieves an efficiency of ≃ 0.93. This leads
us to the conclusion that, when measuring the error by means of (A1), the choice of the kernel is not as important as the
choice of the bandwidth h.

APPENDIX B

MODEL OF FORCES FOR THE COMPLEX THREE-STAGE LAUNCHER

In Example 3 of Section 4, the launcher is subject to the force FG due to gravity, the drag force FD, and the thrust force FT.
The gravity force is

FG(m, x) = −

( FGx(m, x) 0 0
0 FG𝑦(m, x) 0
0 0 FGz(m, x)

)
x||x|| ,

where

FGx(m, x) = FG𝑦(m, x) = m 𝜇0||x||2
(

1 + J2
3
2

R2
e||x||2
(

1 − 5 z2||x||2
))

,

FGz(m, x) = m 𝜇0||x||2
(

1 + J2
3
2

R2
e||x||2
(

3 − 5 z2||x||2
))

,

and where 𝜇0 is the gravitation constant of the Earth (J2 being the correction factor due to its oblateness). The drag force is

FD(x, v) = −FD(x, v)
vr(x, v)||vr(x, v)|| ,

where FD(x, v) = 1
2
𝜌(x)||vr(x, v)||2ACD(x, v), 𝜌 is the air density, and CD is the drag coefficient, depending on the Mach

number Ma(x, v) = ||vr(x,v)||
vs(x)

, which itself depends on the speed of sound vs. The thrust force is

FT(𝜃, x, v) = FT(x)iT(𝜃, x, v),
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where FT(x) = g0𝛽Isp − SP(x), g0 is the Earth gravitational acceleration, and P is the atmospheric pressure. The direction
iT is given by

iT(𝜃, x, v) =

{ vr(x,v)||vr(x,v)|| 𝛼 = 0,

R𝜆0,𝜙0 R𝜓R(𝜃)e1 𝛼 ≠ 0,
where

R𝜆0,𝜙0 =
⎛⎜⎜⎝
− sin(𝜆0) − cos(𝜆0) sin(𝜙0) cos(𝜆0) cos(𝜙0)
cos(𝜆0) − sin(𝜆0) sin(𝜙0) sin(𝜆0) cos(𝜙0)

0 cos(𝜙0) sin(𝜙0)

⎞⎟⎟⎠ ,
R𝜓 =

⎛⎜⎜⎝
0 sin(𝜓) − cos(𝜓)
0 cos(𝜓) sin(𝜓)
1 0 0

⎞⎟⎟⎠ ,
R(𝜃) =

⎛⎜⎜⎜⎝
cos(𝜃) − sin(𝜃) 0
sin(𝜃) cos(𝜃) 0

0 0 1

⎞⎟⎟⎟⎠ ,
e1 = (1, 0, 0).

The angles 𝜆0 and 𝜙0 are the longitude and the latitude of the launch site, and 𝜓 is the launch azimuth.
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