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The minimum time transfer of a satellite around the Earth is studied. In order to deal 
numerically with low thrusts, a new method is introduced: Based on a so-called non- 
controllability function, the technique treats the h a 1  time as a parameter. The properties 
of the method arc studied by means of an infinite dimensional sensitivity analysis. The 
numerical results obtained by this approach for very low thrusts are given. 
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1. INTRODUCTION 

We consider the transfer of a satellite from a low initial orbit around 
the Earth towards a high geostationnary terminal one. The transfer 
treated is coplanar, and the performance index to be minimized is the 
total transfer time. The satellite is described by its state, that is for 
instance the couple position-speed (we shall not take into account the 
variation of the mass). The control applied to the spacecraft is the 
thrust of its engine. As we are concerned with new-generation engines 
(electroionic ones), the thrusts are supposed to be very weak (e.g., 0.3 
Newton for a 1.5Ton spaceship). As a consequence, the resulting 
transfer times are very long (up to four months for 0.3 Newton). 

*Corresponding author. 
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Moreover, since the initial elliptic orbit is very eccentric, the dynamics 
is strongly nonlinear. For these reasons, the associated optimal control 
problem is numerically hard to solve with classical direct or (semi-) 
indirect methods [3]. As in [I 11, the idea is then to tackle the difficulties 
separately and to treat the criterion, here the transfer time, specifically: 
Given a fixed terminal time smaller than the optimal one, we measure 
how close to the aim (the geostationnary orbit) we are able to get. This 
gives us a measurement of the non-controllability of the system with 
respect to the terminal condition for a prescribed transfer time. 
Obviously, the optimal time is then the first instant such that this 
measurement is zero. Furthermore, dealing with the criterion 
separately increases the robustness of the resolution as demonstrated 
by the numerical experiments. 

We begin by recalling the optimal control problem in Section 2. 
Some preliminary results of existence and regularity of the control are 
stated. Then we define the non-controllability function and the method 
in Section 3. Lipschitz continuity of the function is proved under quite 
general assumptions. In Section 4, we go back to our transfer problem 
and perform a sensitivity analysis with the tools of [lo] in order to 
show continuous differentiability of the process. Some of the assump- 
tions used are only verifiable numerically, which is done in the Section 
5, devoted to the numerical experiments. In particular, the optimal 
times, trajectories and controls are given for very low thrusts. 

2. TIME OPTIMAL ORBIT TRANSFER 

We fist recall the optimal control formulation of the transfer problem. 
To this end, rather than using the canonical cartesian coordinates for 
the state (position and speed of the satellite in a fixed geocentric 
frame), we choose the orbital parameters of the osculating ellipse to 
the trajectory: 

where P is the semi-latus rectum, e = (ex, e,) the eccentricity vector, 
and L the true longitude (see Fig. 1). The control is then expressed in 
the moving frame attached to the satellite forming an angle L with the 
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FIGURE 1 Orbital coordinates of satellite S defining an ellipse of focus 0 (center of 
the Earth), semilatus rectum P, eccentricity vector e=  (ex, e,), and true longitude L. The 
axes ( r , ,  r2) define a fixed geocentric frame. 

fixed geocentric frame. The dynamics, defined on a suitable open 
submanifold of Rn (n = 4), is 

x = fo(x) + Wfi (x) + ~ 2 f 2 ( ~ )  ( 1 )  

In the previous systems of coordinates, the vectors fields are 

h = r n l '  cos sin L L + + (ex (e, + + sin cos L) /W L)/W 
0 
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where is the gravitation constant of the Earth. We will also use the 
matrix B E L(Rm . Rn) (the dimension m of the control being 2 since the 
transfer is coplanar) 

B = Ifi f21 

Hence, our problem is to find the smallest positive transfer time tf 

tf -+ min 

together with an absolutely continuous trajectory x in the space 
w,'lW([O, tf]) = w,'tw([O, tf], Rn), and a measurable control u in the 
space of essentially bounded functions Lz([O, tf]) = Lw([O, tf],Rm) 
such that the dynamics (1) plus the following constraints are verified 
on [0, g: 

x(0) = xO, h(x(tf)) = 0 ( 5 )  

Equation (5) defines the boundary 
insertion on the final orbit: 

constraints, in particular the 

Equation (6) gives the upper bound on the thrust, that is the maximum 
acceleration .y,, we can use. The norm 1 . 1  is the Euclidean norm 
issued from the usual scalar product in Rm, so that (6) is equivalent to: 

We shall use the same convention in the rest of the paper that, when 
unspecified, norms on finite dimensional spaces are Euclidean. As 
mentioned in the Introduction, .y,, is very small in practice. The last 
Eq. (7) defines a path constraint meant to ensure the satellite does not 
collide with the Earth and that the trajectory remains elliptic: 

p > I I O > o  
lei 5 EO < 1 

The transfer problem will be referred to as (SP),. 
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We now mention some facts on controllability a6d smoothness of 
the optimal control that will be useful for our study. Taking advantage 
of the particular structure of the Lie algebra generated by the vectors 
fields (2)-(4) defining the dynamics, it is proven in [5] that the system 
is controllable for any strictly positive constraint on the modulus of 
the control. Therefore, we have 

P ~ o ~ o s r n o ~  1 For any strictly positive y,,,, there exists an optimal 
control realizing the minimum time transfer. 

Proof Since we know the system is controllable, the set of admissible 
trajectories is not empty; We can thus find T > 0 such that the system 
is controllable in time T and restrict the path constraint to 
A n ([0, TI x R9. Besides, since 

there is a positive constant C such that we can bound the first 
component of the dynamics by a Lyapunov function V: 

with V ( P )  = exp(-2/fl), P 2 IIo > 0. We can write similar bounds 
for the other components o f f  and conclude that the admissible 
trajectories stay in a fix compact subset of R'+" included in A. At last, 
the control set which is a closed ball in the Euclidean space Rm is 
compact and convex, the dynamics being also convex: The existence 
result follows by Filippov theorem [6]. 

Concerning the structure of the optimal command, it can be proved 
that it is smooth' everywhere excepted in isolated points, called 
commutation or switching points. The main geometric results of [4] are 
summarized in 

PROPOSITION 2 There h a finite number of commutations, and if 
ti < t i+ 1 are two consecutive switching instants, the optimal control and 
the optimal trajectory are smooth on [ti, ti+ Moreover, there cannot be 
consecutive commutations at perigee or apogee. 

'AS usual, by smooth we mean indc6nitely differentiable. 
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As we shall see in Section 5, the numerical simulation shows that the 
possible commutations occur precisely at the perigee of the osculating 
ellipse, so there may be at most one switching. In practice, the basic 
assumption on the problem is that there is no switching at all [3]. We 
now go into details of the method. 

3. NON-CONTROLLABILITY FUNCHON 

Let (OCP) be a general time optimal control problem 

with dynamics 
x = f ( t ,  X ,  U )  

end-point, control and path constraints 

We suppose that the functions f and h are smooth on appropriate open 
subsets of R ' + " + ~  and Rn respectively, h being a submersion onto R'. 
We also impose that A and 

N = { ( t , x , u )  E R ' + ~ + ~ ~ ( ~ , X )  EA and U E  U ( t , x ) )  

be closed. The optimal trajectory is sought as an absolutely continuous 
function x in ~ , ' ~ ~ ( [ 0 , t ~ ] ) ,  the control as an essentially bounded 
function u in L,"([O, t f ] ) .  To (OCP) we associate the parametric family 
(OCP)p of optimal control problems with fixed final time ,B 2 0 and 
without end-point constraint, 

and define 
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DEFINITION 1 The non-controllability function 4 is the value function 
of the family (OCP)p that maps P E R +  to $(P) E 8, the optimal value 
of (0CP)p. 

Then, defining the problem (E) of finding the first zero of $, we have 

PROPOSI~ON 3 (OCP) and (E) are equivalent in the sense that any 
solution of one of them defines a solution of the other, (E) having at most 
one solution. 

Proof Let p be the solution of (E), and let (3, i i) be the associated 
admissible couple for (OCP)B. Then (p,?, ii) is obviously solution of 
(OCP) since otherwise, one could find an optimal time f i  < p 
contradicting the fact that p is the smallest zero of 4. The converse 
is also trivial. 

The theoretical asset of the method lies in the explicit management 
of the criterion. In particular, if (OCP) has local minima (and thus 
non-optimal points satisfying first order necessary conditions), all of 
these will be zeros of 4 strictly greater than the solution p (if it exists). 
Now, if we use a Newton-like algorithm (assuming $ differentiable) to 
solve the scalar equation (E') 

if the nonlinear resolution is initialized with ~o p, the iterates Pk 
produced by the algorithm will converge to fl without exceeding it 
provided 4 has some convexity properties. On the opposite, classical 
methods in optimal control such as single shooting do not treat 
separately the performance index, especially in the minimum time 
problems where the final time is made a parameter or a state variable. 
Hence, there is no specific treatment of its value during the iterative 
process, and local minima are often encountered. Furthermore, this 
uncoupling of the criterion from the others unknowns proves to be 
numerically relevant, as will be demonstrated in Section 5. . 
Remark 1 In [I I], a similar approach is introduced for time optimal 
problems. The auxiliary problems are also with fixed terminal time, 
but the non-controllability is measured with respect not to the end- 
point constraint but to the dynamics: For a prescribed h a 1  time 
smaller than the optimal one, a new control is added to the dynamics 
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so as to make the system controllable. The performance index of the 
auxiliary problems is then the L~ norm of this fictitious control. The 
main drawback of that method is that it happens to alter too much 
the dynamics: When away from the solution, a strong additional con- 
trol is required to reach the end-point constraint. This disadvantage 
is much less decisive with our method whose simpler auxiliary prob- 
lems (OCP)B do not include the end-point constraint. 

We shall need the assumptions hereafter on (OCP): 

(13.1) the set of admissible triples (tf, x, u) for (OCP) is non-empty; 
03.2) the state-control set N is compact; 
(13.3) Q(t, x) =f(t, U(t, x)) is convex, (t, x) E A; 
03.4) for any (tl, xl) E A, t2 > tl, there is a trajectory x in ~ ~ ~ " ( [ t ~ ,  t2]) 

and a control u in Lg([tl, t2]) such that on [t,, t2]: 

This last assumption means that, from any point in A, it is possible to 
reach a later time by means of an admissible trajectory without 
changing the value of the end-point constraint. As stated in the end of 
this section, this assumption is straightforwardly fulfilled on the 
transfer problem. 

PROPOSI~ON 4 Under assumptions (13.1)-(13.4), + is finite and 
decreasing on R,.  Besides, +(P) = 0 for any P greater than its first 
zero p. 
Proof The previous assumptions allow us to apply Filippov theorem 
to (OCP) which thus has a solution (If, 3, a); Hence, p = Tf is the first 
zero of +. If P < p, the restriction of (3, P) to [0, P] is admissible for 
(OCP)p'which in turn has also a solution: ~ P )  is finite. Finally, C#J is 
obviously decreasing by virtue of 03.4). Indeed, if +(PI) is finite, for 
any P2 > P1, we can extend the couple (xl, ul) associated with P1 to 
[0, P2] by means of an admissible trajectory such that the resulting pair 
(x2, u2) be admissible for (OCP)p, and verify h(xz(P2)) = h(xl(P1)): 
w 2 )  is finite and less than +(PI). Since + is also positive, we conclude 
that it is necessarily zero after p. 
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Under the same conditions, we have a first result on the regularity 
of 4: 

PROPOSITION 5 Under assumptions (A. 1) -(A.4), 4 is lipschitz 
con tinuom. 

Proof Let Dl and P2 be such that 0 < < & < p; For any PE [0, p], 
let (x(., P), u( . ,  P)) be a solution of (OCP)@ Almost everywhere on 
[O, PI 

f is continuous and N is compact, so the family ( X ( . , B ) ~  is 
equilipschitzian on [0, p] (x(., ,B) is extended on [0, p] by constancy 
and continuity). As the trajectories remain in a fix compact (N is 
compact, thus A also), the family ((1/2)lh(x(.,~))1~)~ is still equi- 
lipschitzian because h is smooth, i.e., we can find a positive constant k 
independent of P such that: 

Now, since 4 is decreasing by Proposition 4, we have 

for the restriction of (x(. , P2), u( a ,  P2)) to [0, PI] is admissible for 
(OCP)B,. We get from (8) that 

and the proof is finished. 

Remark 2 In general it is not true that +(P) = 1/21h(X(/l))12 (where X 
is a solution of (OCP)). However, the inequality 

may permit to detect whether the numerical evaluation has produced 
an upper estimation of 4 (4. Section 5). 

The next statement examines the behaviour of 4 in the neighbour- 
hood of p. Assuming that 
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03.5) there exists an optimal trajectory of (OCP) two times 
differentiable at tf; 
we have 

PROPOSI~ON 6 Under assumptions (13.1) -(AS), 4 is dzferentiable at 
/3 with $'(p) = 0, and +(P) = O((P - p)2) in the neighbourhood ofp. 

Proof Let p be such that 0 5 p < p; then 

Now, (13.5) implies that $(P) = 1/21h(~i.(~))1~ is two times differenti- 
able at p, so 

when p -t p since $(p) = +'(p) = 0 (cf. h(a(ijr)) = 0). 

Remark 3 When an iterative process is used to find a zero of 4, a 
sequence Qk)k converging to p is generated. It is then desirable that, 
if for each k(xk, uk) is a solution of (OCP),, the last sequence tends 
in a suitable way to a solution (X,ii) of (OCP). In fact, it is proven 
in [5] that, under mild assumptions, a subsequence of the latter 
converges to a solution couple, uniformly in the state and weakly-* in 
the control: 

uk + ii, k + oo, in (L,"([o, PI), g(LW, L1)) 

In order to apply these statements to (SP),, it is enough to check 
assumption 03.4). Indeed, we already mentioned in Section 2 that the 
system is controllable, and though in our case A (and hence N) is not 
bounded, we showed that the admissible trajectories remain in a iix 
compact: As a consequence, the state-control space N can be restricted 
to a given compact subset of R'+"+" and condition 03.2) is true. 
Assumption (13.5) also holds by virtue of Proposition 2. Now, if 
( t , ,  xl) belongs to A, it is always possible to steer the system to a later 
time t2 without changing the end-point value by using an admissible 
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control between t l  and tz, namely the zero control: the systems 
oscillates freely on its current orbit, and none of the components of the 
state are changed but the true longitude L. Since it is not constrained, 
our statement is true. Therefore, we know that the noncontrollability 
function associated with the transfer problem is almost everywhere 
differentiable and has a quadratic behaviour in the neighbourhood of 
the optimal transfer time. The purpose of next section is to define extra 
assumptions ensuring continuous differentiability. 

4. SENSITIVITY ANALYSIS 

Our aim is to treat the transfer problem numerically using the method 
described in the previous section. More precisely, the idea consists in 
solving the nonlinear scalar equation (E') 

starting with an initial approximation Po smaller than the first zero. In 
order to apply a Newton-like algorithm, we need more than lipschitz 
continuity of 4, namely continuous differentiability. To this end, we 
perform a sensitivity analysis on the parametric optimal control family 
associated with the transfer problem, using the tools of [9,10]. As in 
finite dimensional optimization, the first step is to construct an 
extremal family satisfying KKT conditions thanks to the implicit 
function theorem. Then, a second order sufficient condition is called 
upon to ensure optimality (at least locally) of the former extremals. 
The conditions needed are of course quite similar to those in finite 
dimension (regularity of multipliers, strict complementarity. . .), with 
the same overlap of coercivity over regularity. But beyond the 
peculiarities induced by the control setting (Legendre-Clebsch or 
Jacobi conditions, for instance), the essential characteristic of the i d -  
nite dimensional framework is the so-called 'two-norm discrepancy' 
[lo]. Indeed, whereas the problem is naturally topologized in a 
suitable Banach space, the coercivity condition is expressed in the 
weaker topology (strictly weaker because of the infinite dimension) of 
the Hilbert space into which the former is embedded. Over and above, 
among the conditions required for sensitivity, some are only verifiable 
numerically. 
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For an arbitrary maximum acceleration y,, > 0, the non-controll- 
ability function is the value function of the parametric optimal control 
problem ( s P ) ~  

where we have recast the problem on [0, 11 (so the parameter appears ex- 
plicitly in the dynamics) and omitted the path constraint according to 

(14.1) any optimal trajectory of (SP), is interior to A. 

Let then Po belong to 10, p[; ( s P ) ~  has a solution (xo, 3 in 
W;~"([O, 11) x Lg([O, 11) such that the maximum principle applies: 
There are Lagrange multipliers (Po, uO) in w,'sW([0, 11) x Rn such that, 
almost everywhere on [0, 11, 

with hamiltonian H(x, u,p, P)  = /?(PI fo(x)+B(x)u) (where (. I .) is the 
Euclidean dot product). The first order necessary condition is here in 
qualified form since otherwise the adjoint state p would be identically 
zero which is impossible (as Po < p, h(xo(l)) # 0 and the differential of 
the criterion is not zero because h is a submersion; This ensures that 
the adjoint state never vanishes). Appealing again to the geometric 
arguments of [4], one can prove that 'B(xo)po has a finite number of 
zeros on [0, 11. Apart from these possible switching points, by virtue of 
(10)-(12) the optimal control is given by 

We shall observe in Section 5 that, in accordance with Proposition 2, 
the optimal control of (SP), has at most one switching located at the 
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perigee. Nevertheless, it is compulsory to suppose more on the 
auxiliary problems, namely that, for each P in ]0,8[, (sP){- has a 
solution (x(. , P), u( . , P)) such that 

04.2) u(. , P) is continuous. 

Hence the control is smooth and xo and po are solution of the two- 
point boundary value problem (BVP), 

with u defined as a mapping of (x,p) by (17). One can then find an 
open neighbourhood V of (po(0),Po) such that the smooth maximal 
flow [2] cp(t,y,P) of the initial value problem y = <(y,P), where < 
denotes the second member of (14)-(15) with y = (x,p), is defined on 
an open subset containing [0, 11 x {xO} x V. On this neighbourhood V, 
we thus define 

(b(y)=p-'h'(x)h(x) is the boundary function associated with (16)). 
For a fixed P, S( .  , P) is the shooting function and is equivalent 
to the shooting equation: Find p0 such that 

The authors of [lo] then apply the implicit function theorem to (18) to 
construct an extremal family of ( s P ) ~  in a neighbourhood of Po. At 
last, a coercivity condition in the form of a Riccati equation ensures 
(local) optimality of these extremals. Accordingly, so as to proceed in 
the same way for arbitrary P in 10, p[, we must suppose that (SP), 
has a solution (x(. , P), u(. , P)) together with multipliers (p(. , P), v(P)) 
such that the following regularity and second order sufficient condi- 
tions hold: 
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(14.4) the symmetric Riccati equation hereafter (see [lo] for more 
details) has a solution (I3 denotes the identity matrix of order 3) 

These last assumptions will be checked numerically in next section. We 
are now able to state our last result: 

P ~ o ~ o s r n o ~  7 Under assumptions (14.1)-(14.4), 4 is continuously 
differentiable on 10, p[ and 

In so far as (21) is only expressed in terms of the hamiltonian of 
(sP)!~_ (constant along the optimal trajectory), the computation of 4' 
does not make use of the variational derivatives a@(., P), apu(., P) or 
app(-, 8, and is therefore straightforward. We first prove a lemma on 
the abstract parametric optimization problem with equality con- 
straints (0)p (the parameter is still denoted P) 

with J : 2  x B- .  R and F : Z  x B 4 y differentiable, 2, B and y 
Banach spaces. Let W(P) be the value function of (0)p, let the 
lagrangian (in qualified form) of the problem be 

where (., .)y,y is the duality pairing between y and its dual. If for each 
p in an open neighbourhood V of Po the problem (0)p has a solution 
z v )  in 2 and an associated multiplier XU) in verifying KKT 
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conditions such that the mappings @HZ@) and P-ACc> are 
differentiable, we have (more generally, see [8]) 

Proof Since W(P) = J(z@), P), W is differentiable on V and 

As aJ(z@), Am, P) = 0 in V (KKT conditions) 

which concludes the proof. rn 
Proof (of Proposition 7) So as to apply Lemma 1 to 4, it is enough 
to check the assumptions of the sensitivity analysis result of [lo] 
(Theorem 3, p. 274). Let us take an arbitrary Po in 10, p[; (sP)?'' has a 
solution (xO, %) in w,'tW([0, 11) x Lz([O, 11) and there are associated 
Lagrange multipliers verifjing (14)-(17). By virtue of (I4.2), is 
smooth (no commutation) and defined on [0, 11 by (13). Let then H be 
the augmented hamiltonian 

where p is the scalar multiplier associated with the constraint on the 
control 

C(u) 5 0  (22) 
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taking C(u) = 1/2(lu12 -+-). One has ~ , ~ ( x ~ , u o , ~ ~ , p . ~ , ~ ~ )  = O  with 

PO = P / ~ m a x  lrB(xo)pol 2 0 

The Lagrange multipliers are thus regular enough: po belongs to 
w,'~"([o, 11) and b belongs to Lm([O, 11). Furthermore, b is smooth 
and (14.2) implies b ( t )  > 0 on [O,1], so that strict complementarity 
holds. Besides, since 

(I2 denoting the identity matrix of order 2), the strict Legendre- 
Clebsch condition is fulfilled. Finally, with (14.3) and (I4.4), all the 
assumptions of [lo] are true and Po has a open neighbourhood V c 
10, p[ on which the mappings 

are continuously differentiable. Then, Lemma 1 applies to ( s P ) ~  on 
V with z=(x,u), A=(-p,u,p), 2 = X x U ,  X =  ~ ~ @ ( [ 0 , 1 ] ) ,  U =  
LE([O, I]), Y = Lr([O, 11) x Rn x Lm([O, I]), and 

Indeed, the constraint (22) is always (strongly) active, and X does 
belong to y' since, y being densely and continuously imbedded into 
the Hilbert space Y = L~([O, 11) x Rn x L~([o ,  I]), one has y c y c Y 
(with the usual identification jr' 21 3. Hence, for P E  V, 
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thanks to the additional regularity of multipliers (and the constancy of 
the hamiltonian because the problem is autonomous). The result is 
true in the neighbourhood of an arbitrary point in ]O,p[, and thus 
holds on the whole open interval. 

5. NUMERICAL RESULTS 

The numerical resolution of the transfer problem is done in three steps. 
At the top level, a continuation procedure on the maximum 
acceleration y, is employed. So as to reach very low thrusts, we 
start from strong ones and use the results to initiate the resolution for 
lower ones: if -&, defines the current constraint on the command, if F 
is the associated solution, we use F to initialize the nonlinear search 
process for (SP),+- where .y& is the next constraint. Continuity 
properties of the mapping thus defined 

as well as convergence of the associated optimal states and controls, 
are studied in [5].  The continuation is stopped when the desired thrust 
is reached. The choice of the intermediary thrusts is heuristic (see 
Tab. I). At the second level, for each thrust we take advantage of the 
fact that is smaller than p+ to use the technique described in 
Sections 3 and 4: the first zero of q!~ is sought by solving the scalar 

TABLE I Maximum thrusts and resulting mini- 
mum transfer times 
F,, (Newtons) 9 (Hours) 
cin 15.205 
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equation +@) = 0. The derivative of 4 is provided to a Newton 
algorithm by means of the analytical expression (21). The iterative 
process is stopped as soon as the current iterate Pk is such that 
q5(Pk) 5 E (E = lo-* in practice). Finally, at the inner level, the 
evaluation of 4 at Pk is done by solving the auxiliary problem 
(SP):~ with single shooting. The initial adjoint state solution jj; then 
initializes the resolution of ( s P ) ?~ .  

Table I details the sequence of thrusts (F,,= My-, where M is 
the mass) used for the continuation procedure from 60 Newtons 
(strong thrust) down to 0.2 Newton (very low thrust), as well as the 
resulting optimal transfer times. The satellite is assumed to weigh 
lSTons, and the boundary conditions are defined through the fol- 
lowing values: 

PO = 116251an F'=42165km 
e: = 0.75 e,f = 0 
eyO = 0 eyf = 0 
LO = nrad M = 1500 kg 
p0 = 398600.47 km3. s - ~  

Figure 2 underlines the experimental statement that the product of the 
maximum thrust by the resulting optimal time is nearly constant. 
Figure 3 gives the optimal trajectories and controls obtained with the 
method for 60, 12, 0.5 and 0.3 Newton. 

FIGURE 2 Optimal times r/ by inverse of the maximum thrusts F-. The transfer 
times grow approximately in inverse proportion of the thrusts. 
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60 Newtons thrust 12 Newtons thrust 

0.5 Newton thrust 0.3 Newton thrust 

FIGURE 3 Optimal trajectories and controls for several thrusts: x = (P, ex, e,, L), 
u = (u,, uZ) We notice two distinct phases: first the semi-latus rectum Pis  increased, then 
the eaxntricity e = (ex, e,) is corned .  

The assumptions of Section 4 are also verified numerically: 04.3) 
when solving the shooting equation (inversibility of the jacobian at the 
solution), (14.4) by integrating backwards the system 

once determined the solution (x(- , P),p(. , P)) of Hereabove, 
O4 is the fourth order zero matrix (this choice ensures the positive 
definiteness in (20)). The second member of the Riccati equation 
contained in (23)-(26) which requires the computation of the second 
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order derivatives of the dynamics (1)-(4) have been evaluated by 
automatic differentiation thanks to the Adifor code [I]. 04.3) turns out 
to be always fuMled, and Figure 4 gives the evaluations of 4 and 4' 
(thanks to (21)) as well as the validity domains of (14.4) for various 
thrusts. At last, Figure 5 shows that assumption (14.2) is numerically 
verified, though for low thrusts there happens to be one point which is 
almost a commutation. 

In so far as 4 is evaluated using the first order condition (single 
shooting on the auxiliary problems), it may happen that only an upper 
estimation of the function is obtained (related to a local minimum of 
( s P ) ~ ) .  The inequality (9) then makes it possible to detect such a 
case (see Fig. 6) .  Nonetheless, even if for this reason we cannot assert 
that p is the absolute minimum of (SP), (it may just be the first root 
of an upper estimation of r j ) ,  the method provides an ordered search of 

60 Newtons thrust 12 Newtons thrust 

0.5 Newton thrust 0.3 Newton thrust 

FIGURE 4 Evaluations of 4 and 4' between Po (initialization of the Newton search) 
and p (solution). The points where the cmcivity condition has been checked (that is 
points where the Riccati equation (23) - (26) has been successfully integrated) a n  marked 
with symbol *. 
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60 Newtons thrust 12 Newtons thrust 

0.5 Newon rhn~st 0.3 Newton thrus: 

FIGURE 5 The Lagrange multiplier p associated with the constraint on the modulus 
of u and the 'commutation function' rl, (which passes through the origin if and only if 
there is a commutation) are represented. For low thrusts, there is one point where p and 
rl, arc very close to zero; This point, like all %e rapid variations on the control (see Fig. 3), 
is precisely situated at the periget and corresponds to the change of phase in the 
command. 

FIGURE 6 The noncont rohyty  function 4 for 60 Ne_wtons is in_solid line, the func- 
tion mapping B to 1/21h(X(P))I in dashed line. For P < P LX 11.34 (P  -- 15.2), the com- 
putation only provides an upper bound of 4. 



D
ow

nl
oa

de
d 

B
y:

 [
C

ai
lla

u,
 J

ea
n-

B
ap

tis
te

] A
t: 

10
:0

6 
3 

M
ay

 2
00

7 348 J.-B. CAILLAU AND J. NOAILLES 

the optimal index performance, thus avoiding too coarse local minima. 
Over and above, in addition to this theoretical virtue, the approach 
has two numerical advantages. First, the domain of convergence is 
larger than the single shooting one: the approximation provided by the 
continuation on y,, permits to initialize the iterative process. On the 
opposite, when using mere shooting (single or multiple), it becomes 
compulsary to use the heuristic ifF- = cst to initialize very precisely 
the resolution (which in turn may lead to local minima [3]). Besides, 
though the evaluation of 4 is done by single shooting on (SP) ! ~ ,  we 
break off significatively from the well-known sensitivity of this 
technique to the initialization of the adjoint initial state. Indeed, 
during the first iterations of the resolution of 4 (P) = 0, P is far from p, 
and no precise approximation ofp0 is available: the auxiliary problems 
are thus unaccurately solved by shooting, and the evaluation of 4 is 
distorted. However, this approximation appears to be suficient to 
initialize the iterative procedure. Furthermore, as the iterates get closer 
to 6, the shooting problems are solved more and more accurately: the 

FIGURE 7 Trajectory for F,,= 1 Newton in the geocentric frame. The arrows 
represent the action of the optimal control. Starting from a very eccentric low orbit with 
high velocity near the perigee, the sexnilatus is increased, and then the eccentricity is 
corrected for the insertion on the circular high orbit. 
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computation of q!~ becomes more precise, and finally leads to the 
solution. Hence, paid the price of an additional iteration level (and 
then of an increased amount of computation), an effective gain in 
robustness over classical methods is obtained. 

6. CONCLUSION 

We have proposed a new method, based on a so-called non- 
controllability function. Thanks to a sensitivity analysis of the 
auxiliary parametric optimal control problems associated with the 
method, regularity properties of the function are proved, and 
the technique is successfully applied to the minimum time transfer 
problem (see Fig. 7): optimal trajectories are obtain for very low 
thrusts, even below 0.3 Newton. Besides, the method has proved to be 
more robust than classical indirect approaches, being less sensitive to 
the initialization of the criterion and of the initial adjoint state. The 
extension of the approach to other performance indexes (e.g., 
maximization of the mass of the satellite) and to more realistic models 
taking into account the variation of the mass is currently worked out. 
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