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Abstract. The minimum time control of the circular restricted three-body problem is con-
sidered. Controllability is proved on an adequate submanifold. Singularities of the extremal flow
are studied by means of a stratification of the switching surface. Properties of homotopy maps in
optimal control are framed in a simple case. The analysis is used to perform continuations on the
two parameters of the problem: the ratio of masses and the magnitude of the control.
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1. Problem statement. The control of the two-body problem was addressed
in [16]. The first body exerted a central force on the second, which was an artificial
satellite of negligible mass whose thrust was the control. The resulting controlled
Kepler equation was shown to be controllable, and minimization of time was studied.
(See also the subsequent papers [8, 15].) The present paper is the continuation of this
work. Now under the influence of two primary bodies, the artificial satellite is still
endowed with a thrust. The motion of the two primaries, not influenced by the third
negligible mass, is supposed to be circular. Among the numerous previous studies
on space missions in the three-body framework, one has to mention the pioneering
work of [20] and more recently the work of [26]. These approaches are purely celestial
mechanical ones and rely on a fine knowledge of the dynamical system with three
bodies or more. For more on the control side see, e.g., [4] for numerical results
using direct methods, [6] for a preliminary study on stabilization, and [28, 29] for
a combination of control and dynamical system techniques. We present a purely
optimal control approach for time minimization. The indirect methods (shooting)
used for numerical computations are driven by the geometric analysis of the problem.
The model we consider is the following [35].

Let µ ∈ (0, 1) be the ratio of the primaries masses, and let Qµ := C\{−µ, 1−µ}.
For q ∈ Qµ ⊂ C $ R2 and positive thrust magnitude ε, define the controlled circular
restricted three-body problem (planar model) according to

q̈(t)−∇Ωµ(q(t)) + 2iq̇(t) = εu(t), |u(t)| =
√
u2
1(t) + u2

2(t) ≤ 1.

Here, (q, q̇) ∈ Xµ = TQµ $ Qµ × C are Cartesian coordinates in a rotating frame
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MINIMUM TIME CONTROL OF THE THREE-BODY PROBLEM 3179

(q = e−itξ, where ξ is the position vector in a fixed frame) and

Ωµ(q) :=
1

2
|q|2 + 1− µ

|q + µ| +
µ

|q − 1 + µ| ·

Another choice of coordinates consists in letting Xµ = T ∗Qµ, taking the cotangent
bundle instead to write the uncontrolled part of the dynamics in Hamiltonian form.
Let p = q̇ + iq and let

Jµ(q, q̇) :=
1

2
|q̇|2 − Ωµ(q),

=
1

2
|p|2 + p ∧ q − 1− µ

|q + µ| −
µ

|q − 1 + µ|

be the Jacobian integral. Then,

q̇(t) =
∂Jµ
∂p

(q(t), p(t)), ṗ(t) = −∂Jµ
∂q

(q(t), p(t)) + εu(t), |u(t)| ≤ 1.

More compactly,

ẋ(t) = F0(x(t)) + εu1(t)F1(x(t)) + εu2(t)F2(x(t)), |u(t)| ≤ 1,

with, in (q, p) coordinates for x ∈ Xµ,

F0(q, p) :=
−→
Jµ, F1(q, p) :=

∂

∂p1
, F2(q, p) :=

∂

∂p2
,

where the symplectic gradient
−→
Jµ = (∇pJµ,−∇qJµ) is the drift of the system. When

µ = 0, we get a two-body problem: J0 = E −C with energy and momentum, respec-
tively, equal to

E :=
1

2
|ξ̇|2 − 1

|ξ| =
1

2
|q̇|2 − 1

2
|q|2 − q ∧ q̇ − 1

|q| ,

C := ξ ∧ ξ̇ = q ∧ q̇ + |q|2.

Restricting to the elliptic domain, X0∩{E < 0, C > 0}, another system of coordinates
tailored for the analysis is obtained using orbital elements describing the geometry of
the osculating ellipse. Let n > 0 be the mean motion (a3n2 = 1 if a is the semimajor
axis), (ex, ey) ∈ D be the eccentricity vector (where D is the open unit ball of R2),
and l ∈ R be the longitude (the class modulo 2π of l is just the polar angle in the fixed
(ξ1, ξ2)-frame). Alternatively, one can use polar coordinates (e, θ) ∈ (0, 1)×S1 for the
eccentricity on the (pointed) Poincaré disk D (θ is called the argument of pericenter).
In this system, x = (n, e, θ, l),

F0(x)|µ=0 =
nW 2

(1− e2)3/2
∂

∂l
, W = 1 + e cos τ,

F̃1(x) =

√
1− e2

n1/3

(
−3ne sin θ

1− e2
∂

∂n
+ sin τ

∂

∂e
− cos τ

1

e

∂

∂θ

)
,

F̃2(x) =

√
1− e2

n1/3

(
− 3nW

1− e2
∂

∂n
+

(
cos τ +

e+ cos τ

W

)
∂

∂e
+

(
sin τ +

sin τ

W

)
1

e

∂

∂θ

)
,
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3180 J.-B. CAILLAU AND B. DAOUD

where τ = l − θ. We have also used a feedback on the control to express the control
not in the {∂/∂ξ̇1, ∂/∂ξ̇2} frame but in the radial-orthoradial one, so

F̃1(ξ, ξ̇) =
ξ1
|ξ|

∂

∂ξ̇1
+
ξ2
|ξ|

∂

∂ξ̇2
, F̃2(ξ, ξ̇) = − ξ2

|ξ|
∂

∂ξ̇1
+
ξ1
|ξ|

∂

∂ξ̇2
·

The criterion under consideration is the final time, and the paper is organized as
follows. Section 2 is devoted to controllability. Independently of the bound on the
control, it is proved that admissible trajectories between arbitrary points exist pro-
vided the Jacobian integral is smaller than the one given for some equilibrium point of
the uncontrolled system. The structure of optimal controls is addressed in section 3,
refining the results of [16]. In particular the role of peri- and apocenters with respect
to global bounds on the number of switchings of the control is emphasized in connec-
tion with averaging of the system. The system has indeed two parameters: the bound
of the control, ε, which can be taken very small with low-thrust applications in mind
[31], thus leading to averaging, and the ratio of masses, µ, on which a continuation à
la Poincaré may be performed to embed the two-body problem into a three-body one.
This idea is the key to solve the problem as explained in section 4 where continuations
both with respect to µ and ε are considered. The peculiarity of homotopy maps in
optimal control is then illustrated in a simple framework in relation to second order
optimality conditions.

2. Controllability. The drift has five equilibrium points, L1(µ), . . . , L5(µ), that
are known as Lagrange points [35] and whose position depends on µ. The points L1,
L2, and L3 are the collinear or Euler points, and the points L4 and L5 form two
equilateral triangles with −µ and 1 − µ. When µ = 0, L1 = L2 = 1, L3 = −1,
and L4 = exp(iπ/3), L5 = − exp(iπ/3). (All belong to S1 which is a continuum of
equilibrium points in this particular case.) The Jacobian Jµ is the only first integral
of the nonintegrable uncontrolled system. Every level set {Jµ = j} projects onto
Ωµ(q) + j = |q̇|2/2 ≥ 0 in the (q1, q2)-space, defining the Hill regions where the
free motion has to take place (see Figure 1). Let ji(µ) := Jµ(Li(µ)), i = 1, . . . , 5
denote the Jacobian constants of these points. For µ ∈ (0, 1), j2 < j1 < j3 < j4 =
j5. (These values all degenerate to −3/2 when µ goes to zero.) The open subset
{x ∈ Xµ | Jµ(x) < j1(µ)} has two connected components, and we denote by X1

µ the
component containing L2(µ) (see Figure 2). The result below essentially asserts that
controllability for the restricted three-body problem holds provided the Jacobian is
less than the Jacobian at L1, emphasizing the role of Lagrange points. (Regarding
the role of L2, see the numerical results in section 4.)

Theorem 1. For any µ ∈ (0, 1), for any positive ε, the circular restricted three-
body problem is controllable on X1

µ.
We postpone the proof to the end of the section and first recall some basic facts

needed to assert controllability.
Consider a smooth1 control-affine system on a manifold X ,

ẋ(t) = F0(x(t)) +
m∑

i=1

uiFi(x(t)), u(t) ∈ U ⊂ Rm,

such that U is a neighborhood of the origin. The attainable set (by piecewise con-
stant controls) from x0 ∈ X depends only on the drift, F0, and on the distribution D

1That is C ∞-smooth.
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L2 L1L3

L4

L5

−µ 1 − µ

Fig. 1. Lagrange points and associated Hill regions, µ ∈ (0, 1). The forbidden regions of
motion (complementary to the Hill regions) monotonically decrease as the Jacobian constant tends
to Jµ(L4) = Jµ(L5) (then disappear past this value) and opens up past Jµ(L1).

spanned by the vector fields F1, . . . , Fm. It is the set of points obtained by composi-
tions of flows,

etpGp ◦ · · · ◦ et1G1(x0), Gi ∈ F0 + D , ti ≥ 0,

with ti small enough for the composition to be defined. Now, if F is an arbitrary
subsheaf of C ∞ vector fields on X , assuming for simplicity all F ∈ F complete,
define the subgroup G of the diffeomorphisms of X generated by the one parameter
subgroups exp tF , t ∈ R, F ∈ F . According to the orbit theorem [1, 33], the orbit of
G through x0 is an immersed submanifold of X whose tangent space is

TxG (x0) = Spanx{(Adϕ)F, ϕ ∈ G , F ∈ F}.

In coordinates,

(Adϕ)F|x = [ϕ′(x)]−1F (ϕ(x)), x ∈ X.

Restricting to the C ω-category, the adjoint action and the exponential commute in
the sense that for arbitrary vector fields F,G,

(Ad etF )G|x = (et adF )G|x =
∑

n≥0

tn

n!
(adnF )G|x, x ∈ X,
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3182 J.-B. CAILLAU AND B. DAOUD

L2

L1

q = −µ

q = 1 − µ

x0

xf

Fig. 2. Projection of the open submanifold X1
µ in the (q1, q2, Jµ)-space. The boundary of the

volume is an apparent contour generated by the projection. It is the zero velocity set. Above each
interior point there is an S1-fiber corresponding to the argument of q̇. For µ ∈ (0, 1), j2 < j1 and
X1

µ is connex. It is necessary that Jµ becomes greater than j2 to make the transfer from x0 to xf .
This strategy is observed on time minimum trajectories which pass in the neighborhood of the L2

point.

where (adF )G is the Lie bracket, [F,G] = F · G−G · F and recursively for adn. In
this case, the orbit theorem then simply reads

TxG (x0) = LiexF .

If the vector fields are not complete, G is just a pseudogroup [24], but the conclusion
of the orbit theorem—which is local—is preserved. Coming back to control-affine
systems, assuming that

(1) Liex{F0, F1, . . . , Fm} = TxX, x ∈ X,

and that the drift F0 is recurrent2 it can be proved that compositions with the flow of
−F0 can be added when computing the attainable set (see [22]). So the attainable set
is equal to the orbit of the pseudogroup associated with {F0, F1, . . . , Fm}. Because
of the orbit theorem and of (1), this orbit has to be the whole manifold (supposed to
be connected). In the control-affine three-body case, the rank condition holds, as is
clear from the following.

Lemma 1. A second order controlled system on Rm,

q̈(t) + g(q(t), q̇(t)) = u(t),

2Given a vector field F , a point x ∈ X is recurrent or positively Poisson stable for F if for any
neighborhood V of x, for any positive T , there is t ≥ T such that exp tF (x) is defined and belongs
to V . The vector field itself is said to be recurrent when it has a dense subset of recurrent points.
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MINIMUM TIME CONTROL OF THE THREE-BODY PROBLEM 3183

is a control-affine system on R2m with an involutive distribution D and a drift F0

such that {F1, . . . , Fm, [F0, F1], . . . , [F0, Fm]} has maximum rank.
Proof. As a first order system,

F0(q, q̇) = q̇1
∂

∂q1
+ · · ·+ q̇m

∂

∂qm
− g1(q, q̇)

∂

∂q̇1
− · · ·− gm(q, q̇)

∂

∂q̇m

and Fi = ∂/∂q̇i (so D is clearly involutive). Then

[F0, Fi] = −∂/∂qi mod D

and the rank is maximum.
Applying the lemma to the planar three-body problem (m = 2), one obtains

controllability in the following way.
Proof of Theorem 1. Let x0, xf in X1

µ, and let j be strictly smaller than the

Jacobian constants of both endpoints. Set X̃1
µ := X1

µ ∩ {Jµ > j}. Outside a subset
of zero measure associated with initial conditions generating collisions (q = −µ or
1 − µ), the drift is a complete Hamiltonian vector field whose exponential is defined
for all times and is a volume preserving bijection in (q, p) coordinates. By definition,
X̃1

µ which is a union of level sets of the Hamiltonian Jµ is invariant with respect to

the exponential. For x = (q, p) ∈ X̃1
µ,

j + Ωµ(q) <
1

2
|p− iq|2 < j1(µ) + Ωµ(q).

Then, for a fixed q the volume of the q-section of X̃1
µ is bounded by 2π(j1(µ)− j) as is

clear integrating with respect to dp1∧dp2 = ρ dρ∧dα (set p− iq =: ρ exp(iα)). Since
the projection on the (q1, q2)-space of X̃1

µ is also bounded, the dq∧dp -measure of X̃1
µ

is finite (Fubini). We conclude as in [32] that almost every point of X̃1
µ is recurrent

by Poincaré’s theorem. Controllability on X̃1
µ follows and implies the existence of a

trajectory joining x0 to xf , which in turn implies controllability on X1
µ.

Remark 1. In the two-body case, µ = 0, controllability still holds on X1
0 , the

bounded component of {J0 < j1(0) = −3/2}. Each section of X1
0 by a level set

{J0 = j} is a pointed disk containing bounded, hence periodic, trajectories of the
uncontrolled system. The energy is negative but, as J0 = E − C, X1

0 contains direct
(C > 0), retrograde (C < 0), and collision orbits (C = 0). In contrast, the controlla-
bility result in [16] was obtained on the elliptic domain, X0 ∩ {E < 0, C > 0}, using
the periodicity of the drift and excluding collisions. (A sign then had to be imposed
on the momentum so that the manifold would be connex.)

Remark 2. In order to obtain an existence result for minimum time, one has to
prove that minimizing trajectories remain into a fixed compact (which depends on
the prescribed boundary conditions). Then, from any minimizing sequence one can
extract a converging subsequence whose limit is an admissible trajectory by virtue of
the convexity of the velocity field {F0(x)+εu1F1(x)+u2F2(x), |u| ≤ 1} for all x ∈ X
(Filippov theorem). One of the difficulties due to collisions is so to give bounds on
the distance to the singularities, −µ and 1− µ.

3. Singularities of the extremal flow. Let u : [0, tf ] → R2 be a measurable
time-minimizing control of the control-affine system

(2) ẋ(t) = F0(x(t)) + u1F1(x(t)) + u2F2(x(t)), u2
1(t) + u2

2(t) ≤ 1,
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defined on a manifold X of dimension four. Let x denote the associated Lipschitz
trajectory. Pontryagin’s maximum principle [30] asserts that x is the projection of a
Lipschitzian function, z = (x, p) : [0, tf ] → T ∗X\0, valued in the cotangent bundle
minus the null section. The triple (x, u, p) is the reference extremal. In coordinates,
there is a nonpositive scalar p0 such that, a.e. on [0, tf ],

ẋ(t) =
∂H

∂p
(x(t), u(t), p(t)), ṗ(t) = −∂H

∂x
(x(t), u(t), p(t))

with Hamiltonian H(x, u, p) := p0 + H0(x, p) + u1H1(x, p) + u2H2(x, p) and Hamil-
tonian lifts Hi(x, p) := 〈p, Fi(x)〉, i = 0, 1, 2. Moreover, the maximization condition
holds a.e.,

H(x(t), u(t), p(t)) = max
|v|≤1

H(x(t), v, p(t)).

As a result, H is a.e. equal to a constant (zero here because the final time is free)
along (x, u, p), and

u(t) =
ψ(t)

|ψ(t)|

whenever the switching function ψ(t) := (H1, H2)(x(t), p(t)) does not vanish. The
switching surface is

Σ := {(x, p) ∈ T ∗X | H1(x, p) = H2(x, p) = 0},

and the crux for regularity is to study contacts (switching points) with Σ since outside
the surface extremals are smooth. Extremals along which ψ does not vanish are bang
extremals (denoted γb), while those on which ψ is identically zero are singular ones
(denoted γs). We use the notation Fij := [Fi, Fj ] (resp., Hij := {Hi, Hj}) for Lie
(resp., Poisson3) brackets of vector fields (resp., Hamiltonian lifts of these). The
following analysis refines the one in [8, 16] using the tools of [10, 23].

We assume the following.
(i) D(x) := det(F1(x), F2(x), F01(x), F02(x)) 0= 0, x ∈ X .

This assumption, which in particular implies that the span of F1 and F2 is of constant
rank two, so that Σ is an embedded codimension two submanifold of the cotangent
bundle, is geometric in the following sense. Let D be a rank 2 distribution over the
four-dimensional manifold X (subbundle of TX with fibers of constant dimension
two). Equipped with a Riemannian tensor g, (D , g) defines a sub-Riemannian struc-
ture [3]. Given a vector field F0 over X , consider the problem of finding the minimum
time Lipschitz trajectories subject to

ẋ(t) = F0(x(t)) + v, v ∈ D , |v|g :=
√
gx(t)(v) ≤ 1

that connect prescribed points of X . Given any local frame {F1, F2} of D orthonor-
mal with respect to g, this problem is reformulated as (2). Obviously, the previous
assumption only depends on the distribution and on the drift (see also Lemma 3).

3The Poisson bracket of two smooth functions f , g on T ∗X is {f, g} :=
∑n

i ∂xig ∂pif−∂xif ∂pig,
n = dimX. In particular, the Poisson bracket of lifts of vector fields Fi, Fj is the lift of their Lie
bracket, {Hi, Hj} = Hij .
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Lemma 2. If a singular extremal passes through z0 ∈ Σ, then H12(z0) 0= 0.
Proof. The switching function is Lipschitz and almost everywhere,

ψ̇1(t) = H01(z(t))− u2(t)H12(z(t)),(3)

ψ̇2(t) = H02(z(t)) + u1(t)H12(z(t)).(4)

Assume by contradiction H12(z0) = 0. Along a singular extremal, ψ vanishes identi-
cally and so does ψ̇. Then H1, H2, H01, and H02 vanish at z0 = (x0, p0), which implies
p0 = 0 because of assumption (i). This is impossible along a minimum time extre-
mal.

In the neighborhood of z0 ∈ Σ such that H12(z0) 0= 0, the following dynamical
feedback is well defined:

(5) us(z) :=
1

H12(z)
(−H02, H01)(z).

(Compare [17], where, on the contrary, singular extremals are studied in the involutive
case.) Plugging this control into H sets up a new Hamiltonian,

Hs(z) := H(z, us(z)) = p0 +H0(z) + us,1(z)H1(z) + us,2(z)H2(z).

Proposition 1. Let z0 ∈ Σ, H12(z0) 0= 0; there is exactly one singular extremal
passing through z0, and it is defined by the flow of Hs.

Proof. First we show that Σ is invariant with respect to the flow of Hs. Let
z0 ∈ Σ, H12(z0) 0= 0, and let zs be the associated integral curve of Hs through it. Let
ϕ := (H1, H2) ◦ zs; then ϕ is smooth and

ϕ̇1(t) = {Hs, H1}(zs(t))
= H01 − us,2H12 |zs(t)︸ ︷︷ ︸

0

+{us,1, H1}H1 + {us,2, H1}H2 |zs(t),

and similarly for ϕ̇2, so ϕ̇(t) = A(t)ϕ(t) with

A(t) :=

[
{us,1, H1} {us,2, H1}
{us,1, H2} {us,1, H2}

]
(zs(t)).

Since ϕ(0) = (H1, H2)(z0) = (0, 0), ϕ is identically zero and zs remains on Σ. Now,

H ′
s(z) =

∂H

∂z
(z, us(z)) +

∂H

∂u
(z, us(z))u

′
s(z),

∂H

∂u
(z, u) = (H1, H2)(z),

so
−→
H s(zs(t)) =

−→
H (zs(t), us(zs(t))) as ∂H/∂u vanishes along zs, and (zs, us ◦ zs) is

extremal.
Consider the stratification of Σ = Σ− ∪ Σ0 ∪ Σ+, where

Σ− := {z ∈ Σ | H2
12(z) < H2

01(z) +H2
02(z)},

Σ0 := {z ∈ Σ | H2
12(z) = H2

01(z) +H2
02(z)},

Σ+ := {z ∈ Σ | H2
12(z) > H2

01(z) +H2
02(z)}.

We use a nilpotentatization to study the behavior of bang extremals in the neighbor-
hood of points in Σ− ∪ Σ+.
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3186 J.-B. CAILLAU AND B. DAOUD

z0 ∈ Σ− z0 ∈ Σ+

Fig. 3. Phase portraits of the switching function under assumption (i). For z0 ∈ Σ−, the
half-line θ = π − θb(z0) (resp., θ = θb(z0)) goes to the origin (resp., departs from the origin).

In the nilpotent approximation around a point z0 = (x0, p0) ∈ Σ\0, Poisson
brackets of length greater or equal to three vanish; since the time derivatives of
the length two brackets only involve such brackets, H01, H02, and H12 are con-
stant in this approximation. Under assumption (i), {F1, F2, F01, F02} form a frame so
(H01, H02)(z0) 0= (0, 0) since p0 would otherwise be zero. Set

H01(z0) =: a1, H02(z0) =: a2, H12(z0) =: b

with (a1, a2) 0= (0, 0). Making a polar blowing up (ψ1,ψ2) = (ρ cos θ, ρ sin θ), the
differential equation for the switching function in the nilpotent approximation in the
neighborhood of z0 reads

ρ̇(t) = a1 cos θ(t) + a2 sin θ(t), ρ(t)θ̇(t) = b − a1 sin θ(t) + a2 cos θ(t),

which up to some rotation and rescaling can be normalized to

ρ̇(t) = cos θ(t), ρ(t)θ̇(t) = c− sin θ(t)

with c := b/
√
a21 + a22. This system is integrated according to

ρ(θ) = ρ(θ(0))

∣∣∣∣
c− sin θ(0)

c− sin θ

∣∣∣∣ ,

whence the phase portraits in Figure 3 for |c| < 1 (z0 ∈ Σ−) and |c| > 1 (z0 ∈ Σ+).
When |c| < 1, the origin is reached along θ = π − θb(z0) (ρ̇ < 0) and departs from it
along θ = θb(z0) (ρ̇ > 0), where

θb(z0) := arcsin
H12√

H2
01 +H2

02

(z0).

To summarize, the following is noted.
Theorem 2. Let z0 ∈ Σ−; every extremal is locally of the form γbγsγb (γs empty

if H12(z0) = 0); every admissible extremal is locally the concatenation of at most two
bang arcs. Let z0 ∈ Σ+; every extremal is locally bang or singular, and every optimal
extremal is locally bang. Optimal singular extremals are given by the flow of Hs and
contained in Σ0 (saturating).

Proof. A singular extremal passing through z0 ∈ Σ− cannot be admissible since, if
H12(z0) 0= 0, the singular control is well defined but |us(z0)| > 1. A singular extremal
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MINIMUM TIME CONTROL OF THE THREE-BODY PROBLEM 3187

passing through z0 ∈ Σ+ is admissible since |us(z0)| < 1 but cannot be optimal: As it
is interior to the constraint, it must satisfy the Goh second order necessary condition
[1],

{
∂H

∂u1
,
∂H

∂u2

}
(z0, us(z0)) = H12(z0) = 0,

which is excluded. In the neighborhood of Σ+ points, the connection between bang
and singular extremals is not possible according to the phase portrait in the nilpotent
approximation.

An example of saturating singular control is provided by the following nilpotent
system (compare [8]). Let

F0(x) = (1 + x3)
∂

∂x1
+ x4

∂

∂x2
, F1(x) = x4

∂

∂x1
+

∂

∂x3
, F2(x) =

∂

∂x4
·

One checks that H12 = H01 = −p1, H02 = −p2, so Σ0 is defined by x4p1 + p3 = 0,
p4 = 0, and p2 = 0. The singular control is us(z) = (−p2/p1, 1) and

Hs(x, p) = (1 + x3)p1 −
p2p3
p1

+ p4.

Through z0 ∈ Σ0 such that x40 = 0 passes the singular extremal

x1(t) = (1 + x30)t+ x10, x2(t) =
t2

2
+ x20, x3(t) = x30, x4(t) = t,

p1(t) = p10 0= 0, p2(t) = 0, p3(t) = −p10 t, p4(t) = 0,

associated with us = (0, 1).
Let us now define

D1(x) := det(F1(x), F2(x), F12(x), F02(x)),

D2(x) := det(F1(x), F2(x), F01(x), F12(x))

to strengthen and replace assumption (i) by the following:
(i′) D2

1(x) +D2
2(x) < D2(x), x ∈ X .

This assumption only depends on the sub-Riemannian structure and the drift.
Lemma 3. Assumption (i′) is independent of a particular choice of orthonormal

frame on (D , g).
Proof. Let {F1, F2} and {F̂1, F̂2} be two orthonormal bases in the neighborhood

of some point on x. There exists a smooth function θ such that in coordinates,

F̂1(x) = cos θ(x)F1(x) + sin θ(x)F2(x),

F̂2(x) = ε(− sin θ(x)F1(x) + cos θ(x)F2(x))

with ε = ±1. One can restrict to ε = 1 and use the facts

[F,βG] = [F,G] mod RG, [αF,βG] = [F,G] mod Span{F,G}

to check that D̂1 = D1, D̂2 = D2, and D̂ = D, where

D̂1(x) := det(F̂1(x), F̂2(x), [F̂1, F̂2](x), [F̂0, F̂2](x)), etc.
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3188 J.-B. CAILLAU AND B. DAOUD

Remark 3. When the distribution is involutive (which we shall assume later),
D1 = D2 = 0 and with obvious notation (i′) simply asserts that D + [F0,D ] has full
rank—this is assumption (i). Assumption (i′) can so be interpretated as “bounding
the nonholonomy” of D with respect to F0.

Corollary 1. Every extremal is locally of the form γbγsγb (γs possibly empty);
for such a sequence, the total angle switch of the control between the entry point into
Σ, z0, and the exit point z′0 is θb(z0) + θb(z′0) + π. Admissible extremals are the
concatenation of finitely many bang arcs.

Proof. Computing

det(F1(x), F2(x), F01(x) − u2F12(x), F02(x) + u1F12(x))

= D(x) − u2D1(x) + u1D2(x), x ∈ X, u ∈ R2,

for |u| ≤ 1, {F1, F2, F01 − u2F12, F02 + u1F12} form a frame by virtue of (i′). Let
z0 = (x0, p0) belong to Σ\0. For an arbitrary u ∈ R2, |u| ≤ 1,

[
〈p0, F01(x0)〉
〈p0, F02(x0)〉

]
+ 〈p0, F12(x0)〉

[
−u2

u1

]
0=

[
0
0

]
,

since p0 would otherwise be zero. As a result

H2
12(z0) < H2

01(z0) +H2
02(z0),

so Σ\0 = Σ− and the local structure follows from the previous theorem. If the singular
arc is not empty, by virtue of (5) the angle switch at the bang-singular junction is
(επ/2 + θ0) − (π − θb(z0) + θ0) with ε := signH12(z0), θ0 being the argument of
(H01, H02)(z0) 0= (0, 0). Similarly, the angle switch at the singular-bang junction is
(θb(z′0) + θ′0) − (ε′π/2 + θ′0). As H12 does not vanish along the singular arc, ε = ε′,
whence the result. If the singular arc is empty (notably when H12(z0) = 0), the
angle switch is (θb(z0) + θ0) − (π − θb(z0) + θ0) and the formula still holds with z0
= z′0.

Assuming moreover that
(ii) D is involutive,

we get the following.
Corollary 2 (see [16]). The switching function is continuously differentiable,

and every extremal is locally bang-bang with switchings of angle π (“π-singularities”).
Proof. For z0 ∈ Σ\0, one has H12(z0) = 0 because of (ii), so no singular arc passes

through a switching point; θb(z0) = π and the angle switch is π. As the bracket H12

vanishes at switching points, ψ̇ is continuous as observed from (3)–(4).
In order to give a global bound on the number of switchings, we finally add the

following assumption:
(iii) F0 /∈ Span{F1, F2, F01}.

Then we define

Σ1 := Σ ∩ {(x, p) ∈ T ∗X | F0(x) ∈ Spanx{F1, F2, F02}}.

Remark 4. Properties (i′) + (ii) are equivalent to (i) + (ii). In contrast to (i), (i′)
and (ii), property (iii) (and Σ1) does depend on the particular choice of orthonormal
basis of D .

Theorem 3 (see [16]). In the normal case, there cannot be consecutive switchings
in Σ1. In particular, if Σ = Σ1, any normal optimal control has at most one switching
which is a π-singularity.
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MINIMUM TIME CONTROL OF THE THREE-BODY PROBLEM 3189

Proof. According to (i), there are continous scalar functions λ1, λ2 on X such
that

F0 = λ1F01 + λ2F02 mod D .

At a switching point z0 = (x(t0), p(t0)) ∈ Σ1\0,

H(x(t0), u(t0), p(t0)) = −p0 = λ2(x(t0))H02(z0) = λ2(x(t0))ψ̇2(t0).

In the normal case, p0 < 0 so

λ2(x(t1))ψ̇2(t1)λ2(x(t2))ψ̇2(t2) = (p0)2 > 0

if we assume that t1 < t2 are consecutive such switching times. Because of (iii),
λ2 never vanishes; by continuity its sign is constant so ψ̇2(t1)ψ̇2(t2) > 0, and the
contradiction follows.

Thanks to Lemma 1, these results apply to the problem under consideration: The
circular restricted three-body has bang-bang time-minimizing controls with finitely
many π-singularities. The study of such singularities is important since in practice the
rotation speed of the thrust is limited. A remarkably simple geometric interpretation
of Σ1 is obtained when restricting to a two-body system, µ = 0. This case is not only
important in itself as it also corresponds to the initial and final phases of a typical
three-body low-thrust transfer. Such a trajectory resembles a heteroclinic trajectory
connecting periodic orbits around each one of the primaries (see section 4). We use for
the analysis the geometric coordinates and the radial-orthoradial frame introduced in
section 1. We assume the eccentricity positive, 0 < e < 1, to obviate the singularity
of these coordinates at circular orbits. With x = (n, e, θ, l) ∈ R∗

+ × (0, 1) × S1 ×R
(and τ = l − θ), p = (pn, pe, pθ, pl) ∈ (R4)∗, we set

α := − 3n

1− e2
pn, β := pe, γ :=

pθ
e
, c := cos τ, s := sin τ,

so Σ is defined by the following algebraic system:

αes+ βs− γc = 0,

α(1 + ec) + β

(
c+

e+ c

1 + ec

)
+ γ

(
s+

s

1 + ec

)
= 0,

c2 + s2 = 1.

Lemma 4. The switching surface Σ for µ = 0 is stratified as follows:
(a) If γ = 0, either (α,β) = (0, 0) or s = 0 and α,β belong to the union of the

two distinct lines

(1 + e)α+ 2β = 0, (1− e)α− 2β = 0.

(b) If γ 0= 0, s is not zero and α,β are uniquely determined.
Proof. The algebraic system in α,β

αes+ βs = γc,

α(1 + ec) + β

(
c+

e+ c

1 + ec

)
= −γ

(
s+

s

1 + ec
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3190 J.-B. CAILLAU AND B. DAOUD

has determinant
∣∣∣∣∣

es s

1 + ec c+
e+ c

1 + ec

∣∣∣∣∣ = −s(1− e2)

1 + ec
,

whence the result.
Proposition 2. In the two-body case µ = 0, the subset Σ1 is the stratum {s = 0}

of Σ. Accordingly,

Σ ∩ {pθ = 0} = Σ1 ∪ {(pn, pe, pθ) = (0, 0, 0)}.

Proof. Using the fact that F0 ∈ Span{∂/∂l} and that for smooth functions f, g

[fF0, gF̃2] = fg[F0, F̃2] mod Span{F0, F̃2},

the condition det(F0, F̃1, F̃2, [F0, F̃2]) = 0 is equivalent to
∣∣∣∣∣∣∣∣∣∣∣

0 es 1 + ec −es

0 s c+
e+ c

1 + ec
−s− s(1− e2)

(1 + ec)2

0 −c s+
s

1 + ec
c+

e+ c

(1 + ec)2

1 0 0 0

∣∣∣∣∣∣∣∣∣∣∣

= 0,

that is, to

s = 0 or e(1 + ec) = 0,

so the conclusion follows.
Geometrically, s = sin τ = 0 (that is, l − θ = 0 mod π) corresponds to peri- and

apocenters. The importance of the stratum Σ ∩ {pθ = 0} comes from the analysis of
the system when the control magnitude ε goes to zero (low-thrust case). When the
control is small, not only the time but also the angular length (longitude) needed to
connect two Keplerian orbits in the two-body model becomes large. It thus makes
sense to use averaging to analyze the behavior of extremal trajectories. In the case of
the minimization of the L2-norm of the control (energy minimization), this approach
goes back to [19]. (See also [13] for a recent treatment of this question.) One first
uses the fact that in the planar model the drift only acts on the longitude,

l̇(t) = ω(x(t)), ω(x) :=
nW 2

(1− e2)3/2
, W = 1 + e cos τ,

to set l as the new time. In this new parameterization, minimum time extremals are
integral curves of the maximized Hamiltonian

Ĥ(l, x̂, p̂) :=
p0

ω(l, x̂)
+ ε

√
Ĥ2

1 (l, x̂, p̂) + Ĥ2
2 (l, x̂, p̂)

with x̂ = (n, e, θ), p̂ = (pn, pe, pθ), and

Ĥ2
1 (l, x̂, p̂) + Ĥ2

2 (l, x̂, p̂)

=
(1 − e2)4

n8/3W 4

{
9n2

(1− e2)2
(1 + 2e cos τ + e2)p2n

− 12n

1− e2
(e + cos τ)pnpe

+

[
1 +

2(e+ cos τ)

W
cos τ +

(e+ cos τ)2

W 2

]
p2e

}
+ · · · ,
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MINIMUM TIME CONTROL OF THE THREE-BODY PROBLEM 3191

where the dots indicate terms in p2θ, pnpθ, and pepθ. The averaged Hamiltonian is

(6) Ĥ(x̂, p̂) :=
1

2π

∫ 2π

0
Ĥ(l, x̂, p̂) dl.

Proposition 3. The argument of pericenter θ is a cyclic variable of the averaged
system. On the stratum {pθ = 0}, the integral (6) is hyperelliptic of genus 2.

Proof. As is clear from the whole dynamics in geometric coordinates (see sec-
tion 1), only the difference τ = l − θ appears in Ĥ . Averaging with respect to l—or
equivalently to τ—kills terms in θ and pθ becomes a linear first integral. Then on
{pθ = 0}

√
Ĥ2

1 + Ĥ2
2 =

1

W 3

√
R(cos τ),

where R is a degree 3 polynomial with coefficients depending nonlinearly on x̂ and
quadratically on p̂. Setting for instance u = cos τ leads to

∫
du

1− u2

√
(1− u2)R(u)

which is an integral parameterized by a genus 2 hyperelliptic curve [21].
For circular targets (which are of great practical importance in two or three-body

control), the transversality condition is pθ = 0. The previous analysis then suggests
that for small control magnitudes, pθ should also remain small so that the switching
structure will be close to the one on Σ∩{pθ = 0}: Assuming there are no trivial switch-
ings (pn, pe, pθ) = 0, one would get a global bound on the number of π-singularities
(at most one). Nevertheless, one should notice that if pθ is small but not zero, the
switchings do not belong to Σ1 according to Lemma 4 and Proposition 2. Moreover,
when studying the convergence of the system toward the averaged one, one should
take into accout the lack of regularity due to the radicand vanishing. For instance,

∫ π/2

0

√
sin2 l + z2 dl = |z|E(−iz−1),

where E is the complete elliptic integral of second kind. Such a function has a z2 log |z|
singularity at the origin and is not C 2 (logarithmic branch on the second derivative).
See [7] for results on averaging of such fast oscillating systems.

4. Homotopy. Consider a control problem with smooth data on an n-manifold
X ,

ẋ(t) = f(x(t), u(t)), u(t) ∈ U,

with cost
∫ tf

0
f0(x(t), u(t))dt → min

and prescribed boundary conditions

x(0) = x0, x(tf ) = xf .

For the sake of simplicity tf is supposed to be fixed, but the analyis below can be
made with appropriate changes for free final time as well. We also suppose that U
is a manifold without boundary. In coordinates, this is assuming that u belongs to
some open subset of Rm, where m is the dimension of U . Regarding the results of
the previous section, in the three-body case this amounts to assuming there are no
π-singularities.
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3192 J.-B. CAILLAU AND B. DAOUD

Let u : [0, tf ] → U be a measurable and essentially bounded control, and let
x : [0, tf ] → X be the resulting trajectory. Pontryagin’s maximum principle implies
that there exists a nonpositive constant p0 and a Lipschitz covector function p :
[0, tf ] → (Rn)∗, not both zero, so that in coordinates on T ∗X ,

ẋ(t) =
∂H

∂p
(x(t), u(t), p(t)), ṗ(t) = −∂H

∂x
(x(t), u(t), p(t)),

and

H(x(t), u(t), p(t)) = max
v∈U

H(x(t), v, p(t))

a.e. on [0, tf ]. Here,

H(x, u, p) := p0f0(x, u) + 〈p, f(x, u)〉.

We assume that on a neighborhood of the extremal (x, p), the maximized Hamiltonian

(x, p) 2→ max
v∈U

H(x, u, p)

is well defined and smooth; then (x, p) is an integral curve of the maximized function
(see [1]), still denoted H (but now depending only on x and p). We finally make the
Legendre regularity assumption that uniformly on [0, tf ],

∇2
uuH(x(t), u(t), p(t)) ≤ −αIm

for some α > 0. As a consequence, there must exist in a neighborhood of the extremal
a smooth implicit function u(x, p) solving the first order necessary condition∇uH = 0
such that u(t) = u(x(t), p(t)) and H(x, p) = H(x, u(x, p), p). Summarizing, p(0) ∈
(Rn)∗ is a zero of the shooting function4

p0 2→ x(tf , x0, p0)− xf ,

where the exponential mapping

expx0
: (t, p0) 2→ x(t, x0, p0)

sends a given p0 to the x-projection of the integral curve at t of the maximized
Hamiltonian. Both functions are well defined and smooth on neighborhoods of p(0)
and (tf , p(0)), respectively. A time tc is conjugate to 0 along (x, p) whenever p(0) is
a critical point of p0 2→ exp(tc, p0). The critical value xc = exp(tc, p(0)) is the cor-
responding conjugate point. These notions are related to local necessary or sufficient
second order conditions of optimality [1, 10]. Testing conjugacy is done in practice
by a simple rank evaluation (see [9]; see also Figure 4).

The endpoint mapping

Ftf ,x0 : u 2→ x̂(tf , x0, u)

is well defined and smooth on a neighborhood in L∞([0, tf ], U) of (the class of) u and
maps a control to the solution at tf of the augmented system (x̂ = (x0, x))

ẋ0(t) = f0(x(t), u(t)), t ∈ [0, tf ] (a.e.),

ẋ(t) = f(x(t), u(t)), x0(0) = 0, x(0) = x0.

4A chart (O,ϕ) in the neighborhood of xf has to be chosen, and the definition should read
p0 $→ ϕ(x(tf , x0, p0))− ϕ(xf ). We may actually suppose that ϕ(xf ) = 0.

D
ow

nl
oa

de
d 

10
/1

1/
13

 to
 1

34
.1

57
.3

.3
4.

 R
ed

ist
rib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls/
oj

sa
.p

hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MINIMUM TIME CONTROL OF THE THREE-BODY PROBLEM 3193

–0.2 0 0.2 0.4 0.6 0.8

0

0.5

1

1.5

Fig. 4. Conjugate point computation (rotating frame). Extremals (here projected on the (q1, q2)-
space) from a circular orbit around the first primary toward the L2 Lagrange point are extended
beyond the target. Conjugate points, in red, appear after tf , ensuring local optimality. Green dots
indicate isocost (isotime) lines.

The optimal control u must be a critical point5 of the endpoint mapping: ImF ′
tf ,x0

(u)
has codimension inRn. If we assume that u is a corank one critical point and moreover
that it is analytical (with analytical data for the problem as well), the absence of
conjugate time in (0, tf ) is necessary for L∞-local optimality.6 Conversely, replacing
the corank one and analyticity conditions by the assumption that the extremal is

5This statement, weaker than the maximum principle, is obvious: Were the function a submer-
sion at u, it would be locally open and would send neighborhoods of u onto neighborhoods of the
augmented state, (x0(tf ), x(tf )). This would contradict L∞-local optimality.

6That is optimality on a neighborhood of u in L∞([0, tf ], U).
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3194 J.-B. CAILLAU AND B. DAOUD

normal (p0 < 0), the absence of conjugate time on (0, tf ] is sufficient for C 0-local
optimality.7

Having in mind these connections with second order conditions in optimal control
(see also [11]) we consider a one-parameter smooth Hamiltonian,

H : R2n ×R 3 (x, p,λ) 2→ H(x, p,λ) ∈ R.

Given a positive final time tf and an initial condition x0, we define the shooting-like8

homotopy function9

h(p0,λ) := x(tf , x0, p0,λ)

that maps (p0,λ) to the coordinate x of the solution at tf of

ẋ(t) =
∂H

∂p
(x(t), p(t),λ), ṗ(t) = −∂H

∂x
(x(t), p(t),λ)

with initial conditions x(0) = x0, p(0) = p0. By restricting it if necessary, we may
assume that its domain of definition, Ω ⊂ Rn+1, is open and made only of regular
points of h so that

rankh′(p0,λ) = n, (p0,λ) ∈ Ω.

As a consequence, the level set {h = 0} is a one-dimensional submanifold of Rn+1

called the path of zeros. Typically, one knows a zero of h(.,λ) for, say, λ = 0 and
wants to follow this path to reach if possible a zero for a target value of the parameter,
λ = 1. For any c := (p0,λ) ∈ Ω, dimKerh′(c) = 1 so one can define the (tangent)
vector T (c) as being the unique—up to orientation—unit vector in the kernel. The
orientation is chosen so that the nonvanishing determinant

det

[
h′(c)
tT (c)

]

has constant sign on each connected component of Ω. This provides a parameteriza-
tion by arc length of the connected components of {h = 0} which can be practically
computed by integrating the following differential equation [2] (with ′ = d/ds):

c′(s) = T (c(s)), c(0) = c0 ∈ {h = 0}.

The aim is to classify each component up to diffeomorphisms, knowing that there are
only two possibilities [27]: It is diffeomorphic either to R or to S1.

7This is the optimality of the trajectory among all admissible trajectories belonging to some
neighborhood of x.

8The target xf is normalized to 0.
9For the use of homotopy in optimal control (in particular for motion planning), see also [18, 34],

where the point of view is slightly different; the idea is to devise a path lifting equation to construct
a path of zeros in the infinite dimensional set of controls. In this setting, the obstructions described
at the end of the current section are translated as nondegeneracy and nonexplosion issues on the
so-called Wazewski equation. Assuming more structure than we do on the dynamics (driftless affine
control systems are considered), the authors are able to provide conditions in terms of the Lie
algebra of controlled vector fields that overcome these difficulties. The emphasis is also on Galerkin
procedures to solve the problem. To some extent, the situation is simpler in our case as considering
the shooting function instead of the endpoint mapping restricts the problem to finite dimension.
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In such a parameterization, a point c(s) = (p0(s),λ(s)) in {h = 0} is a turning
point [2] when λ′(s) = 0. This is equivalent to saying that

rank
∂x

∂p0
(tf , x0, p0(s),λ(s)) = n− 1,

that is, to saying that tf is a conjugate time for λ = λ(s) (and that, respectively,
p0(s) and x(tf , x0, p0(s),λ(s)) are the corresponding critical and conjugate point).
A turning point of order one, that is, such that λ′′(s) 0= 0, actually results in a
change of variation on λ, hence the name. We define c = c(s) ∈ {h = 0} to be a
first turning point (along the path starting at c(0)) if for all s ∈ [0, s), the curve
t 2→ x(t, x0, p0(s),λ(s)) has no conjugate time on (0, tf ].

Theorem 4. Let c(s) ∈ {h = 0} be a first turning point of order one; then for
s > s, |s− s| small enough, there exist conjugate times in (0, tf ).

The next lemmas are necessary to prove this result. We first recall that at a
corank one critical point x of a smooth function g : Rn → Rn, one can define (up to
a scalar) the intrinsic second order derivative [5] as

µg′′(x)|Ker g′(x)×Ker g′(x) ∈ L2(Ker g′(x),Ker g′(x);R) $ R,

where µ ∈ (Rn)∗ is any nonzero covector with kernel Im g′(x). The critical point is
said to be nondegenerate provided this quantity is not zero.

Lemma 5. The turning point c(s) is of order one if and only if p0(s) is a nonde-
generate corank one critical point of p0 2→ h(p0,λ(s)).

Proof. Differentiating twice h(c(s)) = 0, one gets

h′′(c(s)) · (c′(s), c′(s)) + h′(c(s)) · c′′(s) = 0.

As c′(s) = (p′0(s), 0), p
′
0(s) generates the kernel of ∂h/∂p0(p0(s),λ(s)) and

∂h

∂p0
(c(s)) · p′′0(s) +

∂h

∂λ
(c(s)) · λ′′(s) = −∂

2h

∂p20
(c(s)) · (p′0(s), p′0(s)).

Multiplying both sides by any nonzero µ whose kernel coincides with the image of
∂h/∂p0(p0(s),λ(s)), one gets

µ
∂h

∂λ
(c(s)) · λ′′(s) = −µ

∂2h

∂p20
(c(s)) · (p′0(s), p′0(s)).

At the turning point c(s) ∈ Ω, ∂h/∂λ is transverse to the image of ∂h/∂p0 (regularity).
So µ ∂h/∂λ(c(s)) 0= 0, and λ′′(s) = 0 if and only if the intrinsic second derivative
vanishes.

Remark 5. The order one assumption thus puts some restriction on

∂2x

∂p20
(tf , x0, p0(s),λ(s)).

It was previously mentioned that the first order derivative with respect to p0 of this
function is connected with second order optimality conditions. Here we have a con-
dition of order three.

Lemma 6. Let x be a corank one critical point of a smooth function g : Rn → Rn.
Then x is degenerate if and only if

(det g′)′(x) = 0 on Ker g′(x).
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3196 J.-B. CAILLAU AND B. DAOUD

Proof. Let h ∈ Rn; one has

(det g′)′(x) · h = tr(g̃′(x) · g′′(x) · h).

Since g′(x) is of rank n−1, one can find a nonzero vector ξ ∈ Ker g′(x) (resp., covector
µ with kernel Im g′(x)) such that for the adjugate matrix

g̃′(x) = ξµ.

Thus,

(det g′)′(x) · h =
n∑

j=1

tr

(
ξµ
∂g′

∂xj
(x)

)
hj =

n∑

j=1

µ
∂g′

∂xj
(x)ξhj = µg′′(x)(ξ, h).

In particular, for h = ξ ∈ Ker g′(x),

(det g′)′(x) · ξ = µg′′(x)(ξ, ξ),

whence the conclusion.
Remark 6. Under the assumptions of the lemma, χ(x, µ) := det(µIn − g′(x))

has root µ = 0 for x = x with algebraic multiplicity k ≤ n (while the geometric
multiplicity of 0, as an eigenvalue of g′(x), is one). By the Malgrange preparation
theorem [25], there are smooth scalar functions a0, . . . , ak−1 and b such that in the
neighborhood of (x, 0),

χ(x, µ) = b(x, µ)(µk + ak−1(x)µ
k−1 + · · ·+ a0(x))

and a0(x) = · · · = ak−1(x) = 0, b(x, 0) 0= 0. Accordingly,

(det g′)′(x) = b(x, 0)a′0(x).

The nondegeneracy at x is then equivalent to the statement that x is not a criti-
cal point of a0, plus that g and a0 are transverse at x. The quantity a0 can be
interpretated as a smooth (and signed) singular value of g′ when x is varied in the
neighborhood of x, as is clear from the following example. Take g(x1, x2) = (x2, x2

1/2);
x = (0, 0) is a nondegenerate corank one critical point. In a small enough neighbor-
hood of x, the smallest singular value of

g′(x) =

[
0 1

x1 0

]

is σ(x) = |x1|, which is not differentiable at the critical point. In contrast, a0(x) =
−x1 is smooth and provides the information needed to check nondegeneracy.

Proof of Theorem 4. Define the extended homotopy

h̃(p0,λ, tc) = (x(tf , x0, p0,λ), det
∂x

∂p0
(tc, x0, p0,λ)).

By assumption, the point (p0(s),λ(s), tf ) belongs to {h̃ = 0} and is regular. Indeed,

vectors (δp0, δλ, δtc) in the kernel of h̃′ at this point verify δλ = 0 and

∂h

∂p0
(p0(s),λ(s)) · δp0 = 0,

∂

∂p0
det

∂x

∂p0
(tf , x0, p0(s),λ(s)) · δp0 +

∂

∂tc
det

∂x

∂p0
(tf , x0, p0(s),λ(s)) · δtc = 0.
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One has two cases depending on whether the partial derivative with respect to tc
vanishes in the second equation. If it does not, the kernel is one-dimensional and
parameterized by

δp0 ∈ Ker
∂h

∂p0
(p0(s),λ(s)).

If it does, δp0 has to be zero since otherwise the previous lemmas would imply that

∂

∂p0
det

∂x

∂p0
(tf , x0, p0(s),λ(s)) · δp0 0= 0

because of the order one assumption on the turning point. So the kernel of h̃′ is
parameterized by δtc ∈ R and is also of dimension one. The extended homotopy is
therefore well defined and regular in a neighborhood of (p0(s),λ(s), tf ). Parameteriz-

ing by arc length σ on {h̃ = 0}, one has tc(σ) = tf . Since the point is a first turning
point, it is enough to prove that t′c(σ) 0= 0 (here ′ = d/dσ); then necessarily t′c(σ) < 0,

as there would otherwise be conjugate times on (0, tf ) for σ < σ in {h̃ = 0}, that is,
for s < s in {h = 0}. According to the description of the kernel,

∂

∂p0
det

∂x

∂p0
(tf , x0, p0(σ),λ(σ)) · p′0(σ) +

∂

∂tc
det

∂x

∂p0
(tf , x0, p0(σ),λ(σ)) · t′c(σ) = 0.

The two previous alternatives result either in p′0(σ) being nonzero, in which case
neither the first term in the sum nor t′c(σ) can vanish, or in p′0(σ) = 0, so |t′c(σ)| = 1
(unit tangent vector). In both situations we conclude that t′c(σ) cannot be zero.

In addition to turning points, there are two other issues on homotopy. First, when
the connected component of the path considered is diffeomorphic to R, boundary
points (if any) are critical points of h. The classification of points in ∂Ω starts with
the following result which is a simple consequence of the Morse lemma.

Proposition 4 (see [2]). Let c ∈ {h = 0} be a nondegenerate hyperbolic corank
one critical point of h. Then, there are coordinates d1, . . . , dn+1 such that in the
neighborhood of c, {h = 0} is equal to

d21 − d22 = 0, d3 = · · · = dn+1 = 0.

In this case, we have a critical point jointly in (p0,λ) and the intrinsic second
order derivative is, up to a scalar,

µh′′(c)|Kerh′(c)×Kerh′(c) ∈ Sym(2,R) ⊂ M(2,R) $ L2(Kerh′(c),Kerh′(c);R),

where µ ∈ (Rn)∗ is any nonzero covector with kernel Imh′(c). Hyperbolicity means
that this order 2 symmetric matrix is nondegenerate with eigenvalues of opposite signs.
As a consequence, the path of zeros is locally made of two smooth curves intersecting
transversally, resulting in a bifurcation. The last issue is due to global features in
parametric optimal control. For a given value λ0 of the parameter, one has to compare
the costs associated to zeros in each connected component of {h = 0}∩{λ = λ0}. Each
zero of the shooting homotopy function defines which extremal and global solutions, if
any, are those giving the infimum of the cost among them. In the three-body problem,
the topology of the state manifold, Xµ = T ∗Qµ, comes into play; Qµ has the topology
of the eight curve with π1(Qµ) = Z ∗ Z, and a heuristic classification of extremals
based on homology is proposed in [14].
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Two homotopies are used to compute numerically minimum time trajectories of
the restricted three-body problem. A continuation on the ratio of masses, µ, is first
considered. In practice, the isolated contacts with the codimension two switching
surface are neglected, and we restrict the computation to smooth extremals without
π-singularities. This yields regularity of the µ-parameterized minimum time problem
in view of the following.

Lemma 7. In the absence of π-singularities, the Legendre condition holds.
Proof. If the switching function never vanishes, one has |u| = 1 everywhere. So

we can restrict the control set U to S1. The manifold is without boundary, and in
the chart u = (cosα, sinα), α ∈ R, one has10

H(x,α, p) = p0 +H0(x, p) + ε(cosαH1(x, p) + sinαH2(x, p)).

Accordingly,

∇2
ααH(x,α, p) = −ε(cosαH1(x, p) + sinαH2(x, p)).

Along an extremal, ∇2
ααH(x(t),α(t), p(t)) = −ε|ψ(t)| which is bounded over by some

negative constant on [0, tf ] as ψ is smooth and nonvanishing.
Using previous knowledge on the two-body minimum time trajectories [15, 16],

we are able to compute transfers from a circular orbit around the first primary toward
the L2 point when µ = 0 and then to follow the path until any value µ ∈ (0, 1). The
absence of conjugate points—ensuring local optimality—is checked along the path
using the hampath code [12] that embeds the relevant rank test; see Figure 4. A
continuation on the target eventually allows one to obtain solutions, for instance, in
the earth-moon system (µ $ 1.21e− 2) from a geostationary orbit to a circular lunar
one for average values of the control magnitude ε; see Figure 5. To reach lower values
of ε, a continuation on this parameter is finally employed as in [15], which emphasizes
the role of the topology of the state space previously mentioned. Many local minima
exist, yielding as many zeros of the shooting function. When decreasing ε, at some
point on the resulting path the number of revolutions around the first primary has
to be increased to retain global optimality, which means using a heuristic to jump to
another connected component (branch) of the zero set (see Figure 6). Practically, this
is done here by augmenting heuristically the initial guess for the final time to force
shooting to converge to a solution with a larger number of revolutions; using this value
as a starting point, a part of the new branch can then be computed by differential
continuation. The situation is analogous to the one in Riemannian geometry with
cut and conjugate points: Up to some point, the path provides minimizers; then
global optimality is lost (typically because of the topology of the manifold), but local
optimality persists up to another point. Past this second point (a turning point, in
the simple case we framed in the beginning of the section), even local optimality is
lost (see Figure 7). Table 1 summarizes the results obtained.

The computations combining shooting and homotopy presented here are meant
to initialize the solution of more complicated problems. A time minimum trajectory
of the three-dimensional model of the SMART-1 mission [31] is given Figure 8. The
three-dimensional case proves to be much more difficult to solve numerically than
the coplanar one; this is probably due to the angle between the planes containing
the initial and final orbit. Multiple shooting provided by hampath and initialized by
results on the coplanar model is used; two arcs are considered with a junction point in

10The Hamiltonian lift H0 implicitly depends on µ, since F0 =
−→
Jµ (compare section 1).
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Fig. 5. Minimum time trajectory in the earth-moon system (µ & 1.21e − 2, ε = 2.44e − 1).
Left, in the rotating frame; right, in the fixed frame to emphasize capture by the second primary at
the end of the transfer. Before the capture, the trajectory approaches the projection of the L2 point
in the (q1, q2)-plane.
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Fig. 6. Minimum time trajectory for ε between 2.44e−1 and 2.196e−1 (µ & 1.21e−2, rotating
frame). As the control magnitude is decreased, strategies are evolved. In the upper graphs, the
first two extremals have the same rotation number around the first primary and both wind around
the second one positively. Conversely, the third extremal (bottom left) winds negatively around the
second primary, while the fourth (bottom right) makes an additional revolution around the first one.

the neighborhood of the L2 Lagrange point. Work in progress includes the treatment
of the maximization of the final mass.

Conclusion. In this paper, we have given a controllability result for the restricted
three-body problem; under mild assumptions, two orbits around the primaries with
Jacobian constants less than the Jacobian at the L1 Lagrange point can be connected.
Using the control-affine structure of the dynamics, we have given a primary classifi-
cation of extremals and provided global bounds on the number of switchings of time
minimizing controls. Homotopy techniques are instrumental in solving numerically
the problem which has natural small parameters; the link between turning points
and local optimality of extremals along the path of zeros of a parameterized shooting
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1©

2©

ε

ε0

ξ = (tf , p0)

Fig. 7. Continuation on ε. Down to ε0, branch 1 yields minimizers. In the case of free final
time, the shooting unknown is ξ = (tf , p0), p0 belonging to the zero level set of the Hamiltonian.
Past ε0, global optimality is lost on branch 1 and a switch to branch 2 has to be made (resulting
in a loss of regularity of the value function). Past the turning point on branch 1 (conjugacy of the
target point), even local optimality is lost.

Table 1
Earth-moon system (µ & 1.21e− 2). Minimum time tf from the geostationary orbit to the L2

Lagrange point, and first conjugate time t1c. That t1c > tf ensures local optimality of the computed
extremal.

ε tf t1c
2.4405 1.4705 2.2750
0.2440 8.4401 10.640
0.2221 9.7710 12.045
0.2026 11.152 13.500
0.1806 13.157 15.595
0.1586 14.369 16.900
0.1293 18.024 20.700
0.1074 21.323 24.125
0.0732 32.216 35.295
0.0437 51.504 54.930

function has been established in a simple framework. This preliminary analysis of
the problem has allowed us to compute minimum time solutions for the boundary
conditions of the SMART-1 mission using a two to three-body continuation.

Future work could be devoted to reaching very low thrusts, typical of this kind of
mission. The performance index should also be changed to consider instead minimiza-
tion of the fuel consumption, equivalent to minimizing the L1-norm of the control.
The final time should then be fixed, tf = c · tf , c ≥ 1, where tf is the minimum
time for the prescribed boundary conditions. The additional difficulty in this prob-
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–200
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Fig. 8. Three-dimensional minimum time transfer, SMART-1 boundary conditions (fixed
frame). The control magnitude ε is 0.7 Newtons for an initial mass of 350 kilograms and a specific
impulse of 1640 seconds. (The variation of mass has been taken into account for this simulation;
see [31]). The final time is 26.2 days. The dotted black circle represents the orbit of the moon. The
green trajectory represents the uncontrolled motion after capture by the moon.

lem comes from the existence for c > 1 of ballistic arcs u = 0 (zero-bang structure of
|u|). A related issue would be to use a four-body model so as to include the existence
of “cheap” trajectories [26] whose existence relies on the presence of the fourth body.
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