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Summary

Optimal control of a solar sail orbiting around a fixed center of mass is considered.
The sail is modelled as a plane surface with two sides having similar optical prop-
erties. The control is assumed to be the attitude of the sail and is so represented as
an element of the projective plane. Mapping this plane to compute the actual force
generated by a given attitude results in a generally non-convex set of admissible con-
trol values. A suitable convex relaxation is introduced to study the optimality system
associated with maximising the change of the sail orbital parameters in a given di-
rection along one orbit. Building on previous works,1,2,3 a refined analysis of the
control structure is given. In order to compute effective solutions, a multiple shooting
approach is retained that is well suited for systems with a sequence of switchings be-
tween various control subarcs. Three issues are addressed: initialisation of shooting
by means a tailored SDP relaxation that takes advantage of good convergence prop-
erties of modern convex optimisation algorithms; changes in the control structure
that are accommodated by coupling shooting with differential continuation; implicit
character of the Hamiltonian maximisation when using Pontrjagin maximum princi-
ple that is taken care of by incorporating the associated equation for the dynamical
feedback into the shooting procedure. The method is illustrated on an example from
JPL for which the sail inclination is optimally changed over one orbital period.

KEYWORDS:
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1 INTRODUCTION

1.1 Solar radiation pressure
Solar sails are satellites that use solar radiation pressure (SRP) as propulsion for orbital manœuvres. SRP is caused by the
interaction between photons and the surface of the sail, and its magnitude depends on the distance between the Sun and the sail,
r. Specifically, denote by ΦSR = 1367Wm−2 the solar flux at r⊕ = 1 AU distance (i.e., the average Sun-Earth distance), and
by c the speed of light; then, a simple model for the SRP is given by:4, Chap. 3

PSR =
ΦSR

c

(r⊕
r

)2
. (1)

In this paper, similarly to,5 we consider a flat sail with surface A and mass m. Different optical and geometrical properties have
impact on the resulting SRP force, which has components of the incoming, reflected, and thermal radiations, namely fa, fr, and
fe. Moreover, the reflected radiation has specular and diffuse contributions, frs and fru, respectively. Each force component has
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different magnitude and direction, that can be identified through the Sun-sail direction, denoted as ŝ and the unit vector normal
to the sail having a positive component along ŝ, n̂. In this paper we assume that both sides of the sail have the same optical
properties, so only the (non-oriented) direction of the normal to the plane representing the plane will describe its attitude. We
also assume that it is possible to control the attitude, and that the actual control will be the force generated by this attitude (see
(6)). In this model, n̂ belongs the projective plane RP 2 that one can describe as the union of one open hemisphere (whose axis
is ŝ) with a circle whose antipodal points are identified (subset of directions perpendicular to ŝ). Fixing some basis ê1, ê2 of
{ŝ}⟂ in order that (ŝ, ê1, ê2) is a direct orthogonal frame, one defines coordinates (�, �) ∈ (−�∕2, �∕2) × R for n̂ in the open
hemisphere part setting as usual (see Figure 1)

n̂ = sin �(cos �ê1 + sin �ê2) + cos �ŝ.

This is not a chart1 as no �, even restricted to R∕�Z, can be uniquely associated with the direction ŝ. (See also Remark 1.) The
angle � is the so-called solar-sail cone angle. As shown in Fig. 1, let us introduce the direction of specular reflection given by
�̂, and the unit tangent vector t̂ lying in the plane generated by ŝ and n̂. The force due to the incoming radiation, fa, is directed
along ŝ. The force provided by the specularly reflected radiation, frs, points along �̂ and is caused by photons that are reflected
symmetrically with respect to the normal of the sail, thus yielding an exchange of momentum. Diffuse reflection stems from the
sail surface roughness, which causes photons to be uniformly reflected in all directions, yielding a component of the force toward
the direction normal to the sail, n̂. Finally, as the absorbed photons are re-radiated in all directions, the force fe is generated,
which is orthogonal to the sail surface and points again along n̂. We follow1, Chap. 2 and express the unit vectors ŝ and �̂ in terms
of n̂ and t̂,

ŝ = cos � n̂ + sin � t̂, �̂ = cos � n̂ − sin � t̂, (2)
so the above-presented forces can be expressed as:6

fa = " cos � ŝ = " cos �(cos � n̂ + sin � t̂),
frs = "�s cos � �̂ = " �s cos �(cos � n̂ − sin � t̂),
fru = "Bf �(1 − s) cos � n̂,

fe = " (1 − �)
"fBf − "bBb
"b + "f

cos � n̂.

(3)

In (3), " is equal toAPSR m−1, which combines optical and physical parameters of the sail, has small magnitude, � ∈ [0, 1] is the
fraction of reflected radiation to total amount of radiation illuminating the sail, s ∈ [0, 1] is the fraction of specularly reflected
radiation to total reflected radiation, "b and "f are the back and front surface emissivity coefficients, respectively, and Bb and
Bf are back and front non-Lambertian coefficients, respectively. The SRP force is found as:

fSRP = fa + frs + fru + fe. (4)

Let us use the notations used in:2

b1 = 1 − �s, b2 = 2�s, b3 = Bf�(1 − s) + (1 − �)
"fBf − "bBb
"f + "b

⋅

With these, the SRP force reads (note that because of the radial symmetry, its norm is independent of �)

fSRP = " cos �
⎛

⎜

⎜

⎝

(b1 + b2) cos2 � + b3 cos � + b1 sin
2 �

b2 sin � cos � sin � + b3 sin � sin �
b2 sin � cos � cos � + b3 sin � cos �

⎞

⎟

⎟

⎠

. (5)

Remark 1. In our modeling, the magnitude of the SRP is continuous with respect to n̂, going to zero when the Sun direction is
contained in the sail plane (orthogonality of ŝ and n̂), but its direction is not: when going through ŝ ⟂ n̂, the illuminated side of
the sail (a thickless 2D object embedded into 3D space) is changed and the orientation of n̂ is changed to opposite (� = ±�∕2
being changed to−�, still defining the same direction—a perpendicular to ŝ—in the projective plane). The resulting force, going
to zero in such cases, is continuous but not smooth. This singularity is inherent to the modeling and would be removed in a
more realistic approach describing the sail as a genuine 3D object. This lack of smoothness is nonetheless not crucial here since,
as will be clear from the optimality analysis in Section 2, an optimal force will have discontinuities, being either zero or with

1One actually retrieves the universal cover of the pointed open hemisphere by restricting to (�, �) in (0, �∕2) × R.
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Figure 1 Components of the SRP force and orientation angles � and � of the solar sail.

� ∈ (−�∗, �∗) and 0 < �∗ < �∕2 (if we exclude the ideal case for which �∗ = �∕2). So flips of illuminated side will not be
encountered.

1.2 Parametrisation of the control set
Controlling the sail attitude, i.e. the normal vector n̂, allows to change the direction and magnitude of the resulting SRP. A
reliable inference of optical coefficients is indeed mandatory to accurately estimate the mapping fSRP . To carry out our analysis,
solar sail dynamics is conveniently modeled as a nonlinear control-affine system (see Section 1.3), where the control variable is
homogeneous to the renormalized force. The control set U ⊂ R3 is so given by:

U =
{

u =
fSRP (n̂)

"
∈ R3, n̂ ∈ RP 2

}

. (6)

It is a closed surface of revolution with axis ŝ that bounds a domain of R3. Up to the scaling factor ", this surface is the image of
the projective plane by the mapping fSRP . As a result, the surface minus the origin is parametrised by (�, �) in (−�∕2, �∕2)×R,
while the origin corresponds to the image of the circle of directions orthogonal to ŝ. Figure 2 shows the intersection of U with
the plane generated by n̂ and ŝ for various optical properties. The resulting curve now bounds a two-dimensional domain, non-
convex unless the sail is ideal (� = s = 1, so the sail is perfectly reflective, a first extreme case). In addition to ideal sails, another
extreme case can be identified: contrary to perfectly reflective sails, perfectly absorptive surfaces are the worst-case scenario
(� = 0, fe neglected) because SRP is systematically parallel to ŝ, as shown in red in Figure 2. Although sails are designed to
be as close to ideal as possible, partial absorption of the energy is unavoidable in real-life applications and optical properties
exhibit degradation in time. Hence, the fraction of reflected radiation decreases with the lifetime of the satellite as discussed
in.7,8 Another significant optical coefficient that plays a crucial role in determining the control set is the specular reflectivity,
denoted by s, as illustrated in Figure 1.The red set represents a sail with a rough surface (corresponding to s = 0), where
light is diffusely reflected in all directions. This results in a smaller control set, even for a high reflectivity value of � = 0.8.
In Figures 2, the impact of other optical coefficients, namely emissivity and non-Lambertian coefficients, is shown. Although
these coefficients have a small but noticeable effect on the shape and convexity of the control set. (The ideal solar sail is the
only exception, exhibiting a vertical tangency at its vertex.) While most control sets have a horizontal tangency at their vertices,
a more comprehensive analysis is required to fully understand the dependence of the control set geometry on different optical
coefficients of the sail surface.

1.3 Equations of motion
The following assumptions are introduced:
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Figure 2Deformation of the control set with respect to the various optical properties of the sail. Top left: control sets for different
reflectivity coefficients and s = 1. The blue sets corresponds to the perfectly reflective sail, referring to the ideal sail model,
when the red set illustrates forces generated by a perfectly absorptive sail, often called a cannonball model. Top right: control
sets for different specular reflectivity coefficients and � = 0.8. As show the plots, specular reflectivity plays in major role in the
resulting shape of the control set. Bottom left: control sets for different front emissivity coefficients. Bottom right: control sets
for different front non-Lambertian coefficients.

1. Orbital period of the sail is much smaller than the one of the heliocentric orbit of the attractor, so that variations of the
Sun direction ŝ over a single orbit of the sail are neglected.

2. Solar eclipses are neglected. Introducing solar eclipses can be a way of improving the proposed algorithm.

3. Re-emitted radiation is neglected. In fact, this component of SRP can be reasonably regarded as a disturbance for control
purposes.

Equations of motion are written in a set of Keplerian-like orbital elements, which leverages on the axial symmetry of the problem
with respect to the Sun’s direction. Namely, consider a reference frame  with origin at the center of the planet, X̂ = ŝ, Ŷ lies
in the plane of the planet’s orbit around the Sun and is orthogonal to X̂, and Ẑ is chosen to form a right-hand frame. Because
this study focuses on short-time controllability (characteristic time is of the order of one orbital period), motion of this frame
is neglected by virtue of the first assumption above. Figure 3 represents the vectors ℎ, e and N̂ , which denote the angular
momentum, eccentricity and ascending node vectors, respectively. Let 1, 2, 3 be Euler angles orienting the eccentricity vector
according to a X-Y -X rotation as depicted in Fig. 3, so that 2 is the angle between the angular momentum of the orbit and the
Sun direction, and a, e, and f be semi-major axis, eccentricity and true anomaly, respectively. The motion of slow elements,
I =

(

1, 2, 3, a, e
)

∈, where is the configuration manifold, and fast angle f is governed by

d I
d t

= "

√

a
(

1 − e2
)

�
G0(I, f )R(I, f ) u,

d f
d t

= !(I, f ) + " F (I, f )R(I, f ) u,

(7)
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Figure 3 Euler angles i orienting the orbit according to a X̂-Ŷ -X̂ rotation with respect to the reference frame  . Here, ℎ and e
denote the angular momentum and eccentricity vectors.

where components of u are in the reference frame  , R(I, f ) = RX(3 + f )RY (2)RX(1) is the rotation matrix from reference
to local-vertical local-horizontal frames2,

!(I, f ) =
√

�
a (1 − e2)3

(1 + e cos f )2. (8)

Both F (I, f ) and G0(I, f ) can be deduced from Gauss variational equations (GVE) of classical elements, where

G0(I, f ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0
sin

(

3 + f
)

sin 2(1 + e cos f )

0 0
cos

(

3 + f
)

1 + e cos f

−
cos f
e

2 + e cos f
1 + e cos f

sin f
e

cos
(

3 + f
)

1 + e cos f
2 a e
1 − e2

sin f 2 a e
1 − e2

(1 + e cos f ) 0

sin f
e cos2 f + 2 cos f + e

1 + e cos f
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (9)

In Section 2 we introduce the optimal control problem of interest in this paper: it consists in maximising the displacement of
the sail in a given direction over one orbit. A characteristic feature of this problem is the non-convexity of its control set; we
define a suitable convex relaxation and review existence and necessary conditions of the original problem, giving precise bounds
of the number of switchings of the control. A tailored method of resolution that combines convex optimisation and shooting is
presented in Section 3. While a bounded polyhedral cone allows to approximate the set of admissible controls, a semi-infinite
formulation of the control problem is proposed. Using a sum-of-squares approach à la Nesterov, this problem is recast as a
semi-definite program on the cone of SDP matrices. For such a program, there are efficient convex optimisation algorithms with
guaranteed convergence properties. The resulting solution is expected to provide an initial guess for shooting. In particular, we
rely on the SDP step to capture the switching structure of the optimal control on a bounded cone. Then the solution on this cone
is connected to the solution on the original non convex control set by means of differential continuation, coupled with multiple
shooting. As the structure of the control may change during continuation (appearance or disappearance of control subarcs),
a callback procedure is used to monitor the process and restart it with an updated shooting function. An additional difficulty
comes from the fact that there is no explicit expression of the control that maximises the Hamiltonian coming from Pontrjagin
maximum principle applied to the problem. This issue is accommodated by incorporating the equation implicitly defining the
control into the shooting procedure. The last section is devoted to the numerical treatment by the described approach of an

2Here, RA(f ) denotes the rotation matrix of angle f about the axis Â.
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example coming from the Jet Propulsion Lab: a non-ideal solar sail is considered, and the target is to increase the inclination of
the initial orbit. Convex optimisation turns to provide a very precise solution to initialise the continuation. A change of structure
is nonetheless observed during the early steps of homotopy as the number of arcs drops from three 5 to 3, and the callback is
used to eventually obtain the zero-bang-zero optimal control of the sail.

2 CONTROL OVER ONE ORBITAL PERIOD

2.1 Optimal control formulation
We are interested in moving solar sail in the desired direction after one orbital period. Therefore, it is interesting to rewrite
System (7) in terms of displacement of the slow state elements, denoted �I . Therefore, its dynamics is given by

�I ′ = "G(I, f )u (10)

where ′ ∶= d∕df and with

G(I, f ) ∶=
a
(

1 − e2
)2

�(1 + e cos f )3
G0(I, f )R(I, f ).

As mentioned earlier, SRP has a very small magnitude, this is why it is usually considered as a perturbation. Thus, changes on
slow variables are very small over one orbital period so that I will be assumed constant in the rest of the paper. For the same
reason, we also neglect the order one term in " in the dynamics of the fast variable in (7). The goal is to maximise the size of
the displacement in a given direction fixed by a unit vector, dI , so that the final value of �I is parallel to dI . This problem can
be written in Mayer form as follows (note the simple form of the dynamics, given by an explicit integral, as the right-hand side
does not depend on �I in our approximation):

max
u(f ) ∈U

(�I(2�)|dI ) subject to �I ′ = "
3
∑

i=1
uiGi(I, f ), �I(0) = 0, �I(2�) parallel to dI . (11)

Building upon results in,9,10 we have access to an effective test (related to the convex SDP approximation discussed in Section 3)
to check that it is indeed possible to move in the direction dI after one revolution. So we assume in the sequel that the problem
is controllable.

2.2 Existence and necessary conditions for optimality
We first consider the relaxation of (11) obtained by replacing the control setU by its convex hull: u(f ) ∈ conv(U ) (see Figure 4).
As the control set is now compact and convex, and since we have assumed controllability using controls valued inU ⊂ conv(U ),
Filippov theorem entails that

Proposition 1. The relaxed problem has a solution.

LetK� be the convex cone generated both byU and by its convex hull, � denoting the half-angle at the cone vertex. To formulate
the necessary optimality conditions for the problem on conv(U ) we introduce the costate p�I of �I , a covector of dimension 5.
The Hamiltonian associated with the dynamics is

H(I, f , p�I , u) = "p�IG(I, f )u. (12)

Remember that I is a constant, and note that the Hamiltonian does not depend on the state �I because of the very simple form
of the dynamics. (The ODE defines a mere quadrature, here.) Clearly, p�I is constant and transversality conditions write

(p�I |dI ) = −p0‖dI‖2 = −p0 (13)

where p0 is the nonpositive multiplier associated with the cost. In particular, p�I is not zero, since otherwise both p0 and p�I
would vanish. By homogeneity in (p0, p�I ) there are two cases: (i) the abnormal case (p0 = 0) when (p�I |dI ) = 0 and where
one can normalise setting ‖p�I‖ = 1; (ii) the normal case (p0 < 0) when (p�I |dI ) > 0 and where one can normalise setting
(p�I |dI ) = 1. Let us set  ∶= p�IG(I, f ).

Lemma 1. For any I , the matrix formed by G(I, f ) and )G(I, f )∕)f has maximum rank for all f ∈ [0, 2�].
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Figure 4Convexification of the control set (in blue) by a convex cone (in red). Left: defiition of the convex coneK� , the bounded
cone K̂� and the critical angle �∗. Right: view in 3D.

Proof. This computation is actually equivalent to the rank condition that can be verified in terms of Lie brackets (and, e.g.,
Cartesian coordinates) in11 (check Lemma 1).

As a result, the zeros of the dimension three covector  (as a function of the true anomaly f ) are isolated on [0, 2�]. Indeed,
the previous lemma implies that  and d ∕df cannot vanish simultaneously as then, p�I would be orthogonal to all columns
of G(I, f ) and of its derivative, so p�I would be zero (a contradiction). So there are only finitely many such zeros on [0, 2�],
defining a locus of codimension greater than one in the (I, f ) space. For the sake of simplicity, we assume in the sequel that  
actually never vanishes. For a detailed discussion on the associated singularities of the dynamics, see12.
The polar cone K0

� is the set of directions having a nonpositive scalar product with those in K� . The drop-shaped curve
obtained when intersecting the control set with a plane is parametrised by the angle � alone, and we denote �∗ ∈ (0, �∕2) the
parameter associated with the tangency point of this curve with its conical hull (see Figure 4). Thus, angle � of the convex cone
can be retrieved from the critical angle �∗: In the sequel, we recall and complete the analysis from,2 providing precise bounds
on the number of switchings on the control.
Lemma 2. 2 The critical angle �∗ is solution of

cos �∗ =
−b1b3 − 2b2b3 +

√

b21b
2
3 − 4b1b2b

2
3 + 8b

2
1b
2
2 + 4b1b

3
2

4b1b2 + 2b22
,

and is related to the cone angle � by the following relation:

tan � =

(

b3 + b2 cos �∗
)

sin �∗

b1 + b2 cos2 �∗ + b3 cos �∗
⋅

Proposition 2. An optimal control u verifies the following: (i) when  belongs to the interior ofK0
� , u is zero; (ii) when  does

not belong to K0
� , the coordinates (�, �) of the control verify the following relations:

 1 sin �(b1 + 3b2 cos2 � + 2b3 cos �) =
√

 22 +  
2
3

(

cos2 �(b2 cos � + b3) − sin
2 �(2b2 cos � + b3)

)

, � ∈ (−�∗, �∗), (14)

and
� = �∕2 − arg( 2 + i 3) mod �. (15)

Moreover, any optimal control is made of finitely many subarcs corresponding to case (i) or (ii), and has at most 8 switchings
(transverse contacts with )K0

� ) over one period.

Proof. According to Pontrjagin’s maximum principle (PMP) and to the expression (12) of the Hamiltonian, for almost all true
anomaly f an optimal control must be a maximiser of the scalar product ( |u) for u in conv(U ). Clearly, when  belongs to the
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Figure 5 Geometrical interpretation of the PMP.

interior of the polar cone of K� , this scalar product is negative for any nonzero u, so u = 0 is the only maximiser. Conversely,
when  belong to the open complement of K0

� , maximisers must annihilate the gradient of the Hamiltonian with respect to the
chosen coordinates of the control,

)H
)�

= 0, )H
)�

= 0,

which gives the expressions in alternative (ii) of the statement. See Figure 5 for the geometrical interpretation. Moreover,  
belongs to the boundary of K0

� if and only if  1 cos � +
√

 22 +  
2
3 sin � = 0, implying that

 21 cos
2 � − ( 22 +  

2
3 ) sin

2 � = 0. (16)

Every component of  is trigonometric in f , and this (nontrivial) equation results in a trigonometric polynomial of degree 4.
As it has isolated zeros, there are finitely many zeros (at most eight, see Remark 3) defining isolated contacts with )K0

� .

Remark 2. Equation (14) defines the optimal solution � as an implicit function of  and optical parameters of the sail, notably,
b1, b2, b3. This relation becomes explicit when considering an ideal solar sail model, what is widely used in the litterature for
different prelimerary analysis design. In this case, b1 = b3 = 0, and b2 = 2. Therefore, Equation (14) becomes:

6 1 sin � cos2 � =
√

 22 +  
2
3

(

2 cos2 � cos � − 4 sin2 � cos �
)

, � ∈ (−�∗, �∗), (17)

leading to the classical well-known near-optimal steering law for an ideal sail:1

� = tan−1
⎛

⎜

⎜

⎜

⎝

−3| 1| +
√

9 21 +  
2
2 +  

2
3

4( 22 +  
2
3 )

⎞

⎟

⎟

⎟

⎠

⋅ (18)

Remark 3. Roots of a trigonometric polynomial can be found using companion-matrix methods.13 Consider the degree 4
polynomial

 (f ) =
4
∑

j=0
aj cos(jf ) +

4
∑

j=1
bj sin(jf ).

Fourier-Frobenius companion matrix elements are

Bjk =

⎧

⎪

⎨

⎪

⎩

�j,k−1, j = 1,… , 7, k = 1,… , 8,

(−1)
ℎk−1

a4 − ib4
, j = 8, k = 1,… , 8, (19)

where �jk are the Kronecker functions such that �jk = 0 if j ≠ k and �jj = 1, and ℎk are

ℎk =

⎧

⎪

⎨

⎪

⎩

a4−k + ib4−k, k = 0,… , 3,
2a0, k = 4,

ak−4 − ibk−4, k = 5,… , 8.
(20)
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The roots of  (f ) are obtained from eigenvalues zk of the matrix defined in Eq. (19) as

fk,m = arg(zk) − i log(|zk|) mod (2�), k = 1,… , 8.

Real-valued roots of  (f ) are such that |zk| = 1. Therefore, this technique allows to find roots of the switch function and, thus,
find out the structure of the solution for a given costate. It is important to stress that the trigonometric polynomial is of degree
4, which means that the switching function can have at most 8 roots.

Corollary 1. The original optimal control problem (11) has a solution.

Proof. The relaxed problem has at least one solution (Proposition 1), and any control solution actually belongs to U by virtue
of Proposition 2. Such controls must be optimal for the original problem, whence existence.

3 SOLUTION USING CONVEX OPTIMISATION AND CONTINUATION

3.1 Convex approximation for a reliable initial guess
In order to use indirect shooting methods for solving optimal control problem, we need first a reliable initial guess for the costate
p�I . We propose an approximation by a convex mathematical program similar to the one used in9 for controllability check
purposes. To this end, define the bounded cone K̂� obtained by truncating theK� at its tangency points with U (check Figure 6).
This cone is bounded by a disk denotedD� . This new control set is a subset of the convex hull ofU , in order that any solution of

max
u(f ) ∈ K̂�

(�I(2�)|dI ) subject to �I ′ = "
3
∑

i=1
uiGi(I, f ), �I(0) = 0, �I(2�) parallel to dI , (21)

will define an admissible control for the convex relaxation of the original control problem. Note that existence holds for this new
problem (Filippov again, as K̂� is convex and bounded) and that any solution will also have a bang-bang structure. A similar
analysis to the one of Section 2.2 on conv(U ) indeed allows to prove that

Proposition 3. An optimal control u of problem (21) on K̂� verifies the following: (i) when  belongs to the interior of K0
� , u

is zero; when  does not belong toK0
� , (ii-a) the control is uniquely determined and belongs to the circle )D� , unless (ii-b)  is

colinear to the axis ŝ of the cone K� in which case the control still belongs to the )D� but is not uniquely determined, as shown
in Figure 6. Moreover, any optimal control is made of finitely many subarcs corresponding to case (i) or (ii-a) over one period.

Proof. As K̂� and K� have the same polar cone, (i) is clear. Conversely, when  belongs to the open complement of K0
� , the

colinearity condition  ∧ ŝ = 0 boils down to checking a polynomial condition in f and has only isolated zeros corresponding
to case (ii-b). When  is not colinear to ŝ, the unique maximiser of ( |u) for u in K̂� indeed belongs to the circle )D� , which
is case (ii-a).

This structure being analogous to that of solutions of the original problem, one hopes to retrieve a reasonable approximation to
be used to initiate a differential continuation (see Section 3.2). In particular, we note that the original problem (11) on U and
problem (21) on K̂� share the same switching function associated with contacts with )K0

� and given by (16).

Figure 6 Left: approximation of the control set by a cone bounded at the points of tangency. Middle: optimal solution will be
given by the controls on the boundary of the cone or a zero. Controls on the boundary of the cone are actually situated on a circle,
illustrated here by two dots projected on the two-dimensional plane. Right: possible optimal solutions on the real control set.
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Figure 7 Approximation of the bounded convex cone K̂� by the polyhedral cone K̂
g
� .

Consider the following discretisation of (21): the control set K̂� is approximated by a polyhedral cone K̂g
� ⊂ K̂� generated as

the convex hull of g vertices V1,… , Vg chosen in )K̂� , as shown on Figure 7. (Note that the 3D cone K̂� is not finitely generated.)
Any control in K̂g

� is given by a bounded conical combination

u(f ) =
g
∑

j=1
�j(f )Vj , �j(f ) ≥ 0,

g
∑

j=1
�j(f ) ≤ 1, f ∈ S1, j = 1,… , g. (22)

The functions �j are modeled using anN-dimensional basis of trigonometric polynomials, Φ(f ) =
(

1, eif , e2if ,… , e(N−1)if
)

:

�j(f ) =
(

Φ(f ) | cj
)

H (23)

with cj ∈ CN complex-valued coordinates of �j in Φ(f ), and (⋅|⋅)H stands for the Hermitian product on CN . To enforce the
positivity constraint, we leverage on the formalism of squared functional systems outlined in.14 It allows to recast continuous
positivity constraints into linear matrix inequalities (LMI), that can be solved using convex optimisation. Actually, Φ(f ) has a
corresponding squared functional system given by 2(f ) = Φ(f )ΦH (f ), with ΦH (f ) being the conjugate transpose of Φ(f ).
According to,14 let us define a linear operator ΛH ∶ CN → CN×N that maps coefficients of a polynomial in Φ(f ) to its squared
base, and its adjoint operator Λ∗H ∶ CN×N → CN such that

(

Y |ΛH (c)
)

H =
(

Λ∗H (Y )|c
)

H , Y ∈ CN×N . (24)

The theory of squared functional systems states that, for the trigonometric polynomial (Φ(f )|c) to be non-negative, it is necessary
and sufficient that there exists a Hermitian semidefinite positive matrix Y ⪰ 0, such that

Λ∗H (Y ) = c.

The fact that there is no gap between nonnegativeness of the polynomials and reduction to a sum of squares (that can be expressed
in SDP terms) is remarkable and peculiar to the univariate case, without restriction on the degree (actually, it remains true for
bivariate trigonometric polynomials, see;15 this could allow us to include the second angle, �, instead of using a polyhedral
approximation). All in all, this approach permits to translate the semi-infinite constraint (24) into an SDP one that can be very
efficiently treated by modern convex optimisation solvers. The operator Λ∗H is defined by means of Toeplitz matrices:

Λ∗H (Y ) =
⎡

⎢

⎢

⎣

tr
(

Y |T0
)

⋮
tr
(

Y |TN−1
)

⎤

⎥

⎥

⎦

(25)
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with kl-coefficients of Tj such that

T0 = I,

T (k,l)j =
{

2 if k − l = j
0 otherwise j = 1,… , N − 1.

(26)

For an admissible control u valued in K̂g
� , one has
2�

∫
0

3
∑

i=1
ui(f )Gi(I, f ) df =

g
∑

j=1

(

Ljcj + L̄j c̄j
)

(27)

with Lj(I) in C5×N defined by

Lj(I) =
1
2

3
∑

i=1
∫
S1

VijGi(I, f )ΦH (f ) df, (28)

where Vj = (Vij)i=1,…,3. We note that the components of Lj(I) are Fourier coefficients of the function
∑3
i=1 VijGi(I, f ). Lj(I)

are approximated using the discrete Fourier transform (DFT). Since vector fields Gi are smooth, truncation of the series is
justified by the fast decrease of the coefficients. Finally, for a control u valued in K̂g

� , coefficients �j are truncated Fourier series
of orderN − 1. As a result, for a given vector dI , the SDP approximation is

max
cj∈CN , Yb, Yj∈CN×N

(�I|dI ) subject to �I = "
g
∑

j=1

(

Ljcj + L̄j c̄j
)

parallel to dI

Yj ⪰ 0, Λ∗
(

Yj
)

= cj , j = 1,… , g,

Yb ⪰ 0, Λ∗
(

Yb
)

= (1, 0,… , 0) −
g
∑

j=1
cj .

(29)

The Lagrange variable of the discretisation of the equality constraint that �I is parallel to dI from the convex program is expected
to be a fair approximation of the costate p�I of (21). More importantly, it is hoped that the bang-bang control structure associated
with this p�I is indeed the same as for the solution of the problem defined on K̂� .

3.2 Multiple shooting, differential continuation and callback
Homotopy, aka continuation, allows to solve a complex problem by connecting it continuously to a simpler problem. The idea
is then to follow the path (assumed to be regular enough) of solutions from the simpler problem towards the targeted one. See,
e.g., references16,17 for applications in optimal control. In our case, a parameter � defined between 0 and 1 allows to connect the
problem with control set the bounded convex cone K̂� at � = 0, to the original problem with the non-convex drop-like control
set U at � = 1. In order to be able to solve the problem for � = 0, we rely on the solution of the convex program on K̂g

� to
provide an admissible solution. This solution is used not only to compute an educated guess for the initial costate but also to
devise the appropriate multiple shooting function. To do so, we use the control structure corresponding to the approximation of
p�I provided by the convex optimisation and described at Proposition 3. This proposition tells us that, when  (a function of p�I
and f ) belongs to the open complement of the polar cone K0

� , the control must be equal to the dynamical feedback described in
case (ii-a) (apart for some isolated points that correspond to case (ii-b) that we can neglect); we denote u0b(f, p�I ) this control.
Similarly, for such values of  , Proposition 2 for the problem on conv(U )—and actually U , check Corollary 1—, implies that
the control must be a solution of (14)-(15). (While these equations provide an explicit solution for the coordinate � of the control,
� is only implicitly defined and we discuss its actual computation in Section 3.3.) We assume that this solution is unique and
denote it u1b(f, p�I ). Then, for � in [0, 1] and  outside the polar cone, we define

ub(f, p�I , �) ∶= (1 − �)u0b(f, p�I ) + �u
1
b(f, p�I ) (30)

as the convex combination of the dynamical feedbacks for � = 0 and � = 1. Conversely, for any � in [0, 1] and  in the interior
of the polar cone, the control is set to zero.
For a given �, one has a finite sequence of arcs with either u = ub (bang arcs), or u = 0 (zero arcs). Contacts with )K0

�
are characterized by (16) whose left-hand side defines the switching function, denoted '(f, p�I ) (not depending on � in our
particular setting). To this finite sequence of arcs is associated a multiple shooting function in a standard fashion. Assume for
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instance that the structure is bang-zero-bang. Then the shooting function has three arguments: the (constant) value of the costate,
p�I , and the two switchings times (true anomalies) bounding the central zero arc, f1 and f2. (So that (p�I , f1, f2) belong to R7.)
Plugging u = ub(f, p�I , �) into the dynamics of �I and integrating on [0, f1] from �I(0) = 0 allows to compute �I1 ∶= �I(f1).
As the control is zero on [f1, f2], �I remains constant on the coast arc and we set �I2 ∶= �I1. The control u = ub(f, p�I , �)
is eventually plugged again on [f2, 2�] to compute �If ∶= �I(2�), starting from �I2. The associated value of the shooting
function is obtained by concatenating the left-hand side of the four equations below, forming a vector of dimension 4+1+2 = 7
(note that the first colinearity equation indeed has dimension 5 − 1 = 4):

�If ∧ dI = 0, (31)
(p�I |dI ) − 1 = 0, (32)
'(f1, p�I ) = 0, (33)
'(f2, p�I ) = 0. (34)

This defines a shooting function S(�, �) with, for this bang-zero-bang structure, � ∶= (p�I , f1, f2). Once the first solution for
� = 0 is obtained, the path of zeros is followed by differential continuation, typically using a parametrisation by its curvilinear
abscissa:

s → (�(s), �(s)) with S(�(s), �(s)) = 0.
We refer, e.g., to18 for the assumptions needed to do so. Note that, according to (33), we look for normal extremals (compare
with (13)).
One important issue in practice is that it might not be possible to reach � = 1 because, at some �(s̄) in (0, 1), the structure of the

solution changes; for instance because one subarcs disappears. It is crucial to be able to detect such a change during homotopy
since then, the shooting function has to be redefined according to the new structure. This is achieved using a standard callback
mechanism along with differential continuation. On the previous bang-zero-bang example, the continuation is monitored and,
at each step of the path following procedure, a simple test is performed: if the exit time of the zero arc, f2, becomes inferior to
the entry time f1 (this is detected by a sign change on f2 − f1, as going forward in time makes sense mathematically but is not
allowed to obtain admissible trajectories), the continuation is stopped. And restarted at �(s̄) with a new shooting function (in
this case, a single shooting one, as only one bang arc would be left), using �(s̄) as initial guess. More elaborated tests can be
constructed to detect a new arc appearing, etc. In our case, a callback is used to detect a structure change from 5 subarcs to 3
(see Section 4). This methodology can readily be extended to any other structure with a finite number of arcs.

3.3 Implicit treatment of the Hamiltonian maximisation
Regarding the computation of u1b(f, p�I ), we know after Proposition 2 that the control is either zero, either solution of (14-15).
The first equation for the coordinate � of u has no closed form solution. There is a preliminary numerical discussion of the number
of solutions in2 (we actually look for a global maximiser of the Hamiltonian over U , which may allow to eliminate some strictly
local minimiser that also verify (14)) for a particular set of values of the sail parameters. More generally, while maximisation of
the Hamiltonian often yields an explicit expression of the control as a dynamics feedback function of the state and the costate, it
is not always the case. In such a situation, we advocate an implicit treatment of this maximisation, incorporating the stationarity
equation of the Hamiltonian into the shooting procedure. We sketch below a simple way to do so in a general setting. Note that
this approach also makes sense for other numerical methods to solve the boundary value problem resulting from the maximum
principle (collocation, e.g.); it allows not to care about explicit Hamiltonian maximisation, for instance in convoluted examples
coming from penalty methods.19
Assume that, after applying Pontrjagin maximum principle, one has to integrate the following system (x denoting the state, p

the costate):
ẋ(t) = ∇pH(x(t), p(t), u(t)), ṗ(t) = −∇xH(x(t), p(t), u(t)), (35)

where, at each time t, the m-dimensional control u(t) verifies

∇uH(x(t), p(t), u(t)) = 0. (36)

The last stationarity equation corresponds to an unconstrained situation—whereas a Lagrangian, plus an additional finite
dimensional multiplier, should be considered in the presence of constraints—, and defines a semi-explicit differential-algebraic-
equation. Assume that the strong Legendre-Clebsch condition holds in an open neighbourhood of the reference extremal times
the open control set, ∇2uuH ⪯ −cIm for some positive constant c. Then the Hamiltonian has a unique maximiser, that satisfies
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Figure 8 Algorithm for solving optimal control problem (OCP).

∇uH = 0, and the previous differential-algebraic equation (DAE) is of index 1 (differentiating once (36) allows to solve for u̇).
In particular, one can extend the Hamiltonian system (35) by adding the equation

u̇ = −∇2uuH
−1(∇uxH ⋅ ∇pH − ∇upH ⋅ ∇xH)(x, p, u) ∶= g(x, p, u),

with initial condition∇uH(x(0), p(0), u(0)) = 0. The new system remains Hamiltonian as is clear setting x̂ ∶= (x, u), p̂ ∶= (p, pu)
and

Ĥ(x, u, p, pu) ∶= H(x, p, u) + (pu|g(x, p, u))
with pu(0) = 0. (One can obviously eliminate the trivial equation on pu, which is an extra but identically zero costate.) In the
case of a shooting approach, the value of u(0) is an additional shooting variable. Keeping the system in Hamiltonian form is
convenient in the algorithmic framework described in Section 4, but other approaches for DAE such as predictor-corrector ones
can of course be considered. In our case, we use this approach with x = �I , p = p�I to deal with the implicit equation (14) on
� (while we use (15) to solve it explicitly for �). The combination of this implicit approach with multiple shooting, homotopy
and callback is described in the last section.

4 NUMERICAL EXAMPLE: THE JPL SQUARE SAIL

This section presents the results for a specific example of sail orbiting around a planet for which a change in the solution structure
occurs during differential continuation. It is important to note that, in our simulations, such a change is more of an exception
rather than the norm as the majority of the simulated trajectories exhibited the same structure both for the bounded cone at � = 0
and the original drop-like control set at � = 1. This particular example highlights the need to use a callback procedure to detect
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Figure 9 Results from convex optimisation (in red) on K̂g
� compared to multiple shooting on K̂� with � = 0 (in black). Only

the norm of the controls are represented. The solution of the problem on the polyhderal approximation of the cone (here with
g = 18) does capture the 5-arc structure of the control, and provides a very accurate initial guess for the multiple shooting on
the bounded cone. Small Gibbs phenomenon is observed on the red curve for a truncation at orderN = 80 of the Fourier series.

the change of structure and restart the continuation with an updated number of arcs that define the multiple shooting function.We
consider the Square Sail from Jet Propulsion Lab defined in1, Table 2.1 whose optical properties are as follows: � = 0.88, s = 0.94,
"b = 0.55, "f = 0.05, Bb = 0.55, Bf = 0.79. The orbit is determined by I = (10◦, 50◦, 30◦, 1, 0.1). The desired manœuvre to be
performed is an increase of the inclination 2, so that gives dI = (0, 1, 0, 0, 0). We first solve a convex optimisation problem on
the bounded polyhedral cone, K̂g

� . This result serves as a reliable initial guess for the optimal control problem considered. This
initial guess consists of five arcs, with the first, third and fifth arc begin zero or coast arcs. The costate approximation retrieved
from the Lagrange multiplier associated with the target direction dI of the convex program (see Section 3.1) is

p�I = (−0.0837, 1,−0.0052, 0.0398, 0.0852),

and switchings between zeros and bangs occurs at f1 = 49.4◦, f2 = 237.9◦, f3 = 265.6◦ and f4 = 286.9◦. These values allow
to find a zero � ∶= (p�I , f1, f2, f3, f4) of the multiple shooting function on the bounded cone K̂� for � = 0. Both controls, on
K̂g
� and K̂� , are portrayed Figure 9. The remarkable precision of the solution provided by convex optimisation is observed: not

only does it give the good control structure (here with five arcs), but also the control values on each subarc and the switching
times are very accurately initialised.
During the continuation, initiated with a 0+0+0 5-arc structure (a 0 denotes an arc with zero control, corresponding to

the alternative (i) of Proposition 3—see also discussion after (30) for � in [0, 1]—, while + corresponds to alternative (ii-a) of
the same proposition), the callback function detects that f4 < f3, which means that the fourth + arc vanishes. On this example,
the change of structure takes place around � ≃ 0.0256. Continuation is stopped there, then restarted with a multiple shooting
function devised for a 0+0 structure whose argument is now � ∶= (p�I , f1, f2) (a pair of switching times have been removed).
This structure is preserved until � = 1, allowing to solve the targeted problem (check Figure 10). The solution adjoint state is

p�I = (−0.1637, 1,−0.0972, 0.0712, 1.6037).

Figure 11 shows the solution on the real control set in terms of control angles, defining attitude of the solar sail. When � = �
2
,

the sail is aligned with the solar rays, so no part at all of surface is exposed to the solar light, which corresponds to ‖u‖ = 0. (In
this case the angle � is not defined.)
Convex optimisation is performed using CVX.20,21 Multiple shooting with differential continuation is done thanks to the

control-toolbox package. A predictor-corrector method is used to follow the path of zeros with, in practice, strong requirements
on the prediction (ODE integration) and few correction steps. Regarding the implicit computation of the maximising control
discussed in Section 3.3, we monitor the computation of the Hessian of the Hamiltonian wrt. � on bang arcs along the continua-
tion to ensure that at least of strict local solution is obtained. As we start from an initial guess provided by convex optimisation,

https://control-toolbox.org
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Figure 10 Differential continuation and callback, control norms. Left: homotopy from the 5-arc 0+0+0 solution from � = 0
(black) to � ≃ 0.0256 (red), just before a change of structure (vanishing of the fourth + arc) is detected by the callback.
Intermediate solutions are represented in grey. Right: homotopy from from � ≃ 0.0256 (red) to � = 1 (black). The continuation
is restarted at � ≃ 0.0256 with a 3-arc 0+0 structure for the multiple shooting. As � increases towards 1, no further change
of structure is detected. The convex combination (30) of controls becomes essentially valued in U and gets larger. Intermediate
solutions are again represented in grey.

Figure 11 Control for the target problem (� = 1), (�, �) coordinates. The 3-arc 0+0 is clearly observed with � = 90◦ on the
initial and final zero arcs (and � undefined there).

we actually expect that a global maximiser is preserved along the entire continuation, but this would require further analysis.
The code reproducing the presented results is available and executable online at ct.gitlabpages.inria.fr/gallery. To verify the
accuracy of the solution, we integrate the trajectory of the initial system using the provided solution. Figure 12 depicts the dy-
namics of each of the five orbital elements over one orbit. The magnitude of the displacement, �I , depends on the parameter
" of the sail. However, since it does not impact the interpretation of the results, we normalize the displacement. As shown, all
orbital parameters remain constant after the orbital period, except for 2, which continues to increase. It is important to note that
our algorithm assumes a fixed state for one orbital period, but the final integration is performed using the actual dynamics. As
expected, divergence becomes noticeable after integrating for 10 or more orbits, which is consistent with the fact that the opti-
mal control is provided for the initial orbit. Ideally, the proposed methodology should be utilized as a feedback control system

https://ct.gitlabpages.inria.fr/gallery/solarsail/solarsail-simple-version-implicit.html
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Figure 12 Integration of the dynamics of the initial system using the optimal control solution. As anticipated, all orbital
parameters remain constant throughout the orbital period, with the exception of 2, which continues to increase.

Figure 13 Resulting trajectory of the sail using the optimal control solution. Orbital inclination increases while other parameters
stay constant. Red arrows show direction of the SRP force generated by the sail.

to determine the optimal trajectory for each orbital period, requiring reinitialization after each orbit. Finally, Figure 13 shows
the trajectory of the sail around a body after one orbital period. The inclination of the orbit changes indeed, according to the
required direction of the displacement.
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