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Abstract The structure of local minima for time minimization in the controlled
three-body problem is studied. Several homotopies are systematically used to unfold
the structure of these local minimizers, and the resulting singularity of the path
associated with the value function is analyzed numerically.
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1 Introduction

There is currently a renewed interest in space missions with electric propulsion.
See for instance the BepiColombo [2] or Lisa [9] programs. Very important models
for such missions are the two and three-body controlled problems; in particular, the
circular restricted three-body problem provides a dynamically relevant and challeng-
ing model for missions in the Earth-Moon or Sun-Earth systems. We recall that we
take an inertial reference frame such that the line joining the Earth andMoon remains
fixed on the x-axis, the z-axis is parallel to the angular velocity of the couple and the
y-direction completes a positive triad. We also normalize the units of distance and
time such that the distance between the two primaries is one and the period of rotation
is 2π , then the equations of motion for the mass-less satellite under the gravitational
influence of the two primaries is given by (see, e.g., [5])
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ẋ = vx ,
ẏ = vy,
ż = vz,

v̇x = 2vy + x − (1 − µ)
x + µ

r31
− µ

x + µ − 1
r32

+ εu1,

v̇y = 2vx +
(
1 − (1 − µ)

r31
− µ

r32

)
+ εu2,

v̇z = −
(
(1 − µ)

r31
− µ

r32

)
z + εu3,

(1)

where µ ∈ (0, 1/2] is the mass parameter of the system (µ = m2/(m1 + m2)—
for the Earth-Moon case we have µ = 0.012153), r1 =

√
(x − µ)2 + y2 + z2, r2 =√

(x − µ+ 1)2 + y2 + z2 and u = (u1, u2, u3) is the thrust direction on the small
satellite (where |u| ≤ 1) and ε is the maximal thrust. Our aim is to find a steering
law for Earth-Moon transfer orbits minimizing the transfer time. (For the minimum
fuel case, see [3]; see [10] as well for a nice numerical study.)

This problem can be formulated as:

min t f =
∫ t f
0 dt,

ẋ = F(x, u) = F0(x)+ ε
3∑

i=0
Fi (x)ui ,

|u| ≤ 1,
x(0) ∈ X0,

x(t f ) ∈ X1.

(2)

where X0 and X1 are the initial and final sets; in our case X0 is a point on a GEO
orbit (or the whole GEO orbit) and X1 will be either L2 or a point on a MO orbit.
In this paper, we will focus on the coplanar case and thus we will only consider a
two-input control in the orbital plane. More realistic models should, of course, take
into account the fact that the initial and final orbits do not need to belong to the
orbital plane of the circular motion of the two primaries (see [5] for an example of
3D minimum time computation).

As it is proved in [5], controllability holds for any ε > 0 for a fixed µ ∈ (0, 1)
(see [8] for the two-body case, µ = 0), provided the Jacobi constant, Jc, or energy,
is not greater that Jc(L2). (Caveat: In [5], Poincaré terminology is used so what is
nowadays termed the L1 Lagrange point was called L2, and conversely. Here, we use
the modern standards and by L1 we mean the Lagrange point with lowest energy.)
Let us recall that

Jc(q, q̇) =
1
2
|q̇|2 − 1 − µ

|q + µ| − µ

|q − 1+ µ| − 1
2
|q|2.

In order to connect orbits around the primaries, it is transparent from the proof that
the energy has to be raised beyond Jc(L1) through the action of the control; it turns
out that, for relevant boundary conditions, a time minimizing transfer will actually
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pass quite close to the L1 point in the phase space. In this respect, for an important
class of endpoint values, one can approximately decompose a min time transfer into
two two-body problems coupled by an intermediary L1 target. A byproduct of this
heuristic interpretation is the role of the rotation numbers (or homology, see [7]
for a first numerical study) around each primary. As it is well known, many local
minima exist for min time two-body transfers [8], so we propose here a detailed
and systematic study of this phenomenon in the restricted three-body setting. The
idea is to use a homotopy in the covering angle coordinate of the initial orbit to
unfold the structure of these local time minimizers. For a fixed level of thrust ε,
we parameterized the solution (computed by single shooting suitably initialized—
we build on [5] results) by the angular position on it; performing a homotopy on
this angle reveals the connection between the different local minima. Moreover, we
investigate the interplay between these local minima and the fact that, when the thrust
level is decreased one needs to “make more turns” to depart from the initial orbit
(resp. reach the final orbit); this analysis is drawn using another homotopy, on ε, to
follow the characteristics (aka extremals, that are state and costate solutions of the
maximum principle) through some specific singularities.

The paper is organized in two sections and four appendices. Section2 is devoted
to transfers towards the L1 Lagrange points. First, extremals with fixed initial point
on the GEO orbit are computed, in combination with homotopies w.r.t either the
position angle, θ0, or the maximum thrust allowed, ε; then extremals with free θ0
(that is with initial submanifold the whole GEO orbit) are computed, again with a
homotopy on ε. The numerical computations reveal the existence of possible cut
points, that is of several candidates as global optimizers having the same cost but
different structures. The same analysis is performed in Sect. 3 on transfers from the
GEO towards an orbit around the Moon, referred to as MO; in this case, a homotopy
on the radius of this target circular orbit is also computed. The aim of this paper is
to provide a rather extensive numerical study of the problem so that detailed results
are archived into several appendices: The first two provide a comprehensive list of
tables of shooting initializations allowing to reproduce the results in Sects. 2 and 3,
while the last two ones give a precise account of the computations of (what might
be) cut points for the GEO to L1 and MO targets, respectively.

2 Transfer from a GEO to L1

In this section we will explore the nature of the first phase of an Earth-Moon transfer.
Hence, we focus on the minimum-time transfer trajectories from a GEO orbit to the
L1 point. Finding a global minima is a hard task as in many cases it will be hard
to determine if we have a global minima or just a local one. We will use indirect
methods based on the Pontryagin Maximum Principle to determine local minima,
using the package hampath [4]. First, we use the initial conditions from [5] and
refine them so that they meet the constraints of our problem. The solutions in [5]
where found doing homotopies from the 2BP to the 3BP, using µ as the continuation
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parameter. Then we will perform different homotopies with respect to the position of
the initial orbit and with respect to ε, the thrust value. The idea is to understand the
global structure, and find all the possible local minimum-time transfer trajectories for
a given thrust value, ε, and classify the different type of solutions. In order to analyse
this minimum-time transfer we propose two different boundary value problems: (a) a
fixed initial condition on the GEO orbit (point-to-point problem), or (b) a free initial
condition on the GEO orbit (circle-to-point problem). Both problems will be solved
using a shooting method. In order to find a minimum-time transfer trajectory, it is
clearly better to leave the initial condition in the departure orbit free. But due to the
small radius of convergence of the shooting method, a first exploration fixing the
initial position is required. Moreover, it might be possible, that in a concrete mission
scenario, the initial position on the GEO orbit is fixed.

2.1 Fixed Initial Point on a GEO

In this section we discuss the results for the minimum-time transfer problem for a
fixed point on a GEO orbit to L1. The boundary conditions are:

x(t0) − x0 = 0, x(t f ) − x f = 0, h(t f ) = 0, (3)

where x(t) represents the position and velocity of the spacecraft at time t , x0 is
a fixed initial condition on a circular orbit around the Earth of radius r0; x f is
the position in the phase space that we want to reach with minimum time (here
x f ≡ L1 = (0.8369, 0, 0, 0)), and h(t f ) is the Hamiltonian of the PMP that has to
be maximised. We parameterise an initial condition on a circular orbit by its radius
r0 and angle θ0 ∈ [−π,π). Accordingly,

x0 = (r0 cos θ0 − µ, r0 sin θ0,−v0 sin θ0, v0 cos θ0), (4)

where v0 =
√
(1 − µ)/r0 (velocity required to have a circular orbit around the Earth

using a 2BP approximation). In this section we will use r0 = 0.109689855932071
and v0 = 3.000969693845573. Notice that r0 = 0.10968 ≈ 42, 164 km which cor-
responds to a GEO orbit (≈ 35.786 km above the Earth surface). Later we might
want to discuss the effect of taking a smaller r0 but given the nature of the prob-
lem, the results should be very similar and we should experience just some more
turns around the Earth before getting on an excursion towards L1. In [5], the authors
considered r0 = 0.109689855932071, ṽ0 = 2.878597058456258. We have done a
homotopy with respect to the initial velocity on the orbit for a fixed point placed at
θ0 = π . Tables1 and 2 summarize these results for different values of ε. (For ε = 3N
we had a problem during the continuation process and the local minima found has
t f < 0, so we will not use this as reference value.) Caveat: The Tmax variable name
in graph legends refers to ε.
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Table 1 ε, t f and p0 of the local minima for r0 = 0.109689855932071, ṽ0 = 2.878597058456258
and θ0 = π (see [5])
ε (N) t f (UT) p0
10.0 1.47056664 (2.57392200 1.58804145 0.06972900 0.07817485)

5.0 2.28408175 (2.54649996 2.42058400 0.10200404 0.11955574)

4.0 3.14537620 (9.72954854 1.31678527 0.05736254 0.42386881)

3.0 3.82670885 (11.03739342 −0.29053787 −0.00260636 0.49490659)

2.5 4.39877672 (11.19394050 −2.02820238 −0.06740069 0.48674283)

1.5 6.67073313 (4.56115506 −0.98210983 −0.02417903 −0.03690623)

1.0 8.44011820 (−22.71568672 9.43440236 0.36634939 −0.86734182)

Table 2 ε, t f and p0 of the local minima for r0 = 0.109689855932071, v0 = 3.000969693845573
and θ0 = π (results after continuation from Table1)
ε (N) t f (UT) p0
10.0 1.4833856 (3.83493364 1.72669505 0.07642569 0.13229597)

5.0 2.3063975 (5.63281024 2.42739999 0.10473957 0.24553557)

4.0 3.3788754 (14.73978122 0.81593498 0.03725883 0.63113008)

3.0 −3.6981165 (−12.78641230 0.12268080 0.01238500 −0.58331391)

2.5 4.2681801 (13.40062243 −1.57809214 −0.05401807 0.60223014)

1.5 6.4693309 (8.27460406 −2.03560608 −0.06799797 0.14339434)

1.0 10.4302927 (41.66289104 −1.40939476 −0.04832354 1.81224566)

2.1.1 Homotopy w.r.t θ0

As the initial manifold is a whole orbit, the initial position on the GEO shall be left
free. Nevertheless, due to the small radius of convergence of the shootingmethod and
the large dimension of the phase space, taking as initial conditions the local minima
in Table2 the shooting method does not converge. This is why we decided to proceed
more systematically and solve for a large range of θ0.We have taken for ε = 10N, 5N
and 1N the localminima in Table2 and perform a homotopywith respect to θ0 (Eq. 4),
i.e. we change the initial position on the GEO orbit. For each ε we start at θ0 = π

(which corresponds to the values in Table2) and perform two continuations: one from
θ = π '→ 21π and the other from θ = π '→ −21π . In order to have a good precision
along the path, we have divided the homotopies into smaller blocks of length 2π , for
example for the homotopy from θ = π '→ 21π we split it in small homotopies from
θ = (2k + 1)π '→ (2k + 2)π , for k = −10, . . . , 9. When we go from one block to
another we refine the initial condition taking the last point on the previous block.
We proceed in this way not to deprecate precision along the continuation path. The
homotopy will be stopped when hampath fails to continue for different reasons
(e.g., the norm of the shooting function becomes to big, the continuation step-size
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is to small). Note that the homotopy is actually done on θ0 ∈ R, using implicitly the
variable in the covering of the initial orbit diffeomorphic to S1 (Tables 3, 4, 5, 6, 7,
8, 9, 10 and 11).

Figures1, 2 and 3 show the homotopy path for ε = 10N, 5N and 1N respectively.
On the left-hand side of each Figure we plot the continuation parameter, θ0, versus
the transfer time, t f , and on the right-hand side we plot θ0(mod 2π) ∈ [−π,π]
versus t f (Tables 12, 13 and 14). The plots on the right-hand side illustrate that
for a given initial position on the departure orbit there are different local minima
solutions. We recall that each point on the curve is a solution to the minimum-time
transfer from GEO to L1 for a fixed initial position on the GEO. The red points
correspond to the local minima on the projection of the homotopic path on the θ0–t f
plane, and they are candidates for being local minima when the initial position on
a GEO orbit is left free (Sect. 2.2). The initial conditions for these local minima are
summarized in Tables12, 13 and 14. Notice that the three curves for ε = 10N, 5N
and 1N (Figs. 1, 2 and 3 respectively) present a similar behaviour; as we increase θ0
(i.e. we change the initial position on the GEO following the clockwise direction)
the transfer time, t f , decreases until we reach a global minima and then t f grows
drastically. Also notice that for ε = 10N and 5N (Figs. 1 and 2) after t f has drastically
increased the homotopic curve takes a turn and θ0 starts to decrease and we find
different local minima. For both curves we find different local minima and one clear
global minima. In the case of ε = 1N (Fig. 3) after reaching the global minima t f
also increases drastically but the continuation scheme is stopped before we can see a
similar behaviour towhatwe obtained previously.We expect that thingswill continue
to grow as for ε = 10N but need a sharper continuation scheme.

As we have mentioned before, for a given initial condition on the GEO orbit and
a fixed ε we have many different local minimum time−transfer orbits from GEO
to L1. In Tables4, 5, 6 and 7 we summarize the different local minima for ε = 10
and θ0(mod 2π) = 0,π/2,π and −π/2 respectively. In Fig. 4 we plot the transfer
trajectory of the solutions in Table4, corresponding to θ0(mod 2π) = 0 and ε = 10N
and k = 2. In Fig. 5 we plot the variation of the Jacobi constant Jc along time for the
trajectories that appear in Fig. 4.

Aswe can see in Fig. 4 there are two types of trajectories. The first type, thatwe call
T1 and correspond to k = 1, . . . , 12 from Table4, where the trajectory gives several
turns around the Earth and then heads towards L1 directly. The number of turns
around the Earth will depend on the initial condition and, as we can see in Fig. 5,
the extra turns correspond to a decrease and later increase of Jc before reaching
Jc(L1). For all these orbits the final transfer to L1 is the same. The second type of
orbits, that we call T2 and corresponds to k = 14 and 15. Here the trajectories do a
large excursion to get to L1. This large excursion corresponds to large increase on
Jc, high above Jc(L1). The transition between one kind of trajectories and the other
(solution k = 13) corresponds to intermediary excursions of the trajectory and are
the solutions while t f drastically increases in Fig. 1. In Figs. 6 and 7 we show the
same results for ε = 1N. Here we only find trajectories of type T1. This is because
the continuation method failed at some point, but this does not mean that trajectories
of type T2 do not exist for ε = 1N.
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Fig. 4 Transfer trajectories of the local minima for ε = 10N and θ0 = 0 (Table4). The initial
condition on the GEO orbit is x0 = (−r0 − µ, 0, 0, v0)
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Fig. 5 Variation of Jc of the local minima for ε = 10N and θ0 = 0 (Table4). The initial condition
on the GEO orbit is x0 = (−r0 − µ, 0, 0, v0)

Finally, we have done a small exploration on the different characteristics of
the minimum time−transfer trajectories that appear in Figs. 1, 2 and 3. For each
minimum-time transfer orbit, parameterised by θ0, we have computed the maxi-
mal value for Jc along the orbit, maxt∈[t0:t f ](Jc(t)), the norm of the adjoint vector
at t0, |p(t0)|, and the number of turns that the trajectory makes around the Earth,
NET , before the trajectory reaches Jc(L1). These results are summarized in Figs.8, 9
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Fig. 6 Transfer trajectory of the localminima for ε = 1N and θ0 = 0 (Table8). The initial condition
on the GEO orbit is x0 = (−r0 − µ, 0, 0, v0)
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Fig. 7 Variation of Jacobi constant of the local minima for ε = 1N and θ0 = 0 (Table8). The initial
condition on the GEO orbit is x0 = (−r0 − µ, 0, 0, v0)
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Fig. 9 For ε = 5N. From left to right θ0 versus t f , θ0 versus |p(t0)|, θ0 versus maxt∈[t0:t f ](Jc(t)),
and θ0 versus NET

and 10 for ε = 10N, 5N and 1N respectively. In each figure we see: t f versus θ0,
|p(t0)| versus θ0, maxt∈[t0,t f ](Jc(t)) versus θ0 and NET versus θ0. Notice that the
number of turns decreases as we reach the global minima, which will display 1 turn
for ε = 10N, 2 turns for ε = 5N and 10 turns for ε = 1N. We observe that the max-
imum value reached by the Jacobi constant Jc can be used to filter out solutions far
away for what seems to be the global minimum (for this one, the value of Jc is close
to Jc(L1)). Finally, looking at |p(t0)| we see a strong increase when the homotopic
path moves from one type of trajectory to the other. We recall that the points in red in
Figs. 8, 9 and 10 correspond to the local minima of the projection of the homotopic
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Fig. 11 Transfer trajectories of the two ends of the homotopic curve θ0 versus t f

path θ0 versus t f . All these local minima are summarized in Tables 12, 13 and 14 for
ε = 10N, 5N and 1N respectively.

Moreover, for ε = 10N, we have continued the two extremes of the homotopic
curve w.r.t θ0 to see if there are other connections. We have seen that both extremes
die when the associated transfer trajectory has a close encounter with the Earth. On
one end of the curve we see type T1 trajectories where the transfer trajectory spirals
towards the Earth and then outwards before a direct transfer to L1. We think that
if we continue decreasing θ0 in this direction, the trajectory will collide with the
Earth. On the other end of the curve we see type T2 trajectories, where the transfer
trajectory experiences a fast close approach with the Earth. In Fig. 11 we can see the
two solutions at the two extremes of the path.

2.1.2 Homotopy w.r.t. ε

In this section, we have taken the different solutions for ε = 10N and a fixed initial
condition θ0(mod 2π) = 0,π/2,π and −π/2, summarized in Table4, 5, 6 and 7.
For each initial condition we perform a homotopy with respect to ε from 10N to
1N. In Fig. 12 we summarize the results for the different values of θ0(mod 2π). As
we can see, for each fixed θ0(mod 2π) the behaviour of the family of homotopic
curves is very similar. For most local minima, t f increases as ε decreases. In some
of the cases, at some point the slope of ε(t f ) experiences a drastic change and t f
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increases very quickly for small variations of ε. Then at some point the homotopy
curve has a turning point and ε starts to grow, and we are not able to reach lower
values for ε. Nevertheless, there are other cases where ε just decreases and reaches
ε = 1N with no drastic changes on the curve. We believe that for these last cases
a similar behaviour will be observed for ε < 1N. In Fig. 13 we summarize all the
local minima for θ0(mod 2π) = 0 (magenta), π/2 (red), π (green) and−π/2 (blue).
For ε ∈ [5 : 10] (left) and ε ∈ [1 : 5] (right). In Fig. 14 we show the variation of
the type of solutions along time for one of these families (θ0 = 0, k = 2 in Table4),



220 J.-B. Caillau and A. Farres

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

T
max

 = 10.000000, θ
0
 = 0,  k=1

X

Y

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

T
max

 = 4.743855, θ
0
 = 0,  k=91

X

Y

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

T
max

 = 4.017845, θ
0
 = 0,  k=211

X

Y

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

T
max

 = 3.903542, θ
0
 = 0,  k=241

X

Y

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

T
max

 = 3.676283, θ
0
 = 0,  k=271

X

Y

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

T
max

 = 3.372990, θ
0
 = 0,  k=301

X

Y

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

T
max

 = 3.088099, θ
0
 = 0,  k=391

X

Y

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

T
max

 = 2.930991, θ
0
 = 0,  k=541

X

Y

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

T
max

 = 3.956605, θ
0
 = 0,  k=751

X

Y

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

T
max

 = 4.368842, θ
0
 = 0,  k=781

X

Y

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

T
max

 = 6.773830, θ
0
 = 0,  k=901

X
Y

−0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.4

−0.2

0

0.2

0.4

0.6

T
max

 = 8.724922, θ
0
 = 0,  k=991

X

Y

Fig. 14 Transfer trajectories from GEO to L1 for θ0 fixed and different ε. Here θ0 = 0 and all
the orbits belong to the homotopic curve generated by k = 2 from Table4 when we use ε as the
homotopy parameter
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Fig. 15 Variation of the Jacobi constant along time for a transfer trajectories from GEO to L1 for
θ0 fixed and different ε. Here θ0 = 0 and all the orbits belong to the homotopic curve generated by
k = 2 from Table4 when we use ε as the homotopy parameter

which corresponds to one of the homotopy paths where ε(t f ) experiences two drastic
changes. As we can appreciate, the orbits on the first part of the homotopic curve are
type T1. When the slope of the path experiences its first drastic change, the transfer
trajectories start to do big excursions on the phase space before heading towards L1

and we begin to observe type T2 trajectories. Eventually, when ε starts to grow the
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Fig. 16 For the local minima for θ0 = 0 and ε = 10 (k = 1, 4, 7, 10, 13, 15): homotopic curve ε
versus t f (subplots on the top) and NET versus t f (subplots on the bottom)

trajectories remain of type T2 and some of them experience close approaches with
the Earth. Hence, these paths connect type T1 transfer trajectories with type T2.
Finally, in Fig. 15 the variation of the Jacobi constant is displayed with respect to
time for the trajectories in Fig. 14.

Finally, we think it is worth saying that for a fixed θ0, along each of the different
homotopic paths that we have generated by varying ε summarized in Fig. 12, the
number of turns the trajectory gives around the Earth, NET , is kept constant before
the first drastic change on the homotopic paths slope. There the number of turns
increases in 1 and remains constant along that path, even when ε starts to increase.
This phenomena can be seen in Fig. 16, where we plot some of the homotopic curves,
the variation of the number of turns around the Earth versus t f . In order to understand
better this phenomenon, for each curve we have plotted on top the corresponding
homotopic curve (t f vs. ε) and on the bottom (t f vs. NET ). So if we assume that for
a given ε∗ there is a minimum number of turns around the Earth that the trajectory
must give before Jc(x(t)) > Jc(L1), which will allow the trajectory to reach L1,
this gives us a criteria to chose one of the solutions for ε = 10N and get to ε∗ by
following its homotopic path w.r.t. ε.

2.2 Free Initial Point on a GEO

In this section we discuss the results for a minimum-time transfer from a GEO orbit
to L1. The main difference with respect to the previous section is that here we just
impose the initial condition to be on a GEO orbit but we do not fix the position on
it. Hence, the boundary conditions are:
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x(t0) ∈ M0, p(t0) ⊥ Tx(t0)M0, x(t f ) − x f = 0, h(t f ) = 0, (5)

whereM0 represents the GEO orbit. The first two boundary conditions are written as

(x0 + µ)2 + y20 − r20 = 0,
ẋ20 + ẏ20 − v20 = 0,

(x0 + µ)ẋ0 + y0 ẏ0 = 0,
(x0 + µ)py0 − y0 px0 + vx0 pẏ0 − vy0 pẋ0 = 0,

(6)

where r0 is the radius of the GEO orbit and v0 is the corresponding veloc-
ity; x(t0) = (x0, y0, ẋ0, ẏ0) is the coordinate vector of the spacecraft and p(t0) =
(px0, py0, pẋ0, pẏ0) is the adjoint vector, both evaluated at t0. The other boundary
conditions are the same as in Sect. 2.1. We recall that all the solutions found in
Sect. 2.1, where we fix the initial condition on the GEO orbit, are not necessar-
ily solutions of this more general problem. Here the boundary conditions are more
restrictive as we impose the transversality condition on p(t0). Only the local minima
in the projection (θ0, t f ) of the homotopic paths in Figs. 1, 2 and 3 will be good
initial conditions to be local minima of this problem. The values for (x0, p0) are
summarized in Tables12, 13 and 14 for ε = 10N, 5N and 1N, respectively. In this
section we have taken some of the local minima for ε = 10N and for each one we
have performed homotopies with respect to the thrust magnitude ε ∈ [1 : 10]N. The
initial conditions corresponding to the local minima from Figs. 1 and 3 in Sect. 2.1
are summarized in Tables12 and 14.

On the left-hand side of Fig. 17 we show the continuation curve for the local
minima number 4, 5, 6 and 7 for ε = 10N from Table12. Minima 4 and 5 are T1

type solutions and the homotopic curves are plotted inmagenta and blue respectively.
Minima 6 and 7 are T2 solutions and the homotopic curves are plotted in red and
green respectively. Notice that the homotopic paths with respect to ε do not connect
the two type of solutions T1 and T2. On the right-hand side of Fig. 17 we compare
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Fig. 17 Homotopy w.r.t ε for a transfer orbit from GEO to L1. Left the initial condition on the
orbit is considered free. Right comparison between letting the initial condition free (black line) and
fixing it to θ0 = 0,π/2,π,−π/2
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Fig. 18 Homotopy w.r.t ε: Comparison between letting the initial condition free (black line) and
fixing it to θ0 = 0,π/2,π,−π/2

these homotopic curves (now plotted in black)with the homotopic curves for θ0 fixed.
The curves for θ0 = 0,π/2,π and −π/2 are plotted in blue, magenta, green and red
respectively. In Fig. 18 we have plotted different zooms of these last plot. Notice
that for ε < 3N the projection of the homotopic path in the ε–t f plane self-intersects
several times. Hence, we have at least two different solutions with the same cost.
These are candidates to be cut points. We will describe them in more detail in the
next section (Tables 15, 16, 17 and 18).

Finally, in Fig. 19 we show information on the orbital parameters for one of the
continuation curves, the one corresponding to the candidate to “global” minima. On
the top left hand-side we show θ0 the argument of the initial condition on the GEO
orbit versus ε, and on the top right hand-side we show θ0(mod 2π) verus ε. On the
bottom left hand-side we show θ0 versus the number of turns around the Earth, and
on the bottom right hand-side we show θ0 versus the norm of the adjoint vector for
t0 = 0, |p(t0)|. As we can see, θ0 can be used to parameterize the homotopic curve.

2.3 Cut Points

As we can appreciate in Fig. 18, the homotopic path for the GEO to L1 transfer with
θ0 free has several turning points and the path self-intersects several times. These
intersections are cut point candidates. We recall that, in optimal control, a cut point
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is the first point in the extremal where the solution ceases to be globally minimizing.
Typically, two different extremals with the same cost are candidates for defining
such a point. From now on we call the couple {(x0, p0), (x1, p1)} a cut point if they
are two different initial conditions such that for the same ε∗ they generate two local
optimal solutions for the GEO to L1 transfer problem with the same transfer time t∗f .
We find these initial conditions on the self-intersections of the ε versus t f projection
of homotopic path in Fig. 17. To fix notation, (x0, p0) will be the “first” point on
the homotopic path that reaches (ε∗, t∗f ) and (x1, p1) will be the “second” point to
reach (ε∗, t∗f ). In Table3 we summarize all the cut points that we have found for
ε ∈ [1, 10]. We have computed these points by refining the intersections found in
Fig. 18. In Fig. 20 we plot the different projections of the homotopy path that we have
already seen, where we have highlighted in green the solutions close to the cut points.
On the left hand side of Fig. 20 we have the t f versus ε projection, on the centre we
have the θ0 versus ε projection and on the right hand side we have θ0 mod 2π versus
ε projection.

For all seven cut points we have done the same analysis. First of all we have taken
both points and computed the transfer trajectory, the variation of Jc(t), the control
law u(t) and (H1(t), H2(t)).We have also integrated both trajectories backwards and
forward in time covering the time range [−t f , 2t f ], where t f is the transfer time. As
we will see, the main difference between both solutions appears when we look at the
integration of the trajectory backwards in time t ∈ [−t f , 0] and on the control u(t) at
the beginning of the transfer trajectory. Secondly, we have taken a neighbourhood of
the cut point and checked the variation of different orbital parameters for the optimal
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Fig. 21 For cut point no 1: Left t f versus ε homotopic curve with highlight of the cut passage in
green; Right analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right subplot) θ0
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Fig. 22 For cut point no 1: blue orbits correspond to the first cut value and red orbits to the second
cut value. Top-Left {XY } projection of the transfer trajectory, Top-Centre {Ẋ Ẏ } projection of the
transfer trajectory,Top-Right t versus Jc (energy variation along the transfer trajectory),Bottom-Left
control along the trajectory, Bottom-Centre H1 versus H2, Bottom-Right t versus |(H1, H2)|

transfer orbits on the homotopic path. For all cut points, if ε∗, t∗f is the value of the
thrust magnitude and transfer time at the cut point, we analyse the solutions that
are close to the cut point, i.e. t f ∈ [t∗f − 0.15 : t∗f + 0.15]. The plots corresponding
to these simulations are summarized in Appendix “Summary of the cut points on
the GEO to L1 transfer” here we will only describe the results for the cut points
number 1 and 5 in Table3, where Figs. 21, 22 and 23 correspond to the 1st cut point
and Figs. 24, 25 and 26 correspond to the 5th cut point. The first cup point occurs
at ε∗ ≈ 2.8177314N and t∗f ≈ 3.2044271. On the left-hand side of Fig. 21, we have
plotted the whole homotopic curve and highlighted in green the first cut region, i.e.
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Fig. 23 For cut point no 1: Left optimal solutions for t ∈ [−t f , 0] (XY projection and Jc variation),
Right optimal solutions for t ∈ [0, 2t f ] (XY projection and Jc variation)
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Fig. 24 For cut point no 5: Left t f versus ε homotopic curve with highlight of the cut passage in
green; Right analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right subplot) θ0
versus ε, (bottom-left subplot) θ0 versus NET , (bottom-right subplot) θ0 versus NZH . Red points
are values corresponding the each cut point

solutionswith a transfer time between [t f − 0.15 : t f + 0.15]. On the right-hand side
we have 4 subplots, the two subplots on the top are a zoom of the cut region t f versus
ε (left), and the θ0 versus ε projection of the cut region (right). The two subplots on
the bottom show θ0 versus NET , the number of turns around the Earth before going
towards L1 (left), and θ0 versus NZH , the number of times |(H1, H2)| get close to
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Fig. 25 For cut point no 5: blue orbits correspond to the first cut value and red orbits to the second
cut value. Top-Left {XY } projection of the transfer trajectory, Top-Centre {Ẋ Ẏ } projection of the
transfer trajectory,Top-Right t versus Jc (energy variation along the transfer trajectory),Bottom-Left
control along the trajectory, Bottom-Centre H1 versus H2, Bottom-Right t versus |(H1, H2)|

zero (right). As we can see, the number of turns around the Earth remains constant
NET = 3, but NZH = 0 for the first cut point and 2 for the second cut point. In Fig. 22
we show different aspects of both transfer trajectories. The curves in blue correspond
to the first cut point, (x0, p0), and the curves in red to the second cut point, (x1, p1).
The three plots on the top, from left to right correspond to the {x, y} projection on
the transfer trajectory, to the {ẋ, ẏ} projection of the transfer trajectory, and to the
evolution of Jc along the transfer trajectory. The three plots on the bottom, from left
to right correspond to the {x, y} projection of the trajectory and the control law u(t),
to the projection of (H1, H2), and to the variation of |(H1, H2)| along time. In these
plots we can see that the main difference between the two transfer trajectories lies
on the control law. The control u(t) for the second cut point (red curve) has a drastic
change of its orientation at the beginning of the transfer trajectory. This translates on
(H1, H2) passing close to zero—possible discontinuity of the control. This effect is
not observed for the first cut point (blue curve). In Fig. 23 we see for both cut points
the integration backwards in time (t ∈ [−t f : 0]) and forward in time (t ∈ [0 : 2t f ]),
as well as the corresponding variation of Jc(t). Again, the curves in blue are related
to the first cut point and the curves in red to the second cut point. As we can see, there
is practically no qualitative difference for the evolution of both transfer trajectories
if we integrate forward in time. While we do see a difference between the evolution
backwards in time. Notice that the first cut point (blue curve) spirals towards the
Earth and Jc(t) decreases drastically, while the second cut point (red curve) spirals
outwards and Jc(t) will quickly start to grow.
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Fig. 26 For cut point no 5: Left optimal solutions for t ∈ [−t f , 0] (XY projection and Jc variation),
Right optimal solutions for t ∈ [0, 2t f ] (XY projection and Jc variation)

Cut point number 5 corresponds to ε∗ ≈ 1.4309308N and t∗f ≈ 5.7431841. On
the left hand-side of Fig. 24, we have highlighted in green the cut region. On the right-
hand side we also have 4 subplots with a zoom of this cut region and the variation of
NET and NZH for the different points on the curve. As we can see the main difference
between the cut points is the NZH that is 0 for the first cut point and 1 for the second
cut point. In Fig. 25we compare the transfer orbits of the two cut points (x0, p0) (blue
curve) and (x1, p1) (red curve). Where we show the {x, y} and {ẋ, ẏ} projections of
the trajectory and Jc(t).We also show the evolution of the control along the trajectory
and (H1, H2). As it happened for the first cut point, the main difference between both
trajectories is on the control at the beginning of the transfer trajectory, where the red
curve experiences a drastic change on the direction of u(t) opposed to a smooth
behaviour of u(t) for the red curve. This can be seen as a close approach of (H1, H2)

to zero. Finally in Fig. 23 we show the integration backwards and forward in time for
the two cut points, and the corresponding variation of Jc(t). As it happened for cut
point number 1, there is no qualitative difference for the evolution forward in time.
While for the integration backward in time we have the same behaviour as bellow,
the first cut point (blue curve) spirals inwards towards the Earth, while the second
cut point (red curve) spirals outwards.

As previously indicated, the results for the other cut points are summarized in
Appendix “Summary of the cut points on the GEO to L1 transfer”. As we can see
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there is a pattern that repeats for all the cut points that might be useful to detect this
phenomena. The main difference between the two solutions appears on the control
law at the beginning on the transfer trajectory: where the red curve (corresponding to
the second cut point) always experiences a drastic change on its orientation, which is
related to (H1, H2) passing close to zero, and the blue curve (corresponding to the first
cut point) has a smooth behaviour along the first phase of the transfer trajectory. The
other difference between both solutions appears when we integrate them backwards
in time t ∈ [−t f : 0], where one solution spirals towards the Earth and the other
outwards.

3 Transfer from a GEO to MO

In this section we will focus on the transfer from a GEO to a Moon orbit (MO).
Throughout the section we will do a similar analysis to the one done in Sect. 2 for the
GEO to L1 transfer. We will also use indirect shooting methods based on Pontryagin
maximum principle and the package hampath to find different local minima. First
we will focus on the two point boundary value problem where the initial condition
on the GEO orbit is fixed and perform homotopies with respect to (a) the position on
the GEO orbit and (b) the thrust magnitude ε. Second, we will focus on the boundary
value problem where the initial condition on the GEO orbit is free. For all these
explorations the position on the arrival Moon orbit is free.

3.1 Fixed Initial Point on a GEO

Here we summarize the results for a minimum-time transfer from a GEO to a MO,
where the position on the GEO orbit is fixed, hence the Boundary Conditions are:

x(t0) − x0 = 0, x(t f ) ∈ M1, p(t f ) ⊥ Tx(t f )M1, h(t f ) = 0, (7)

where as before, x(t) is the position and velocity of the spacecraft at time t ; p(t) is the
adjoint vector at time t ; x0 is a fixed initial condition on a GEO orbit;M1 represents
the desired Moon orbit; and h(t f ) is the Hamiltonian of the PMP evaluated at the
final point. The two point boundary conditions for the arrival point, x(t f ) and p(t f ),
can be written as

(x f + µ − 1)2 + y2f − r21 = 0,

ẋ2f + ẏ2f − v21 = 0,

(x f + µ − 1)ẋ f + y f ẏ f = 0,

(x f + µ − 1)py f − y f px f + ẋ f pẏ f − ẏ f pẋ f = 0,

(8)
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where r1 is the radius of the arrival Moon orbit and v1 =
√
µ/r1 the correspond-

ing velocity for the circular orbit, x(t f ) = (x f , y f , ẋ f , ẏ f ) are the coordinates of
the spacecraft and p(t f ) = (px f , py f , pẋ f , pẏ f ) is the adjoint vector, both evalu-
ated at t f , As in Sect. 2.1, we parameterize the position of the spacecraft on the
initial GEO orbit using its radius r0 and the angle θ0 ∈ [−π,π]. Hence, x0 =
(r0 cos θ0 − µ, r0 sin θ0,−v0 sin θ0, v0 cos θ0),with v0 =

√
(1 − µ)/r0. We will also

use: r0 = 0.109689855932071 and the corresponding v0 = 3.000969693845573 for
a GEO orbit. For the arrival Moon orbit, we consider r1 = 0.034 and v1 =

√
µ/r1 =

0.59786. First of all we need a good initial condition to start exploring type of solu-
tions. We have considered one of the local minima for the GEO to L1 transfer found
in Sect. 2.1: {t f , (x0, p0)}, and use it as initial guess for the GEO to MO problem.
For the initial condition to converge we use a slightly larger transfer time as initial
guess, i.e. t̂ f = t f + h. We have considered for ε = 10N:

⎧
⎨

⎩

t f = 1.483385683993085,
x0 = (r0 − µ, 0.0, 0.0, −v0),
p0 = (3.8349336494018, 1.7266950508752, 0.0764256922941, 0.1329597699146),

which corresponds to the transfer orbit shown on Fig. 27. Using this as initial guess
and taking as transfer time t̂ f = t f + h for h = 5 · 10−3, 5 · 10−2 and 10−1 we have
found three different classes of minimum time transfer solutions from GEO to MO.

1. For h = 5 · 10−3, transfer orbit on Fig. 28 left (blue curve):

t̂ f = 1.562091470465241,
x̂0 = (−0.1218428559320, 0.0000000000000, 0.0000000000000, −3.0009696938455),
p̂0 = (3.9285981330000, 1.6544784563269, 0.0734194613434, 0.1400883421876),

2. For h = 5 · 10−2, transfer orbit on Fig. 28 center (red curve):

t̂ f = 1.529347472081999,
x̂0 = (−0.1218428559320, 0.0000000000000, 0.0000000000000, −3.0009696938455),
p̂0 = (3.9217580218250, 1.6961685952114, 0.0750545446749, 0.1396207935397),
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Fig. 27 Transfer orbit from GEO to L1 that we use as initial condition for the GEO to MO transfer
problem (ε = 10N). Left {XY } projection of the trajectory, Right Jc variation
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Fig. 28 Transfer orbits form GEO to MO. Three different solutions found from the initial orbit
from Fig. 27. Top: {XY } projection of the trajectory, Bottom Jc variation

3. For h = 10−1, transfer orbit on Fig. 28 right (green curve):

t̂ f = 1.939506458073425,
x̂0 = (−0.1218428559320, 0.0000000000000, 0.0000000000000,−3.0009696938455),
p̂0 = (3.9733475979444, 1.7003282465180, 0.0751188225176, 0.1431121866550),

Note that for all transfer orbits in Fig. 28 the first phase of the transfer trajectory
(orbiting around the Earth) is the same. The difference is seen on the second part,
where we find two orbits that arrives to theMoon following a clockwise sense around
the Moon (blue and green orbits) and another orbit following an anticlockwise sense
(red orbit). Although we find two orbits that arrive to the Moon in a clockwise sense,
there is a big difference in the transfer time, the green orbit taking much more time
than the blue one. Moreover, the green orbit starts by approaching the Moon with an
anticlockwise orbit, then a cusp occurs (the velocity in the moving frame vanishes)
and the end of the trajectory winds again clockwise around the target. Finally, if
we look at the control law that produces these three transfer orbits (Fig. 29) we see
how these one is very similar to the first part of the transfer while a big difference
appears whenwe approach the L1 neighborhood. Therewe see how, different ways to
decelerate the growth in energy produce different outputs (i.e. transfer orbits). To fix
notation, from now on we will call: C1 the transfer trajectories that arrive to the MO
in a clockwise sense, (identified throughout this section by the color blue); C2 the
transfer trajectories that arrive to MO anti-clockwise (identified by the color red);
finally C3 transfer orbits similar to orbit 3 (green), possibly with one cusp before
capture by the Moon.
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Fig. 29 Control Law for the transfer orbits form GEO toMO. Three different solutions found from
the initial orbit from Fig. 27

3.1.1 Homotopy w.r.t. θ0

Here we have taken the three local minimum time transfer trajectories that appear
in Fig. 28 (type C1,C2 and C3), and as in Sect. 2, we have done an homotopy with
respect to the initial position on the GEO orbit, θ0. All three initial orbits are for
ε = 10N and θ0 = π , we recall that the initial position on the GEO orbit is given by:

x0 = (r0 cos θ0 − µ, r0 sin θ0,−v0 cos θ0, v0 sin θ0).

To do this homotopy we proceed as we did in Sect.2 and compute (if possible) the
homotopic path for θ = π '→ 21π and θ = π '→ −21π , taking small intervals of
size 2π to increase the precision. In Figs. 30, 31 and 32 we see the projection of
these curves in the θ0 versus t f space. The points in black on the 3 curves are the
local minima of these curves, and will be candidates for local minimum time transfer
trajectories when the initial condition on the GEO orbit is not fixed (Sect. 3.2). The
initial conditions for these local minima are summarized in Tables27, 28 and 29.

As we can see, the behavior of these three curves has similarities to the results for
the GEO to L1 transfer for ε = 10. Notice how as θ0 increases so does the transfer
time, t f , and as θ0 decreases t f decreases up to a certain value θ∗

0 , there t f will
start to increase drastically for small variations of θ0 up to some point where the
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(right) for GEO to MO transfer trajectories of type C1
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Fig. 32 For ε = 10: projection of the homotopic path θ0 versus t f (left) θ0(mod 2π ) versus t f
(right) for GEO to MO transfer trajectories of type C3

homotopic curve has a turning point. The only difference between the three curves
is that for a given θ∗

0 the minimum transfer time is different for the three kind of
trajectories. In Fig. 39 we can see the three homotopic paths on the same figure, and
we can appreciate how in terms of transfer time C1 is always below C2, which is
always below C3. For each of the three homotopic curves, in Tables 15, 16, 17, 18,
19, 20, 21, 22 and 23 we have the initial conditions {t f , x0, p0} for the local minima
for θ0 = π, 0,π/2 and 3π/2. In Figs. 33, 35 and 37 we have the transfer trajectories
from the three homotopic curves for different initial conditions for θ0( mod 2π) = 0.
As we can see, for each class, the trajectories along the homotopic path remain of
the same class, i.e. the insertion sense on the MO remains always the same for all
the orbits on the curve. Moreover, as we can see for each class we also find two
type of trajectories, that we can call T1 and T2. Type T1 are trajectories that in the
first phase spiral around the Earth to gain Jc and then go directly towards the Moon,
passing close to L1. TypeT2 are trajectories that do some turns around the Earth and
then do a large excursion before heading towards the Moon. In Figs. 34, 36 and 38
we show the variation of Jc along time for the trajectories that we find in Figs. 33,
35 and 37 respectively. As we can see, for type T1 trajectories Jc(t) decreases and
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Fig. 33 For class C1: Transfer trajectories for ε = 10N and θ0 = 0 fixed. The initial condition on
the GEO orbit is x0 = (−r0 − µ, 0, 0, v0)
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Fig. 34 For class C1: Variation of Jc for ε = 10N and θ0 = 0 fixed. The initial condition on the
GEO orbit is x0 = (−r0 − µ, 0, 0, v0)

gains energy while they spiral around the Earth and when Jc(t) is slightly larger
than Jc(L1) this one starts to decreases to meet Jc of the MO. On the other hand,
for the type T2 trajectories, Jc(t) will reach much larger values than Jc(L1) before
decreasing to get to the MO.We recall that the main difference between the behavior
of the three classes of transfer trajectories C1 (blue), C2 (red) and C3 (green) is the
transfer time. As we can see in Fig. 39 for a fixed θ0, the transfer time for class C2

orbits is always less than for class C1 and class C3. But there are three cases where
these curves intersect each other. Hence, we have trajectories of a different class
with the same transfer time (i.e. cost function). It might be interesting to study in
more detail these intersections as we have two different classes of strategies with the
same cost. In Fig. 40 we have the transfer trajectories and the energy variations of
the trajectories corresponding to the 3 intersections that we see in Fig. 39, from left
to right C1 ∩ C2, C1 ∩ C3 and C2 ∩ C3. As before the color of the orbit is related to
its class (C1 are in blue, C2 are in red and C3 are in green).

Finally, we have done a small exploration on different characteristics for the
minimum time−transfer trajectories that appear in Figs. 30, 31 and 32, where for
each orbit we have computed the maximal value for Jc along the orbit, the norm of
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Fig. 35 For class C2: Transfer trajectories for ε = 10N and θ0 = 0 fixed. The initial condition on
the GEO orbit is x0 = (−r0 − µ, 0, 0, v0)
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Fig. 36 For class C2: Variation of Jc for ε = 10N and θ0 = 0 fixed. The initial condition on the
GEO orbit is x0 = (−r0 − µ, 0, 0, v0)

the adjoint vector at t0, |p(t0)|, and the number of turns the trajectory gives around
the Earth before the trajectory goes towards theMoon. These results are summarized
in Figs. 41, 42 and 43 for classC1,C2 andC3 respectively, where we can see a similar
behavior as the GEO to L1 transfer.

3.1.2 Homotopy w.r.t. ε

Given the fact that the transfer time for class C3 (green) is larger than the transfer
time for the other two classes of orbits, from now on we will focus only on the
classes C1 and C2. We recall that we can distinguish these two classes by the sense
of insertion on a Moon orbit (blue = clockwise, red = anticlockwise). In this section
we have taken the different solutions for ε = 10N and a fixed initial condition: θ0
mod (2π) = 0 and π . The initial conditions are summarized in Tables15 and 16
for class C1 and Tables19 and 20 for class C2. For each of the initial conditions we
have performed a homotopy with respect to ε from 10N to 1N. In Fig. 44 and 45 we
summarize the results for class C1 and class C2 respectively. As we can see, at a first
sight, in both cases the behavior is similar to the one found for GEO to L1 transfer
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Fig. 37 For class C3: Transfer trajectories for ε = 10N and θ0 = 0 fixed. The initial condition on
the GEO orbit is x0 = (−r0 − µ, 0, 0, v0)
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Fig. 38 For class C3: Variation of Jc for ε = 10N and θ0 = 0 fixed. The initial condition on the
GEO orbit is x0 = (−r0 − µ, 0, 0, v0)
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Fig. 39 For ε = 10N: homotopic path θ0 versus t f for C1 (blue), C2 (red) and C3 (green)

trajectories (Sect. 2). So in both cases, as ε decreases the transfer time, t f , increases.
In some cases, at some point the slope of ε(t f ) experiences a drastic change and t f
increases very quickly for small variations of ε. Then at some point the homotopic
curve has a turning point and ε grows, not being able to find solutions for lower
values of ε. Nevertheless, there are other curves where ε decreases with no problem
reaching ε = 1N.
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Fig. 40 Transfer trajectories of the intersections between the homotopic path in Fig. 39. Top plots
transfer trajectories and the associated control law; Bottom plots variation of Jc w.r.t. time. From
left to right C1 ∩ C2, C1 ∩ C3 and C2 ∩ C3. The color of the curves is associated to the class, blue
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Fig. 41 For class C1 and ε = 10N from left to right θ0 versus maxt∈[t0:t f ](Jc(t)), θ0 versus NET
and θ0 versus |p(t0)|
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Fig. 42 For class C2 and ε = 10N from left to right θ0 versus maxt∈[t0:t f ](Jc(t)), θ0 versus NET
and θ0 versus |p(t0)|

The main difference between the two class of orbits, appears in the region where
ε ∈ [1 : 2]. While for class C1 the behavior is as we have mentioned, for class C2 the
homotopic path experiences turning points and self-intersections, finding for some
of these curves cut points for a fixed θ0. In Fig. 46 we have zoomed these area for both
class of orbits and θ0 = 0, but the same phenomena is observed for θ0 = π . In Figs. 47
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Fig. 43 For class C3 and ε = 10N from left to right θ0 versus maxt∈[t0:t f ](Jc(t)), θ0 versus NET
and θ0 versus |p(t0)|
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Fig. 44 For class C1: Homotopy with respect to ε for θ0 fixed, θ0 = 0 (left), θ0 = π (right)
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Fig. 45 For class C2: Homotopy with respect to ε for θ0 fixed, θ0 = 0 (left), θ0 = π (right)

and 49 we show the type of solutions that we find along one of the homotopic curves
of Figs. 44 and 45 respectively, for θ0 = 0 fixed, and varying ε. The plots correspond
to the homotopy path starting by: θ0 = 0 and k = 12 from Table16 for the class
C1, and θ0 = 0 and k = 12 from Table20 for the class C2. Both cases correspond
to homotopic paths where ε(t f ) experiences two drastic changes. As we can see the
trajectories remain within their class along the homotopic path. We also notice that
on the first part of the path, the trajectories are of type T1. While when the slope of
the homotopic curve changes, the trajectories start to do big excursions before going
towards the Moon, i.e. type T2 trajectories appear. In Figs. 48 and 50, we show the
variation of Jc along time for the trajectories plotted in Figs. 47 and 49 respectively
(Tables 24, 25 and 26).
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Fig. 47 For classC1: Transfer trajectories fromGEO toMO for θ0 fixed and varying ε. Here θ0 = 0
and all the orbits belong to the homotopic curve generated by k = 12 from Table16 when we use
ε as the homotopy parameter

3.2 Free Initial Point on a GEO

In this section we summarize the results for a minimum-time transfer from a GEO
to a MO, where the position on the GEO orbit is left free. Hence, the Boundary
Conditions are:

x(t0) ∈ M0, p(t0) ⊥ Tx(t0)M0, x(t f ) ∈ M1, p(t f ) ⊥ Tx(t f )M1, h(t f ) = 0,
(9)

whereM0 represents the GEO orbit, andM1 the MO. The first two Boundary Con-
ditions are written as,
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Fig. 48 For class C1: Variation of the Jacobi constant along time for a transfer trajectories from
GEO to MO for θ0 fixed and varying ε. Here θ0 = 0 and all the orbits belong to the homotopic
curve generated by k = 12 from Table16 when we use ε as the homotopy parameter
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Fig. 49 For classC2: Transfer trajectories fromGEO toMO for θ0 fixed and varying ε. Here θ0 = 0
and all the orbits belong to the homotopic curve generated by k = 12 from Table20 when we use
ε as the homotopy parameter

(x0 + µ)2 + y20 − r20 = 0,
ẋ20 + ẏ20 − v20 = 0,

(x0 + µ)ẋ0 + y0 ẏ0 = 0,
(x0 + µ)py0 − y0 px0 + ẋ0 pẏ0 − ẏ0 pẋ0 = 0,

(10)
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Fig. 50 For class C2: Variation of the Jacobi constant along time for a transfer trajectories from
GEO to MO for θ0 fixed and varying ε. Here θ0 = 0 and all the orbits belong to the homotopic
curve generated by k = 12 from Table20 when we use ε as the homotopy parameter

where x(t0) = (x0, y0, ẋ0, ẏ0) are the coordinates of the spacecraft and p(t0) =
(px0, py0, pẋ0, pẏ0) is the adjoint vector, both evaluated at t = t0. While the sec-
ond two:

(x f + µ − 1)2 + y2f − r21 = 0,
ẋ2f + ẏ2f − v21 = 0,

(x f + µ − 1)ẋ f + y f ẏ f = 0,
(x f + µ − 1)py f − y f px f + ẋ f pẏ f − ẏ f pẋ f = 0,

(11)

where x(t f ) = (x f , y f , ẋ f , ẏ f ) are the coordinates of the spacecraft and p(t f ) =
(px f , py f , pẋ f , pẏ f ) is the adjoint vector, both evaluated at t = t f . Moreover, r0
is the radius of the GEO orbit, r1 is the radius of the arrival Moon orbit and v0 =√
(1 − µ)/r0, v1 =

√
µ/r1 the corresponding velocities on the GEO and the arrival

MO so that the orbits are circular at first order.We recall that all the solutions found in
the previous section, for a fixed initial condition on the GEO orbit, are not necessarily
solutions of this problem. Only the local minima in the homotopic paths in Figs. 30,
31 and 32 are good initial guesses to find the local minima of this new problem. The
values for x(t0), p(t0) are summarized in Tables27, 28 and 29 for classes C1,C2 and
C3 respectively and ε = 10N. In this section we have taken some of the local minima
of the homotopic curve for ε = 10N and classC1 andC2, and performed homotopies
with respect to the thrust magnitude ε ∈ [1 : 10]. For both class of transfer orbits
we have taken as initial condition the local minima numbers 5, 6 and 7 in Tables27
and 28. On the left hand side of Fig. 51 we can these homotopic paths. As usual,
the curve in blue represents the solution for class C1 transfer orbits and the curve
in red the solutions for class C2 transfer orbits. Notice that the red curve is always
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Fig. 51 Homotopy w.r.t. ε for transfers orbit from GEO to MO. Left Local minimum for θ0 free.
Right Comparison between the local minima for θ0 free and θ0 fixed. Top results for class C1, θ0
free (blue line) and θ0 fixed (green andmagenta lines). Bottom results for class C2, θ0 free (red line)
and θ0 fixed (green and magenta lines)

bellow the blue curve, hence, the class C2 transfer trajectories are always better than
the class C1 ones. Also notice that the red curve presents a more complex structure
for ε ∈ [1 : 3]N. It can be seen that, as it happened for the GEO to L1 transfer, all
the solutions generated by the local minima number 5 are T1 type transfer orbits,
while solutions generated by local minima number 6 and 7 are type T2 transfer
orbits. Moreover, when we let θ0 free these two type of solutions do not connect if
we compute the homotopic paths varying ε. On the right hand side of Fig. 51 we
compare for both class of trajectories, C1 (top) and C2 (bottom), the solutions for θ0
free and θ0 fixed. As we can see, in both cases, the curve for θ0 free is always below
the curves for θ0 fixed. In Figs. 52 and 53 we have zoomed different areas of these
two curves for comparisons, class C1 and C2 respectively. In both cases, the curves
for θ0 free present self-intersections, i.e. cut point candidates. Although the structure
for C2 is much more complex presenting different kind of self-intersections. In the
next section we will study in more detail these phenomena.

3.3 Cut Points

As we can appreciate in Figs. 52 and 53, for both classes (C1 and C2) the homotopic
paths for the GEO to MO transfer with θ0 free have several turning points and the
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Fig. 52 For class C1: zoomed regions of the comparison between the local minima for θ0 free (blue
line) versus θ0 fixed (green and magenta lines)

path self-intersects several times. These intersections are cut point candidates. As in
Sect. 2.3, we call the couple {(x0, p0), (x1, p1)} a cut point, if they are two different
initial conditions such that for the same ε they generate two different local optimal
transfer orbits from GEO to MO with the same transfer time t∗f . We find these initial
conditions on the self-intersections on the projection of homotopic path ε versus t f ,
Figs. 52 and 53. To fix notation, (x0, p0) is the first point on the homotopic path
that reaches (ε, t f ) and (x1, p1) is the second point on the same curve that reaches
(ε, t f ). In Tables30 and 31 we summarize all the cut points that we have found for
ε ∈ [1, 10]N for class C1 and C2 respectively. All these points have been computed
by refining the intersections found in Figs. 52 and 53. Finally in Figs. 54 and 55 we
plot different projections of the homotopic path for the two class of orbits, and we
have highlighted in green the regions close to the different cut points.

We do the same analysis as in Sect. 2.3. First we have taken both solutions (x0, p0)
and (x1, p1) and compute the transfer trajectory, the variation of Jc(t), the control law
u(t) and (H1(t), H2(t)). Second we have integrated both trajectories backward and
forward in time on [−t f , 2t f ], where t f is the transfer time. We have also taken the
solutions in the neighborhood of the cut point and checked the variation of different
parameters. We recall, that as we did in Sect. 2.3, if ε∗, t∗f are the thrust magnitude
and the minimum transfer time for the cut point, we consider a solution to be in the
cut neighborhood if t f ∈ [t∗f − 0.15 : t∗f + 0.15]. In the Appendix “Summary of the
cut points on the GEO to MO transfer” we have the plots summarizing this analysis
for all the cut points. In this section we will only plot some of them and discuss



244 J.-B. Caillau and A. Farres

1 2 3 4 5 6 7

4

5

6

7

8

9

10

t
f

T m
ax

3 4 5 6 7 8 9
0.5

1

1.5

2

2.5

3

3.5

t
f

T m
ax

4 4.5 5 5.5 6 6.5
1

1.5

2

2.5

t
f

T m
ax

5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8
1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

t
f

T m
ax

Fig. 53 For class C2: zoomed regions of the comparison between the local minima for θ0 free (red
line) versus θ0 fixed (green and magenta lines)
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Fig. 54 Homotopy of the local minima of class C1, for the GEO to MO control problem. Left ε
versus t f , Center ε versus θ0, Right ε versus θ0 mod 2π

the most relevant results. In the case of class C1 orbits (Table30) all the cut points
are of the same kind and present, qualitatively, a similar behavior. This is why here
we only show the results for the cut point number 3. This cut point corresponds to
ε∗ ≈ 1.6073723 and t∗f ≈ 5.9023179 (see Table30). On the left hand side of Fig. 56
we have the homotopic curve and highlighted in green the region that we want to
study. On the right hand side of the Fig. we have 4 subplots, one is a zoom of the cut
point region showing t f versus ε, the other is the same zoom but plotting θ0 versus ε.
The two subplots on the bottom show θ0 versus NET and θ0 versus NZH , being NET

the number of turns around the Earth before Jc(t) > Jc(L1) and NZH the number of
times |(H1(t), H2(t))| is close to zero.
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Fig. 55 Homotopy of the local minima of class C2, for the GEO to MO control problem. Left ε
versus t f , Center ε versus θ0, Right ε versus θ0 mod 2π
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Fig. 56 C1 cut point no 3: Left t f versus ε homotopic curve with highlight of the cut passage
in green; Right versus analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right
subplot) θ0 versus ε, (bottom-left subplot) θ0 versus NET , (bottom-right subplot) θ0 versus NZH .
Red points are values corresponding the each cut point

In Fig. 57 we plot different aspects of both cut transfer trajectories. In all the
plots, the curves in blue correspond to the first cup point (x0, p0) and the curves in
red correspond to the second cut point (x1, p1). The three plots on the top show, from
left to right: the {x, y} projection of the transfer trajectory, the {ẋ, ẏ} projection of
the transfer trajectory and Jc(t) along the transfer trajectory. The three plots on the
bottom show, from left to right: the {x, y} projection of the transfer trajectory and
the control law u(t), the projection (H1, H2) and the variation of |(H1, H2)| along
the transfer trajectory. As we can see, the main difference between both trajectories
appears on the control law at the beginning of the transfer, where the second cut point
(red curve) experiences a drastic change.

In Fig. 58 we plot the integration backward in time (t ∈ [−t f : 0]) and forward
in time (t ∈ [0 : 2t f ]) for both transfer trajectories and the variation of Jc for each
of the trajectories. As we can see, when we integrate backwards in time, we have a
similar behaviors to the one experienced by the different cut points in the GEO to L1

transfer problem. We have that the first cut points spirals away form the Earth (red
curve) while the second cut points spirals towards the Earth (blue curve). This is also
reflected on the behavior of Jc(t)where in the first case will start to grow, while in the
second case this one will decrease. Moreover, this behavior is repeated for all the cut
points of class C1. If we look at the behavior of the two trajectories for t ∈ [0 : 2t f ],
it is true that there is a difference between the two trajectories. But as we can see in
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Fig. 57 C1 cut point no 3: blue orbits correspond to the first cut value and red orbits to the second
cut value. Top-Left {XY } projection of the transfer trajectory, Top-Center {Ẋ Ẏ } projection of the
transfer trajectory,Top-Right t versus Jc (energy variation along the transfer trajectory),Bottom-Left
control along the trajectory, Bottom-Center H1 versus H2, Bottom-Right t versus |(H1, H2)|
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Fig. 59 C2 cut point no 5: Left t f versus ε homotopic curve with highlight of the cut passage in
green; Right analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right subplot) θ0
versus ε, (bottom-left subplot) θ0 versus NET , (bottom-right subplot) θ0 versus NZH . Red points
are values corresponding the each cut point
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Fig. 60 C2 cut point no 6: Left t f versus ε homotopic curve with highlight of the cut passage in
green; Right analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right subplot) θ0
versus ε, (bottom-left subplot) θ0 versus NET , (bottom-right subplot) θ0 versus NZH . Red points
are values corresponding the each cut point

Appendix “Summary of the cut points on the GEO to MO transfer”, this behavior
does not show a distinctive pattern between the four cut points of class C1. On the
other hand, not all the cut points of class C2 (Table31) experience a similar behavior.
As the plots in Appendix “Summary of the cut points on the GEO to MO transfer”
show, we have cut point number 1, 2, 3, 4, 5, 8 and 9 that present a similar behavior
and cut points 6 and 7 that show another. Here we show the results for cut point 5 and
cut point number 6 and we will briefly comment on their main differences. A more
extensive study on these two kinds of cut points should be done in detail. In Figs.59
and 60 we plot the behavior of the trajectories close to the cut point for cut point
number 5 and 6 respectively. Where we have the on the right hand side the variation
of NET and NZH for the different solutions.

In Figs. 61 and 62 we see the behavior of the two transfer trajectories for cut point
number 5 and 6 respectively. As before, red is assigned to the first cut point (x0, p0)
and blue to the second one (x1, p1). On the top we have, from left to right, the {x, y}
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Fig. 61 C2 cut point no 5: blue orbits correspond to the first cut value and red orbits to the second
cut value. Top-Left {XY } projection of the transfer trajectory, Top-Center {Ẋ Ẏ } projection of the
transfer trajectory,Top-Right t versus Jc (energy variation along the transfer trajectory),Bottom-Left
control along the trajectory, Bottom-Center H1 versus H2, Bottom-Right t versus |(H1, H2)|
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Fig. 62 C2 cut point no 6: blue orbits correspond to the first cut value and red orbits to the second
cut value. Top-Left {XY } projection of the transfer trajectory, Top-Center {Ẋ Ẏ } projection of the
transfer trajectory,Top-Right t versus Jc (energy variation along the transfer trajectory),Bottom-Left
control along the trajectory, Bottom-Center H1 versus H2, Bottom-Right t versus |(H1, H2)|

projection, the {ẋ, ẏ} projection and the variation of Jc(t). On the bottom we have,
from left to right, the {x, y} projection and the control law u(t), (H1, H2) projection
and the variation of |(H1, H2)| along time. As we can see, for cut point number 5, the
main difference between the two cut trajectories is seen at the beginning of the orbit,
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where again we see a drastic change on the orientation of u. Which can be related to
|(H1, H2)| passing close to zero for one of the two trajectories. On the other hand,
for cut point number 6, the main difference between the two cut trajectories appears
at the end of the transfer, during the insertion to the Moon orbit. Where we can see
how the arrival point on the Moon orbit is very different for the two trajectories (i.e.
this is not the case in cut point number 5). Moreover, the control law is very different
at the end of the transfer, and the second cut point (red curve) experiences a drastic
change on its orientation.

Finally, in Figs. 63 and 64 we show for cut point number 5 and 6 respectively, the
behavior of the transfer trajectories whenwe integrate backward in time t ∈ [−t f : 0]
and forward in time t ∈ [0 : 2t f ]. As we can see, in the case of cut point number 5,
the difference between the two cut point appears when we look at the behavior of
the trajectories backward in time. Where we find similar results to the ones we have
already observed.While if we look at the behavior of the transfer trajectories forward
in time for cut point number 5 both are qualitatively the same. On the contrary, if we
look at the behavior of cut point number 6 backward in time, both trajectories have a
similar behavior, they both spiral away from the Earth and Jc(t) increases. But if we
look at their behavior forward in time we do see different behaviors between them.

To summarize, we can say that for class C1 transfer orbits, the cut points present
a similar behavior to the cut points that we found when we studied the GEO to L1

minimum-time transfer problem. Where the main difference between the two cut
points is found at the beginning of the transfer trajectory. On the other hand, for the
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Fig. 63 C2 cut point no 5: Top optimal solutions for t ∈ [−t f , 0] (XY projection and Jc variation),
Bottom optimal solutions for t ∈ [0, 2t f ] (XY projection and Jc variation)
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Fig. 64 C2 cut point no 6: Top optimal solutions for t ∈ [−t f , 0] (XY projection and Jc variation),
Bottom optimal solutions for t ∈ [0, 2t f ] (XY projection and Jc variation)

class C2 transfer orbits, the cut point structure is more complex. There are many type
of self-intersections and type of cut behavior. We find many cut points where the
behavior shows similarities with the cut points for class C1. But we also find two
cut points where the difference between the two transfer trajectories appears in the
second phase of the transfer, i.e. when we get to the Moon orbit. This is probably
because we enter this orbit in an anti-clock wise sense and the structure of the L1 to
Moon orbit has a similar behavior. Further studies in this direction should be done
in order to draw further conclusions.

3.4 Homotopy w.r.t r1

Here we have considered the minimum time solutions found for ε = 1N and θ0 free
found in Sect. 3.2. The trajectories of the transfer orbit for both classes are in Fig. 65.
We recall that the blue orbit corresponds to class C1 and the red orbit corresponds to
class C2. In this section we will perform homotopies of these solutions with respect
to r1 the size of the arrival orbit, to find transfer trajectories to a circular orbit closer to
the Moon. To be more specific, we have considered a transfer from GEO to circular
MO where the position on the departure and arrival orbits is not fixed. We recall that
the boundary conditions of these problem are written as:



On Local Optima in Minimum Time Control . . . 251

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

X

Y

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

X

Y

Fig. 65 Minimum-time transfer trajectories of class C1 (left) and class C2 (right), for ε = 1N , and
θ0 free

(x0 + µ)2 + y20 − r20 = 0,
ẋ20 + ẏ20 − v20 = 0,

(x0 + µ)ẋ0 + y0 ẏ0 = 0,
(x0 + µ)py0 − y0 px0 + ẋ0 pẏ0 − ẏ0 pẋ0 = 0,

(x f + µ − 1)2 + y2f − r21 = 0,
ẋ2f + ẏ2f − v21 = 0,

(x f + µ − 1)ẋ f + y f ẏ f = 0,
(x f + µ − 1)py f − y f px f + ẋ f pẏ f − ẏ f pẋ f = 0.

(12)

We recall that x(t0) = (x0, y0, ẋ0, ẏ0) and x(t f ) = (x f , y f , ẋ f , ẏ f ) are the coordi-
nates of the spacecraft at t = t0 and t f respectively; p(t0) = (px0, py0, pẋ0, pẏ0)
and p(t f ) = (px f , py f , pẋ f , pẏ f ) are the coordinates of the adjoint vector at t = t0
and t f respectively; r0 is the radius of the GEO, r1 the radius of the MO, and
v0 =

√
(1 − µ)/r0, v1 =

√
µ/r1 the corresponding velocities such that these orbits

are circular using the two-body problem approximation. In this work we have
used r0 = 0.109689855932071 for the GEO orbit and r1 = 0.034 for the MO,
which corresponds to r0 ≈ 42, 164 km and r1 ≈ 13, 069.6 km (we recall that
rM = 1, 737.10 km).We have performed an homotopy with respect to r1, from 0.034
to 0.015 (r1 = 0.015 corresponds to a MO of radius ≈ 5, 766 km). To perform this
homotopy we have also used the package hampath.

In Fig. 66 we show the homotopic curve found by varying r1, showing the pro-
jection t f versus r f . The blue curve corresponds to the path found for class C1

transfer orbits and the red curve to the path for class C2. Notice that for class C1

the curve decreases slowly having larger transfer times for smaller r1 as expected.
On the other hand, for class C2 orbits the curve presents a more complex structure.
It is still true that the transfer time increases as r1 gets smaller, but we find several
self-intersections. Having cut points and different local minimum solutions for the
same r1. A more detailed study on the structure of these “cut” points should be done.
Moreover, notice that the transfer time for class C2 is always smaller that the one for
class C1 orbits. In Fig. 67 we plot the two minimum-time transfer trajectories found
for ε = 1N and r1 = 0.015, each orbit corresponds to one class. For both orbits we
have also plotted the variation of Jc with respect to time. Notice that now Jc(t f ) is
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class C1 and in red solutions for class C2
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Bottom variation of Jc along the transfer trajectories. Left (and blue curves) class C1 trajectories,
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much smaller than Jc(L1). We can also see that in both cases, the transfer trajectory
is split in three phases. A first phase where the orbit spirals around the Earth and
gains Jc, a second phase where the orbit goes from the vicinity of the Earth to the
vicinity of the Moon, and a third phase where the orbit spirals towards the Moon
and Jc decreases. The difference between the two class of orbits would happen in
the second phase where the orbit chooses different kind of paths and control laws to
reach the Moon orbit.

Finally, in Fig. 68 we show the X,Y, Jc projection of different transfer trajectories
for ε = 1N. On the left hand side we have the two transfer orbits for r1 = 0.034 and
on the right hand side the two transfer orbits for r1 = 0.015. Here we can see clearly
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the structure of the transfer orbit, how Jc increases and decreases spiraling around
one of the primaries. The difference between the two plots can be seen in Jc(t f ) that
will vary from one problem to the other. This plot suggests that one might be able to
describe the strategies in terms of Jc(t0) and Jc(t f ).

4 Conclusion

The detailed numerical study conducted in Sects. 2 and 3 illustrates two features
of the three−body problem that are obviously due to the particular topology of the
two-body problem (as explained in the introduction, for typical boundary conditions
the controllability analysis of [5] entails that one can view the problem as two 2BP
coupled by an L1 target): (i) For a given level of thrust, a homotopy in the covering
of the angle defining the initial position on the initial orbit allows to unfold and
connect local minima associated to different rotation numbers; in particular, local
minima of different types (some with many revolutions around the primary, some
with large excursions—both clearly not globally minimizing) are indeed connected.
(ii) The systematic study of these local minima for fixed thrust level allows to con-
firm numerically that, when leaving the position free on the initial orbit (here the
geostationary one for all tests) and using a homotopy on the level of thrust, one actu-
ally follows a path of (at least seemingly) global optimizers for some time. When the
thrust is decreased sufficiently, one has to add an extra turn around the initial primary
at some point (and possibly around the target one as well), which could result in a
bifurcation of the path, or even lead to a discontinuity, that is to the requirement to
jump to another branch. It turns that the relevant phenomenon, at least for what is
observable in the current computations, is a classic swallowtail singularity [1]: No
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Fig. 69 Swallowtail singularity. On the first line, the global minimum is changed into a local one
(passing through a configuration with two equal global minima, corresponding to the first crossing
of the self intersection on the rightmost graph), then into a critical point which is neither a local
minimum or maximum (corresponding to the first cusp or turning point on the path). On the second
line, a branch of local maxima is described, up to another critical point (second cusp or turning
point). On the last line of subplots, local then global maxima are retrieved (passing now through
a configuration with two equal global minima corresponding to the second crossing of the self
intersection on the rightmost graph). All three rightmost subplots are schematic views of these
three connected branches of the (t f , ε)-path. In this optimal control setting, turning points are
associated with conjugate points while self-intersections correspond to cut points.

discontinuity is encountered, and the path connects the (apparently) global solutions
for, say, ε1 and ε2 (< ε1) by going through a branch of global then local minima
(change at a first cut point), a first turning point (which is also a conjugate point—
see the analysis in [5]—and is neither a local minimum or maximum), a branch of
local maxima, a second turning point (again a conjugate point), a branch of local
then global maxima (change at a second cut point with same cost as the previous
one). See Fig. 69 for a schematic picture. The rest of the picture consists of connect-
ing in the (t f , ε)-space such swallowtail singularities to form the global path (see,
e.g., Fig. 21). The typical cut-like point encountered in these situations correspond
to very similar though different control strategies; in particular, the two extremals
may have the same rotation numbers (see Fig. 22). But there is actually of wealth
of extremals corresponding to various structures of the control, and we are far from
understanding the global picture at this stage. (See for instance Fig. 40 illustrating
three different strategies for the same problem, possibly living on different branches
of the (t f , ε)-homotopy.)



On Local Optima in Minimum Time Control . . . 255

5 Tables for GEO to L1 Transfer Problem

Table 3 Cut Points for GEO to L1 minimum-time transfer problem
No t f ε (N) (x0, p0)

1 3.2044271 2.8177314
x0 = (−4.3004036e−02 1.0526195e−01 −2.8798280e+00 −8.4404363e−01)

p0 = (−8.0686913e+00 1.8446666e+01 −6.1769698e−01 −8.3732696e−02)

3.2044218 2.8177314
x1 = (7.7386132e−02 6.3360936e−02 −1.7334716e+00 2.4496725e+00)

p1 = (5.7983831e+00 8.0411480e+00 −1.3156893e−01 3.8933850e−01)

2 3.8375203 2.2761716
x0 = (−1.2063951e−01 1.6203154e−02 −4.4329690e−01 −2.9680477e+00)

p0 = (−4.4671254e+01 5.8135647e+00 −2.4592639e−01 −1.4365076e+00)

3.8375175 2.2761716
x1 = (5.2514551e−02 8.8600069e−02 −2.4239810e+00 1.7692189e+00)

p1 = (4.3721245e+00 1.1331595e+01 −3.5478899e−01 4.0145337e−01)

3 4.4722368 1.9042420
x0 = (−8.7103192e−02 −8.0089532e−02 2.1911439e+00 −2.0505383e+00)

p0 = (−5.5133744e+01 −5.7358673e+01 1.9780637e+00 −1.7979208e+00)

4.4722337 1.9042420
x1 = (6.9733651e−03 1.0800947e−01 −2.9549967e+00 5.2327211e−01)

p1 = (−6.5935699e−01 1.4254660e+01 −6.0595336e−01 2.2366696e−01)

4 5.1076234 1.6346218
x0 = (1.8465131e−03 −1.0879282e−01 2.9764280e+00 3.8300820e−01)

p0 = (1.2560860e+01 −1.2124635e+02 4.1425055e+00 6.4421919e−01)

5.1076249 1.6346218
x1 = (−4.7448985e−02 1.0385595e−01 −2.8413617e+00 −9.6565156e−01)

p1 = (−8.1438007e+00 1.4247984e+01 −7.4247922e−01 −1.3165896e−01)

5 5.7431841 1.4309308
x0 = (7.7334294e−02 −6.3434128e−02 1.7354740e+00 2.4482543e+00)

p0 = (1.3695137e+02 −1.0313743e+02 3.3137469e+00 4.9871067e+00)

5.7431642 1.4309308
x1 = (−9.5138164e−02 7.1730935e−02 −1.9624637e+00 −2.2703646e+00)

p1 = (−1.5939313e+01 9.6554337e+00 −6.4632581e−01 −5.7341753e−01)

6 6.3789344 1.2718365
x0 = (9.5773675e−02 1.9588193e−02 −5.3590712e−01 2.9527314e+00)

p0 = (2.2901189e+02 3.4599146e+01 −1.7065479e+00 7.9999291e+00)

6.3789252 1.2718365
x1 = (−1.2039301e−01 1.7775384e−02 −4.8631103e−01 −2.9613039e+00)

p1 = (−2.0965394e+01 2.8593691e−01 −2.6964121e−01 −9.3925785e−01)

7 7.0149950 1.1442218
x0 = (5.1158197e−02 8.9574309e−02 −2.4506349e+00 1.7321108e+00)

p0 = (1.8011622e+02 2.3963981e+02 −8.8959222e+00 5.8951334e+00)

7.0149569 1.1442218
x1 = (−1.1314330e−01 −4.2811500e−02 1.1712661e+00 −2.7629612e+00)

p1 = (−2.0185746e+01 −1.1936458e+01 3.2074658e−01 −1.0480066e+00)

Results obtained from Fig. 18

Table 4 Initial conditions for minimum-time transfer orbits for ε = 10N and θ0 = 0 (fixed)
k t f p0

1 2.5599110579 (−8.10302600967e+00, 3.02060685402e−01, 7.51746305081e−03, −2.72282719406e−01)

2 2.4917687101 (−7.99512361116e+00, 3.62833827849e−01, 9.87071526042e−03, −2.70747978337e−01)

3 2.4189259511 (−7.77134183976e+00, 4.70243193749e−01, 1.38944882768e−02, −2.63770704241e−01)

4 2.3422687228 (−7.61830506790e+00, 5.25624650131e−01, 1.59953031798e−02, −2.60958013110e−01)

5 2.2591797538 (−7.35595976228e+00, 6.30264231036e−01, 1.98961901745e−02, −2.53456263812e−01)

6 2.1709334950 (−7.11929765212e+00, 6.79535789150e−01, 2.16728858950e−02, −2.48023436490e−01)

7 2.0733748800 (−6.78411359981e+00, 7.70584361967e−01, 2.49883101080e−02, −2.38936843908e−01)

8 1.9682235824 (−6.37730302696e+00, 8.14920691231e−01, 2.63907417363e−02, −2.27864801770e−01)

(continued)
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Table 4 (continued)
k t f p0

9 1.8483950863 (−5.88075426291e+00, 8.70998413743e−01, 2.81742195599e−02, −2.14116786836e−01)

10 1.7156981531 (−5.06426694761e+00, 9.19001172403e−01, 2.92798458710e−02, −1.89107342495e−01)

11 1.5565271364 (−4.11188635118e+00, 8.96978816242e−01, 2.74753371581e−02, −1.59911895051e−01)

12 1.3726059062 (−1.28979835829e+00, 1.13483961580e+00, 3.40752669425e−02, −6.71095824899e−02)

13 1.6797923278 (2.06357664128e+02, 4.43098626559e+00, 3.96574729885e−01, 7.29822417118e+00)

14 2.7126920399 (3.46017661782e+00, −2.74792593807e+00, −1.17714841093e−01, 3.75634764455e−02)

15 2.8397955185 (−2.03473423827e+00, −2.51445819123e+00, −1.05824599138e−01, −1.77547444466e−01)

Here, x0 = (9.7536855, 0.00, 0.00, 3.0009696)

Table 5 Initial conditions for minimum-time transfer orbits for ε = 10N and θ0 = π/2 (fixed)
k t f p0

1 2.5572956763 (−2.44641634194e−01, −1.01506238330e+01, 4.12858647068e−01, 9.76331017638e−03)

2 2.4886728553 (−1.89607461766e−01, −1.00207778997e+01, 4.08352174314e−01, 7.44373886471e−03)

3 2.4160055626 (−1.58685283710e−01, −9.88623604487e+00, 4.05766385543e−01, 6.13888229610e−03)

4 2.3384047229 (−9.13707083469e−02, −9.68400986037e+00, 3.98201189251e−01, 3.23659167759e−03)

5 2.2550784768 (−4.14972187431e−02, −9.48955468735e+00, 3.93446236657e−01, 1.11399808019e−03)

6 2.1651688933 (3.84033740410e−02, −9.16568566700e+00, 3.80989948634e−01, −2.44111301378e−03)

7 2.0665590453 (1.14827639931e−01, −8.85889814521e+00, 3.71852942749e−01, −5.75137698271e−03)

8 1.9585116066 (2.08588953344e−01, −8.30708874791e+00, 3.50763039836e−01, −1.01280325044e−02)

9 1.8359151993 (3.21190272472e−01, −7.76041413477e+00, 3.31853813310e−01, −1.51754873201e−02)

10 1.6977423611 (4.38111145210e−01, −6.68069683079e+00, 2.92026306333e−01, −2.10584817444e−02)

11 1.5315914535 (5.95238470964e−01, −5.50225170504e+00, 2.47157039202e−01, −2.86754751281e−02)

12 1.3337000522 (8.41013821159e−01, −2.36998678661e+00, 1.40666039253e−01, −4.16602092444e−02)

13 2.4460134134 (−3.41756924766e+00, 9.30607903262e+01, −3.30975784324e+00, 2.28357418848e−01)

14 2.6648851780 (1.04603325391e+00, 1.15237952755e+01, −5.20036306956e−01, −3.77212192660e−02)

15 2.7603423501 (2.59359121331e+00, 6.50388228992e+00, −3.36307995906e−01, −1.04272573878e−01)

Here, x0 = (−0.0121530, 0.10968985,−3.000969693, 0.00)

Table 6 Initial conditions for minimum-time transfer orbits for ε = 10N and θ0 = π (fixed)
k t f p0

1 2.5527521947 (1.06375513461e+01, 1.47617758655e+00, 5.76423437473e−02, 4.26278852503e−01)

2 2.4822720399 (1.04148331743e+01, 1.51294121857e+00, 5.94360744304e−02, 4.15282668813e−01)

3 2.4076155799 (1.01096843737e+01, 1.56726510132e+00, 6.19943495282e−02, 4.01904923185e−01)

4 2.3275603558 (9.79781572723e+00, 1.59332432531e+00, 6.34927961111e−02, 3.86869947665e−01)

5 2.2416129890 (9.40007362986e+00, 1.65348347180e+00, 6.64030056517e−02, 3.69487185012e−01)

6 2.1483459356 (8.93393057118e+00, 1.66987158824e+00, 6.77164579804e−02, 3.48137299904e−01)

7 2.0461306463 (8.40135607228e+00, 1.72740096089e+00, 7.07069439315e−02, 3.24679976788e−01)

8 1.9331012440 (7.61364755861e+00, 1.74635539983e+00, 7.24930725671e−02, 2.91092295102e−01)

9 1.8052056817 (6.83154051800e+00, 1.76666004320e+00, 7.43502285645e−02, 2.56569966663e−01)

10 1.6583042568 (5.29715773055e+00, 1.81736951791e+00, 7.81883129707e−02, 1.94875672822e−01)

11 1.4833856840 (3.83493364971e+00, 1.72669505097e+00, 7.64256922974e−02, 1.32959769935e−01)

12 1.2663896517 (−6.72434494581e−01, 1.82222989708e+00, 8.21403775003e−02, −4.33956185640e−02)

13 2.7731212505 (−6.53927977825e+00, −3.06988032726e+00, −1.17632989071e−01, −2.73303542519e−01)

14 2.8708627397 (−4.21419866917e+00, −3.15031550790e+00, −1.19145737733e−01, −2.14919176388e−01)

Here, x0 = (−0.1218428559, 0.00, 0.00,−3.00096969)
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Table 7 Initial conditions for minimum-time transfer orbits for ε = 10N and θ0 = −π/2 (fixed)
k t f p0
1 2.5907703198 (−1.61091775746e+00, 8.96037592684e+00, −3.04417077032e−01,

6.67655131141e−02)

2 2.5224151691 (−1.55066132206e+00, 8.65746432330e+00, −2.90472826121e−01,
6.48366258398e−02)

3 2.4501991195 (−1.47912650562e+00, 8.34215239832e+00, −2.75824570744e−01,
6.24872471641e−02)

4 2.3732312047 (−1.38995583017e+00, 7.99971550025e+00, −2.60564073245e−01,
5.94653100445e−02)

5 2.2909754645 (−1.31509971463e+00, 7.55737613122e+00, −2.40862906381e−01,
5.71424148173e−02)

6 2.2024783905 (−1.18473581289e+00, 7.17707239902e+00, −2.24753134059e−01,
5.25318628076e−02)

7 2.1060684965 (−1.09371385568e+00, 6.54755398598e+00, −1.97864122169e−01,
4.97973648749e−02)

8 2.0011242565 (−9.22196318408e−01, 6.07973280392e+00, −1.79300208002e−01,
4.36502684663e−02)

9 1.8831711949 (−7.94589175887e−01, 5.15470225726e+00, −1.41779328238e−01,
3.98082008222e−02)

10 1.7521393123 (−5.80577218930e−01, 4.42683184881e+00, −1.14541558497e−01,
3.22645112679e−02)

11 1.5971627494 (−3.91234096149e−01, 2.89940049164e+00, −5.62359857709e−02,
2.66110707927e−02)

12 1.4178043955 (−7.38577985007e−02, 1.04802410397e+00, 1.11883639221e−02,
1.54629906135e−02)

13 1.2200224705 (6.62105764118e−01, −4.51174644544e+00, 2.10821364039e−01,
−1.97873327616e−02)

14 2.7726988590 (1.56502812470e+00, −2.70258668378e+00, −2.67064625097e−03,
−5.02608779760e−02)

15 2.8760265384 (1.98895030587e+00, 6.05889722576e−01, −1.29117271405e−01,
−7.01041330191e−02)

Here, x0 = (−0.012153,−0.10968985, 3.0009696, 0.00)
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Table 8 Initial conditions for minimum-time transfer orbits for ε = 1N and θ0 = 0 (fixed)

k t f p0

1 1.1734093510e+01 (−5.00293794181e+01, −8.92810787059e+00, −3.59642774825e−01,
−1.86911263217e+00)

2 1.1552149062e+01 (−4.64542148014e+01, −8.85541434942e+00, −3.57354266774e−01,
−1.68458131918e+00)

3 1.1366823527e+01 (−4.27162042580e+01, −8.50085033910e+00, −3.43959041446e−01,
−1.49382338146e+00)

4 1.1178437340e+01 (−3.90281882445e+01, −7.78774378223e+00, −3.16398638411e−01,
−1.30767766999e+00)

5 1.0987120064e+01 (−3.51231910879e+01, −6.81437528378e+00, −2.78577923093e−01,
−1.11807707778e+00)

6 1.0793552884e+01 (−3.14356984450e+01, −5.56528120994e+00, −2.29828878667e−01,
−9.43717166154e−01)

7 1.0597583348e+01 (−2.79786185901e+01, −4.07511367761e+00, −1.71505714926e−01,
−7.88549733091e−01)

8 1.0399786390e+01 (−2.46548436680e+01, −2.46000281169e+00, −1.08203666943e−01,
−6.47556492294e−01)

9 1.0200113173e+01 (−2.19410610646e+01, −7.51713433563e−01, −4.10953162593e−02,
−5.43897525038e−01)

10 9.9985467473e+00 (−1.93444226096e+01, 9.50690537301e−01, 2.58472323136e−02,
−4.54373346619e−01)

11 9.7951297247e+00 (−1.73746355786e+01, 2.54951122509e+00, 8.88514567696e−02,
−4.02551176887e−01)

12 9.5893495406e+00 (−1.55102319471e+01, 4.03093493029e+00, 1.47292632024e−01,
−3.63484827095e−01)

13 9.3811110629e+00 (−1.41307893780e+01, 5.24777692114e+00, 1.95387270812e−01,
−3.53693100684e−01)

14 9.1697915366e+00 (−1.24787976530e+01, 6.30173897074e+00, 2.37044906641e−01,
−3.40124616465e−01)

15 8.9564212414e+00 (−9.96070518965e+00, 7.14686809501e+00, 2.70390736552e−01,
−3.01555539885e−01)

16 8.7418485088e+00 (−6.83558281878e+00, 7.74226722168e+00, 2.93836955496e−01,
−2.47118606219e−01)

17 8.5274300169e+00 (−2.87799323127e+00, 8.02137698122e+00, 3.04743143954e−01,
−1.67260037676e−01)

18 8.3147860737e+00 (2.35469713546e+00, 7.93462860048e+00, 3.01178035452e−01,
−4.34661909985e−02)

19 8.1065871814e+00 (9.08133786760e+00, 7.45204156306e+00, 2.82147510584e−01,
1.35684066835e−01)

Here, x0 = (9.7536855, 0.00, 0.00, 3.0009696)
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Table 9 Initial conditions for minimum-time transfer orbits for ε = 1N and θ0 = π/2 (fixed)
k t f p0
1 1.1617836482e+01 (−5.86265374666e−01, −3.55563514170e+01,

1.05337756761e+00, 1.33730970732e−02)

2 1.1448706422e+01 (−1.95081480500e+00, −3.38390778413e+01,
1.00258679684e+00, 6.71037566339e−02)

3 1.1278103045e+01 (−3.20864825547e+00, −3.26693195566e+01,
9.81204357826e−01, 1.16722579010e−01)

4 1.1106156553e+01 (−4.35464384443e+00, −3.14871164620e+01,
9.65464703194e−01, 1.61949064207e−01)

5 1.0932241536e+01 (−5.31187787666e+00, −3.08348948035e+01,
9.76384410476e−01, 1.99807373235e−01)

6 1.0756369590e+01 (−6.10327738038e+00, −3.00934747065e+01,
9.88636669326e−01, 2.31120029517e−01)

7 1.0577724397e+01 (−6.66192909273e+00, −2.97815306058e+01,
1.02109064306e+00, 2.53299344487e−01)

8 1.0396252516e+01 (−7.00372755398e+00, −2.93378374216e+01,
1.05145175237e+00, 2.66902151015e−01)

9 1.0210946491e+01 (−7.11002130272e+00, −2.91066374962e+01,
1.09142290415e+00, 2.71227569949e−01)

10 1.0021678797e+01 (−6.95232923626e+00, −2.87290157156e+01,
1.12625828544e+00, 2.65104252329e−01)

11 9.8273162387e+00 (−6.57280516945e+00, −2.82964650663e+01,
1.15892547212e+00, 2.50208359620e−01)

12 9.6276234212e+00 (−5.90387876777e+00, −2.76421558052e+01,
1.18053824596e+00, 2.23843275857e−01)

13 9.4214770376e+00 (−5.02818856177e+00, −2.65752199328e+01,
1.18564798030e+00, 1.89258893999e−01)

14 9.2093222798e+00 (−3.92185928576e+00, −2.45693574627e+01,
1.15400456124e+00, 1.45449008253e−01)

15 8.9910694916e+00 (−2.55235178987e+00, −2.15715237005e+01,
1.08180604209e+00, 9.11178102638e−02)

16 8.7671882439e+00 (−9.03453037648e−01, −1.75530736265e+01,
9.65375348447e−01, 2.56172123980e−02)

17 8.5383024028e+00 (1.01520847489e+00, −1.20346776264e+01,
7.83887782000e−01, −5.07298023085e−02)

18 8.3056624144e+00 (3.15812939064e+00, −4.39749794305e+00,
5.11247116113e−01, −1.36177598815e−01)

19 8.0723986254e+00 (5.42827481965e+00, 6.63751133717e+00,
9.73408800576e−02, −2.26732255341e−01)

Here, x0 = (−0.0121530, 0.10968985,−3.000969693, 0.00)
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Table 10 Initial conditions for minimum-time transfer orbits for ε = 1N and θ0 = π (fixed)
k t f p0
1 1.1646032796e+01 (4.35820317970e+01, −6.97203875251e+00,

−2.67592133177e−01, 1.66301217141e+00)

2 1.1485236628e+01 (4.37585430926e+01, −6.69039944005e+00,
−2.56610149092e−01, 1.70903376102e+00)

3 1.1321046566e+01 (4.37240293957e+01, −6.25620042964e+00,
−2.39574105051e−01, 1.74655569983e+00)

4 1.1152733288e+01 (4.37675745318e+01, −5.62229590496e+00,
−2.14649926510e−01, 1.78436089077e+00)

5 1.0980154177e+01 (4.35089211994e+01, −4.82799184320e+00,
−1.83347465212e−01, 1.80865451918e+00)

6 1.0802454544e+01 (4.32226530120e+01, −3.84571340396e+00,
−1.44603533348e−01, 1.82732965694e+00)

7 1.0619484295e+01 (4.25243806843e+01, −2.70997766117e+00,
−9.97386371548e−02, 1.82657605409e+00)

8 1.0430292744e+01 (4.16628910456e+01, −1.40939476929e+00,
−4.83235458265e−02, 1.81245666478e+00)

9 1.0234702320e+01 (4.02817932505e+01, 1.81467268683e−02,
8.18204640558e−03, 1.77302515080e+00)

10 1.0031771052e+01 (3.84999672540e+01, 1.54946772480e+00,
6.88626431563e−02, 1.70778591237e+00)

11 9.8212253563e+00 (3.60965807585e+01, 3.15294489415e+00,
1.32484589900e−01, 1.61129767954e+00)

12 9.6024262387e+00 (3.30037280021e+01, 4.73129817551e+00,
1.95230574044e−01, 1.47523999498e+00)

13 9.3749180129e+00 (2.91609229803e+01, 6.27129559125e+00,
2.56569834778e−01, 1.30076781743e+00)

14 9.1390248144e+00 (2.39414709043e+01, 7.67238191823e+00,
3.12601135363e−01, 1.06314010901e+00)

15 8.8950906687e+00 (1.75803390429e+01, 8.84229708176e+00,
3.59632148056e−01, 7.70429590121e−01)

16 8.6444531496e+00 (9.88532815690e+00, 9.64112370784e+00,
3.92074238174e−01, 4.16075141018e−01)

17 8.3893607950e+00 (2.91016617542e−01, 9.91527824166e+00,
4.03440280820e−01, −1.84749248199e−02)

18 8.1349942117e+00 (−1.21682629238e+01, 9.49406823282e+00,
3.85908930770e−01, −5.63637830626e−01)

19 7.8908221594e+00 (−2.81958350894e+01, 8.32334870019e+00,
3.37763204171e−01, −1.23276529113e+00)

Here, x0 = (−0.1218428559, 0.00, 0.00,−3.00096969)
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Table 11 Initial conditions for minimum-time transfer orbits for ε = 1N and θ0 = −π/2 (fixed)
k t f p0

1 1.1836259008e+01 (1.23953384370e−01, 5.58014204190e+01, −2.34355121544e+00,
7.31217010374e−04)

2 1.1668173067e+01 (−1.12637871873e+00, 5.49368632729e+01, −2.31314733956e+00,
5.02034025451e−02)

3 1.1494977738e+01 (−2.43013759564e+00, 5.37800558199e+01, −2.26636836799e+00,
1.01834227745e−01)

4 1.1316444909e+01 (−3.73867482357e+00, 5.21481628093e+01, −2.19301350363e+00,
1.53734809391e−01)

5 1.1132147759e+01 (−5.03123349646e+00, 5.02184792008e+01, −2.10070221912e+00,
2.05060506552e−01)

6 1.0942085363e+01 (−6.24652949505e+00, 4.76050485755e+01, −1.97431837106e+00,
2.53439391801e−01)

7 1.0745912324e+01 (−7.30567854186e+00, 4.47349782782e+01, −1.82838840429e+00,
2.95710475343e−01)

8 1.0543714233e+01 (−8.17915954565e+00, 4.11508108368e+01, −1.64832839207e+00,
3.30754209295e−01)

9 1.0335506711e+01 (−8.76509910607e+00, 3.70540225185e+01, −1.44156444675e+00,
3.54525410401e−01)

10 1.0121474693e+01 (−8.97432560521e+00, 3.27551946459e+01, −1.22143574046e+00,
3.63463384917e−01)

11 9.9019153074e+00 (−8.80015208947e+00, 2.76983915872e+01, −9.71301869386e−01,
3.57354768910e−01)

12 9.6774814837e+00 (−8.16195680841e+00, 2.27577796399e+01, −7.26323848357e−01,
3.32910646341e−01)

13 9.4484234174e+00 (−7.06575685391e+00, 1.75955941388e+01, −4.79250762317e−01,
2.90388230931e−01)

14 9.2155352697e+00 (−5.60762563079e+00, 1.23669861038e+01, −2.38161479064e−01,
2.33535020863e−01)

15 8.9795679223e+00 (−3.77052273681e+00, 7.74479647932e+00, −3.49039253972e−02,
1.61528029972e−01)

16 8.7414772457e+00 (−1.71785807871e+00, 2.03434555631e+00, 1.96943233655e−01,
8.03156792010e−02)

17 8.5052543934e+00 (5.06092325796e−01, −4.46899050442e+00, 4.42579821491e−01,
−8.24699078928e−03)

18 8.2741044454e+00 (2.74485776680e+00, −1.16500671006e+01, 6.94421237073e−01,
−9.74865696033e−02)

19 8.0516175632e+00 (4.82917625787e+00, −2.00110461836e+01, 9.71050333412e−01,
−1.80716555601e−01)

20 7.8468442012e+00 (6.70860143528e+00, −5.23882372324e+01, 2.10673692237e+00,
−2.58577208010e−01)

Here, x0 = (−0.012153,−0.10968985, 3.0009696, 0.00)
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Table 12 Local minima of the homotopic path θ0–t f for θ0 fixed and ε = 10N
Num. t f (x0, p0)

1 2.5559195559
x0 = (6.21066150680e−02, 8.07302549835e−02, −2.20867323166e+00, 2.03164506327e+00)

p0 = (−6.66443552579e+00, −6.25173710798e+00, 2.71700855321e−01, −2.16542651328e−01)

2 2.4877948854
x0 = (5.78471160865e−02, 8.44502708426e−02, −2.31044795603e+00, 1.91511079266e+00)

p0 = (−6.28986613857e+00, −6.58580267048e+00, 2.84096838074e−01, −2.05132653869e−01)

3 2.4152338141
x0 = (5.89589525192e−02, 8.35161943465e−02, −2.28489285585e+00, 1.94552917010e+00)

p0 = (−6.31179701154e+00, −6.36448410888e+00, 2.80093512573e−01, −2.05851412612e−01 )

4 2.3383263886
x0 = (4.30199848124e−02, 9.48040413121e−02, −2.59371345157e+00, 1.50946004928e+00)

p0 = (−5.01682430960e+00, −7.53159608900e+00, 3.20380424397e−01, −1.63281437222e−01)

5 1.2164636130
x0 = (3.40824580273e−02, −9.94693265805e−02, 2.72134949944e+00, 1.26494111184e+00)

p0 = (4.16086874010e+00, −6.01023069117e+00, 2.79810763690e−01, 8.02669222580e−02 )

6 2.6648355866
x0 = (−6.43377120172e−03, 1.09540654392e−01, −2.99688773664e+00, 1.56470551902e−01)

p0 = (1.84143605513e+00, 1.15160214759e+01, −5.22937010460e−01, −1.80219702492e−02)

7 2.7553318369
x0 = (−5.24985178093e−02, 1.02000508900e−01, −2.79059930716e+00, −1.10380012079e+00)

p0 = (−2.83255512265e+00, 8.32582148917e+00, −4.10828349203e−01, −1.79352374657e−01)

Table 13 Local Minima of the homotopic path θ0-t f for θ0 fixed and ε = 5N
Num. t f (x0, p0)

1 3.7536181208
x0 = (−1.94215853959e−02, 1.09448764991e−01, −2.99437376388e+00, −1.98858903633e−01)

p0 = (−5.82743545042e−01, −1.45939805915e+01, 5.28108712479e−01, 9.17938940083e−02 )

2 3.6509835654
x0 = (−1.69972571399e−02, 1.09582834731e−01, −2.99804173504e+00, −1.32532482085e−01)

p0 = (−9.53230835340e−01, −1.42854614796e+01, 5.24210432656e−01, 8.11068337560e−02)

3 3.5439391311
x0 = (−1.68414052537e−02, 1.09589613320e−01, −2.99822718828e+00, −1.28268580164e−01)

p0 = (−1.00456664254e+00, −1.39836723639e+01, 5.20093415016e−01, 8.08316251597e−02 )

4 3.4300586117
x0 = (−2.71066881650e−02, 1.08665779839e−01, −2.97295232347e+00, −4.09113172891e−01)

p0 = (3.57976926298e−01, −1.39256054397e+01, 5.21330369402e−01, 1.28696805687e−01)

5 1.9938793490
x0 = (4.57631694913e−02, −9.31535390469e−02, 2.54855788786e+00, 1.58450996175e+00)

p0 = (8.68472172157e+00, -1.16744246852e+01, 5.34314865825e−01, 2.79941139278e−01 )

6 5.1452276858
x0 = (−8.18646156795e−02, -8.46885779963e−02, 2.31696772525e+00, −1.90721780228e+00)

p0 = (−1.46895925996e+01, −1.67744576566e+01, 7.48345214075e−01, −5.83852266304e−01)

7 5.2618852143
x0 = (6.37976388579e−02, −9.67713587949e−02, 2.64753666151e+00, −1.41292916054e+00)

p0 = (−9.33069203371e+00, −1.67310113847e+01, 7.85284331298e−01, −4.04362665917e−01 )

8 5.3718352579
x0 = (−5.30765714538e−02, −1.01769965950e−01, 2.78429195632e+00, −1.11961490562e+00)

p0 = (−7.46146481108e+00, −1.72142885351e+01, 8.46354933519e−01, −3.20501384394e−01)
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Table 14 Local Minima of the homotopic path θ0-t f for θ0 fixed and ε = 1N
Num. t f (x0, p0)

1 1.1613772473
x0 = (−4.94521037379e−02, 1.03153484481e−01, −2.82214319740e+00, −1.02045425234e+00)

p0 = (9.01995283736e+00, −3.46406158244e+01, 9.87371645985e−01, 4.85208334522e−01)

2 1.1447550943
x0 = (−3.19708106454e−02, 1.07884748127e−01, −2.95158432661e+00, −5.42189144473e−01)

p0 = (2.90230260337e+00, −3.41066967680e+01, 9.95854575771e−01, 3.05746057876e−01)

3 1.1278080850
x0 = (−1.51263711042e−02, 1.09649548919e−01, −2.99986694718e+00, −8.13475092700e−02)

p0 = (−2.50988487628e+00, −3.28125831403e+01, 9.83895951743e−01, 1.50964707129e−01)

4 1.1105567895
x0 = (2.95705857691e−03, 1.08644146766e−01, −2.97236047116e+00, 4.13391260989e−01)

p0 = (−7.69998223257e+00, −3.02620884245e+01, 9.33675575493e−01, −2.24004350034e−03)

5 1.0929544056
x0 = (2.04744264680e−02, 1.04724952106e−01, −2.86513647766e+00, 8.92643327742e−01)

p0 = (−1.21596048543e+01, −2.71809934984e+01, 8.71972929361e−01, −1.36697854580e−01)

6 1.0750144861
x0 = (3.83142161995e−02, 9.73905775437e−02, −2.66447766925e+00, 1.38071643052e+00)

p0 = (−1.59157802958e+01, −2.29695613710e+01, 7.73993351114e−01, −2.54453250197e−01)

7 1.0566954554
x0 = (5.44818172342e−02, 8.71301649529e−02, −2.38376632206e+00, 1.82304065745e+00)

p0 = (−1.86958979730e+01, −1.85218216807e+01, 6.71937688249e−01, −3.48430037725e−01)

8 1.0379987132
x0 = (6.88212850245e−02, 7.39934433897e−02, −2.02436295744e+00, 2.21534957152e+00)

p0 = (−2.02518665484e+01, −1.35149987541e+01, 5.52549152903e−01, −4.05199546746e−01)

9 1.0188925627
x0 = (8.03393763200e−02, 5.89663024700e−02, −1.61324021412e+00, 2.53046934823e+00)

p0 = (−2.08004284902e+01, −8.77291310702e+00, 4.43835886576e−01, −4.38897740719e−01)

10 9.9936149094
x0 = (8.95455084671e−02, 4.11008259435e−02, −1.12446435452e+00, 2.78233697387e+00)

p0 = (−2.00552248948e+01, -3.91048195304e+00, 3.29850374180e−01, −4.36668392516e−01)

11 9.7938762650
x0 = (9.53384673112e−02, 2.18506056371e−02, −5.97803732642e−01, 2.94082468252e+00)

p0 = (−1.84286807100e+01, 3.08770987062e−01, 2.33200787107e−01, −4.17738961747e−01)

12 9.5893510522
x0 = (9.75357647120e−02, 4.89297497890e−04, −1.33865337862e−02, 3.00093983950e+00)

p0 = (−1.55475035168e+01, 3.99090490857e+00, 1.50081331902e−01, −3.64314206604e−01)

13 9.3800526379
x0 = (9.55661265389e−02, −2.06991372746e−02, 5.66301077909e−01, 2.94705313854e+00)

p0 = (−1.21277045301e+01, 6.54661511552e+00, 9.57838813041e−02, −3.03714475156e−01)

14 9.1654637945
x0 = (8.88535253959e−02, −4.27731969234e−02, 1.17021821740e+00, 2.76340523030e+00)

p0 = (−7.71976404968e+00, 7.84981751360e+00, 7.58962825540e−02, −2.16097777716e−01)

15 8.9466593775
x0 = (7.66012223247e−02, −6.44558182773e−02, 1.76342612175e+00, 2.42819838839e+00)

p0 = (−2.49582677532e+00, 7.08434895345e+00, 1.15517251704e−01, −1.06074141800e−01)

16 8.7241872271
x0 = (5.72812946469e−02, −8.49160952469e−02, 2.32319229695e+00, 1.89963066482e+00)

p0 = (2.35166174593e+00, 3.73477013320e+00, 2.26388522820e−01, −1.23043980769e−02)

17 8.4992141171
x0 = (3.14063514616e−02, −1.00669992540e−01, 2.75419813551e+00, 1.19172636803e+00)

p0 = (5.39316031292e+00, −2.35824421954e+00, 4.16994199205e−01, 2.06174555327e−02)

18 8.2736157050
x0 = (3.92050344557e−05, −1.09010158391e−01, 2.98237406617e+00, 3.33562638939e−01)

p0 = (4.93801945083e+00, −1.09681340969e+01, 6.81788653598e−01, −5.92784509757e−02)

19 8.0504545877
x0 = (−3.23905959857e−02, −1.07806791098e−01, 2.94945152519e+00, −5.53673917369e−01)

p0 = (−5.59633476936e−01, −2.08904205668e+01, 9.86344334901e−01, −3.07897514898e−01)

20 7.8363385435
x0 = (−6.50028495259e−02, −9.61184576538e−02, 2.62967414796e+00, −1.44590213383e+00)

p0 = (−1.65966613960e+01, −3.56290598456e+01, 1.46688275370e+00, −9.16052717119e−01)
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6 Tables from GEO to MO Transfer Problem

Table 15 (C1 class) Initial conditions for minimum-time transfer orbits for ε = 10N and θ0 =
π, x0 = (−0.121842, 0.00, 0.00,−3.00096)
k t f p0
1 2.6295366742 (1.06192601736e+01, 1.37248310916e+00, 5.35735968598e−02,

4.25981151967e−01)

2 2.5591513809 (1.03908338033e+01, 1.40394233209e+00, 5.51645610936e−02,
4.14831750559e−01)

3 2.4845856122 (1.01139459577e+01, 1.46253515025e+00, 5.78478667723e−02,
4.02851462389e−01)

4 2.4046902936 (9.78964388018e+00, 1.48536195756e+00, 5.92289931606e−02,
3.87549322564e−01)

5 2.3188203948 (9.43753819675e+00, 1.55135836535e+00, 6.23078750780e−02,
3.72156376196e−01)

6 2.2258097799 (8.94542905348e+00, 1.56715282851e+00, 6.36188551329e−02,
3.50206904265e−01)

7 2.1236421514 (8.46157104228e+00, 1.62768549326e+00, 6.66669404664e−02,
3.28774925899e−01)

8 2.0109987788 (7.64680356801e+00, 1.65788540815e+00, 6.89101321311e−02,
2.94809550939e−01)

9 1.8831760208 (6.90929970278e+00, 1.67399427716e+00, 7.05530473416e−02,
2.62079313820e−01)

10 1.7368384045 (5.39899067667e+00, 1.74013293816e+00, 7.49642789303e−02,
2.01920571395e−01)

11 1.5620914595 (3.92859812720e+00, 1.65447845805e+00, 7.34194614218e−02,
1.40088341785e−01)

12 1.3450368533 (−1.07601143153e−01, 1.77014236738e+00, 8.04240137313e−02,
−1.74291709898e−02)

13 2.7874623764 (−6.49469099937e+00, −2.98006923087e+00,
−1.14119319520e−01, −2.75907575312e−01)

14 2.8890843383 (−4.08758212257e+00, −2.98692269111e+00,
−1.12596624508e−01, −2.15040713745e−01)

7 Summary of the Cut Points on the GEO to L1 Transfer

In this Appendix we summarize the results for the all the CUT points that we have
found for the GEO to L1 transfer problem. The initial conditions for the CUT points
are summarized inTable3. For each pair of cut pointswe have done the same analysis.
First for each cut point we have computed the transfer trajectory, the energy variation
along the trajectory (Jc(t)), the control along the trajectory and also the variation of
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Table 16 (C1 class) Initial conditions for minimum-time transfer orbits for ε = 10N and θ0 =
0, x0 = (0.0975368, 0.00, 0.00, 3.00096)
k t f p0
1 2.6382335901 (−8.15469444647e+00, 1.70467856003e−01, 2.36653029038e−03,

−2.73809684344e−01)

2 2.5701583528 (−8.02693895139e+00, 2.42252173754e−01, 5.11383610870e−03,
−2.71042424433e−01)

3 2.4971963201 (−7.80352301218e+00, 3.38330092208e−01, 8.68257649872e−03,
−2.63922213562e−01)

4 2.4206053972 (−7.62548760869e+00, 4.10629220864e−01, 1.14039103010e−02,
−2.59643712704e−01)

5 2.3373895493 (−7.36482326796e+00, 5.01793409601e−01, 1.47652984972e−02,
−2.52022253778e−01)

6 2.2491972124 (−7.09747508042e+00, 5.76972246145e−01, 1.75119377896e−02,
−2.44905008216e−01)

7 2.1515314965 (−6.76586878979e+00, 6.50789920666e−01, 2.01398087796e−02,
−2.35723176492e−01)

8 2.0463772193 (−6.32305321005e+00, 7.36876168589e−01, 2.31369509217e−02,
−2.22847227010e−01)

9 1.9265529833 (−5.83277580845e+00, 7.67061071412e−01, 2.38895759600e−02,
−2.09001197960e−01)

10 1.7936072565 (−4.97749858940e+00, 8.76114686754e−01, 2.73632618304e−02,
−1.82379844772e−01)

11 1.6348670072 (−4.03983916332e+00, 8.17496491769e−01, 2.41026868298e−02,
−1.53093741527e−01)

12 1.4489820024 (−1.21477895977e+00, 1.08381100292e+00, 3.18058539495e−02,
−5.93687133649e−02)

13 1.6913726515 (1.92911022593e+02, 4.09909700389e+00, 3.68559661513e−01,
6.83488813468e+00)

14 2.7288387842 (3.09692369616e+00, −2.60108464159e+00, −1.12213330995e−01,
2.17133715663e−02)

15 2.8589830417 (−2.22653391549e+00, −2.36994535022e+00,
−9.99958635019e−02, −1.85205984442e−01)

H1,2. Moreover, for each cut solution we have integrated both optimal solutions back
and forward in time (t ∈ [−t f , 2tt ], where t f is the transfer time). Finally, for the
solutions on the homotopic curve close to them (t∗f ∈ [t f − 0.15 : t f + 0.15]), for
each solutions we have computed some distinctive parameters of the transfer orbits,
trying to characterize their passage. In the plots that we will see, the number of turns
around the Earth, and the number of times that |(H1, H2)| comes close to zero (in
particular |(H1, H2)| < 0.05).

In Fig. 70 we show the homotopic curve t f versus ε and the same curve plotting
θ0 versus ε, where θ0 in the angle that parameterizes the initial condition on the
departure GEO orbit. In both plots we have highlighted in green the solutions close
to the CUT pair, which are the solutions that we have analyzed. Figures71, 72 and
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Table 17 (C1 class) Initial conditions for minimum-time transfer orbits for ε = 10N and θ0 =
π/2, x0 = (−0.012153, 0.109689,−3.00096, 0.00)
k t f p0
1 2.6338132940 (−2.58170927519e−01, −1.00417479238e+01,

4.05017074760e−01, 1.00460710975e−02)

2 2.5653207218 (−2.07888498661e−01, −9.89425530106e+00,
3.99790676407e−01, 7.89106089518e−03)

3 2.4924927065 (−1.85843554959e−01, −9.77354474323e+00,
3.97814405932e−01, 6.95648216568e−03)

4 2.4150831353 (−1.25626071521e−01, −9.55623627017e+00,
3.89793003207e−01, 4.31969409249e−03)

5 2.3315729003 (−8.39820060625e−02, −9.37472183474e+00,
3.85532601096e−01, 2.53783657098e−03)

6 2.2419382962 (−1.31487906225e−02, −9.04030262447e+00,
3.73024539442e−01, −6.61312444426e−04)

7 2.1431311332 (5.52757105262e−02, −8.74409478565e+00, 3.64176114835e−01,
−3.64700523503e−03)

8 2.0354632450 (1.38587221198e−01, −8.18964778994e+00, 3.43706754821e−01,
−7.59222655671e−03)

9 1.9127093077 (2.42801592628e−01, −7.64937021577e+00, 3.24724323237e−01,
−1.23124693731e−02)

10 1.7749732845 (3.49911359159e−01, −6.58187830265e+00, 2.86744744526e−01,
−1.77517569581e−02)

11 1.6089306960 (4.95907841498e−01, −5.40397217878e+00, 2.41166917636e−01,
−2.49571014357e−02)

12 1.4102828725 (7.23053068198e−01, −2.59378036965e+00, 1.46469675587e−01,
−3.68627889085e−02)

13 2.4479531178 (−3.38396896021e+00, 9.49237142101e+01, −3.37779371321e+00,
2.29212476015e−01)

14 2.6779763301 (1.19830766801e+00, 1.13780127873e+01, −5.12382210052e−01,
−4.39638576402e−02)

15 2.7791837819 (2.81655473172e+00, 5.61007167226e+00, −2.93511162565e−01,
−1.14270102398e−01)

73 summarize the results for the first cut point. Similarly, Figs. 74, 75 and 76 for the
second cut point, Figs. 77, 78 and 79 for the third cut point, Figs. 80, 81 and 82 for
the forth cut point, Figs. 83, 84 and 85 for the fifth cut point, Figs. 86, 87 and 88 for
the sixth cut point, and finally Figs. 89, 90 and 91 for the seventh cut point.



On Local Optima in Minimum Time Control . . . 267

Table 18 (C1 class) Initial conditions for minimum-time transfer orbits for ε = 10N and θ0 =
3π/2, x0 = (−0.012153,−1.096898, 3.000969, 0.00)
k t f p0
1 2.6690810760 (−1.60148685709e+00, 9.08946766361e+00, −3.13300481199e−01,

6.61185213214e−02)

2 2.6008623676 (−1.54788345969e+00, 8.80209189253e+00, −2.99932270379e−01,
6.44329166721e−02)

3 2.5287091355 (−1.48776605296e+00, 8.47773003663e+00, −2.85028133227e−01,
6.25395502059e−02)

4 2.4519026572 (−1.40500394555e+00, 8.15666769590e+00, −2.70463857125e−01,
5.97473478092e−02)

5 2.3697031266 (−1.34275441268e+00, 7.70451974629e+00, −2.50533464519e−01,
5.79263564017e−02)

6 2.2813887573 (−1.22186934790e+00, 7.34625820586e+00, −2.34873041588e−01,
5.36733452623e−02)

7 2.1850625115 (−1.14306384179e+00, 6.70918812205e+00, −2.08000594543e−01,
5.14177402740e−02)

8 2.0802601077 (−9.84194129457e−01, 6.25065652108e+00,
−1.89113692261e−01, 4.57761908262e−02)

9 1.9625235243 (−8.70139276974e−01, 5.33149659787e+00,
−1.52203685456e−01, 4.24464538424e−02)

10 1.8314874695 (−6.71790327170e−01, 4.57367060157e+00,
−1.22999765824e−01, 3.55761395655e−02)

11 1.6770533301 (−4.99447542856e−01, 3.10421985352e+00,
−6.71298805584e−02, 3.05143051338e−02)

12 1.4969723177 (−2.11266620451e−01, 1.19696152516e+00, 3.54958676405e−03,
2.08238576227e−02)

13 1.2945503501 (5.15688868736e−01, −4.36713996233e+00, 2.05263933984e−01,
−1.38119494149e−02)

14 2.7873443220 (1.63345406733e+00, −2.65524823134e+00, −6.44278753506e−04,
−5.30504819040e−02)

15 2.8935039376 (2.05298326674e+00, 6.37332707982e−01, −1.25355445474e−01,
−7.25661087416e−02)
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Table 19 (C2 class) Initial conditions for minimum-time transfer orbits for ε = 10N and θ0 =
π, x0 = (−0.121842, 0.00, 0.00,−3.00096)
k t f p0
1 2.5980387359 (1.06435287264e+01, 1.38139088237e+00, 5.38698217696e−02,

4.27687562930e−01)

2 2.5276171200 (1.04197332870e+01, 1.41679263649e+00, 5.56093693046e−02,
4.16741367382e−01)

3 2.4530424463 (1.01354110133e+01, 1.47583141615e+00, 5.83202062677e−02,
4.04443207658e−01)

4 2.3730813733 (9.81815625576e+00, 1.50226355964e+00, 5.98360979453e−02,
3.89358210983e−01)

5 2.2872021224 (9.45271738688e+00, 1.56932212509e+00, 6.29723565050e−02,
3.73464035481e−01)

6 2.1940824150 (8.97261257687e+00, 1.58768227806e+00, 6.43744566344e−02,
3.51814760713e−01)

7 2.0918861292 (8.47506952249e+00, 1.65281951424e+00, 6.76178742737e−02,
3.29905135280e−01)

8 1.9790911917 (7.67374927169e+00, 1.67928450120e+00, 6.97076840290e−02,
2.96143235096e−01)

9 1.8511363857 (6.91696727321e+00, 1.70718186065e+00, 7.18325734637e−02,
2.62736457777e−01)

10 1.7045623193 (5.39278478726e+00, 1.77172229454e+00, 7.62018032334e−02,
2.01790101767e−01)

11 1.5293474752 (3.92175802120e+00, 1.69616859547e+00, 7.50545446867e−02,
1.39620793489e−01)

12 1.3121055642 (−4.07540989225e−01, 1.82698024096e+00, 8.24995437375e−02,
−2.93268907749e−02)

13 2.7349672541 (−6.44652936791e+00, −3.03741643602e+00,
−1.16238481485e−01, −2.70092491562e−01)

14 2.8348007566 (−4.08335716722e+00, −3.09857369694e+00,
−1.16936332793e−01, −2.10233821136e−01)
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Fig. 70 For the GEO to L1 control problem, homotopic curve for ε ∈ [1 : 10]N. Left t f (transfer
time) versus ε projection.Right θ0 (angle defining the initial position on the departure orbit) versus ε



On Local Optima in Minimum Time Control . . . 269

Table 20 (C2 class) Initial conditions for minimum-time transfer orbits for ε = 10N and θ0 =
0, x0 = (0.0975368, 0.00, 0.00, 3.00096)
k t f p0
1 2.6061700198 (−8.10712545558e+00, 1.89540042126e−01, 3.02951748274e−03,

−2.70993641088e−01)

2 2.5380201140 (−7.98832817545e+00, 2.59775949334e−01, 5.73286770389e−03,
−2.68755580138e−01)

3 2.4650494180 (−7.75538520280e+00, 3.62884468178e−01, 9.56534705873e−03,
−2.61182580565e−01)

4 2.3883796279 (−7.58970803264e+00, 4.31241026849e−01, 1.21532458177e−02,
−2.57593525824e−01)

5 2.3051381815 (−7.31720208022e+00, 5.32166005246e−01, 1.58845821085e−02,
−2.49451562603e−01)

6 2.2168668949 (−7.06641305915e+00, 5.99411681487e−01, 1.83454693321e−02,
−2.43199556855e−01)

7 2.1191349339 (−6.71997726657e+00, 6.87257241108e−01, 2.15107998020e−02,
−2.33438167469e−01)

8 2.0139211293 (−6.29894313030e+00, 7.57106564979e−01, 2.38986154068e−02,
−2.21599131661e−01)

9 1.8939163357 (−5.78936380987e+00, 8.09971284648e−01, 2.55311678798e−02,
−2.07142760589e−01)

10 1.7610136117 (−4.96411319056e+00, 8.97635598020e−01, 2.81969305386e−02,
−1.81740722662e−01)

11 1.6017081412 (−3.99249110713e+00, 8.68838412584e−01, 2.60957559015e−02,
−1.51674639469e−01)

12 1.4167921654 (−1.11120743455e+00, 1.13046941869e+00, 3.35818304486e−02,
−5.59741017211e−02)

13 1.6556450929 (1.90041169951e+02, 4.11177240588e+00, 3.65721183952e−01,
6.73092385668e+00)

14 2.6740283644 (3.36137910646e+00, −2.72778518065e+00, −1.16970922525e−01,
3.45243380243e−02)

15 2.8030960157 (−2.11859368374e+00, −2.49178961344e+00,
−1.04892810539e−01, −1.79419042463e−01)
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Table 21 (C2 class) Initial conditions for minimum-time transfer orbits for ε = 10N and θ0 =
π/2, x0 = (−0.012153, 0.109689,−3.00096, 0.00)
k t f p0
1 2.6019829845 (−2.84425571457e−01, −1.00404237110e+01,

4.05458442869e−01, 1.10979295268e−02)

2 2.5334348861 (−2.32569565646e−01, −9.89968792431e+00,
4.00560274651e−01, 8.89110982802e−03)

3 2.4606436274 (−2.10541872966e−01, −9.77638734159e+00,
3.98549565013e−01, 7.95603536659e−03)

4 2.3831582744 (−1.47706167233e−01, −9.56627413895e+00,
3.90837330674e−01, 5.22553690464e−03)

5 2.2996872805 (−1.06156499893e−01, −9.38234623244e+00,
3.86599531240e−01, 3.44800514348e−03)

6 2.2099469387 (−3.14884828915e−02, −9.05530130469e+00,
3.74338881818e−01, 1.05119003627e−04)

7 2.1111698233 (3.71188462151e−02, −8.75716517386e+00, 3.65618710498e−01,
−2.88387786486e−03)

8 2.0033553989 (1.25544557986e−01, −8.20997380954e+00, 3.45244907817e−01,
−7.02816735224e−03)

9 1.8805738016 (2.31302088017e−01, −7.66818254447e+00, 3.26583609500e−01,
−1.17992930350e−02)

10 1.7426682066 (3.43556047009e−01, −6.60492748194e+00, 2.88284900044e−01,
−1.74520049392e−02)

11 1.5763097264 (4.97275584574e−01, −5.42450563786e+00, 2.43378420465e−01,
−2.49405258515e−02)

12 1.3781347238 (7.28625942842e−01, −2.47538707912e+00, 1.43995244406e−01,
−3.71575252603e−02)

13 2.4048352258 (−3.39252896456e+00, 9.36495680309e+01, −3.33176058888e+00,
2.28072959760e−01)

14 2.6257251580 (1.05189499044e+00, 1.14191299701e+01, −5.15529286934e−01,
−3.80961922524e−02)

15 2.7236432248 (2.60098969942e+00, 6.24273168138e+00, −3.24847143004e−01,
−1.04909522361e−01)



On Local Optima in Minimum Time Control . . . 271

Table 22 (C2 class) Initial conditions for minimum-time transfer orbits for ε = 10N and θ0 =
3π/2, x0 = (−0.012153,−1.096898, 3.000969, 0.00)
k t f p0
1 2.6374327060 (−1.62857972444e+00, 9.08391575714e+00, −3.12602494846e−01,

6.72031001922e−02)

2 2.5691569872 (−1.57643427418e+00, 8.78702892946e+00, −2.98800874499e−01,
6.55880396062e−02)

3 2.4969636719 (−1.51162908577e+00, 8.46917014342e+00, −2.84073535582e−01,
6.35051396988e−02)

4 2.4200699217 (−1.43149645719e+00, 8.13260148526e+00, −2.68828877698e−01,
6.08371578637e−02)

5 2.3378362689 (−1.36493857285e+00, 7.68625412066e+00, −2.49019602217e−01,
5.88430641217e−02)

6 2.2493898782 (−1.24390573655e+00, 7.31082683074e+00, −2.32688325847e−01,
5.46051794303e−02)

7 2.1530090828 (−1.16282817958e+00, 6.67343179150e+00, −2.05563880726e−01,
5.22675189137e−02)

8 2.0480368975 (−1.00003739357e+00, 6.20872801454e+00, −1.86460126643e−01,
4.64792293390e−02)

9 1.9301495747 (−8.83664790191e−01, 5.26814185126e+00,
−1.48387158771e−01, 4.30927981545e−02)

10 1.7989149784 (−6.76316263624e−01, 4.52955863451e+00,
−1.20054957255e−01, 3.58431970542e−02)

11 1.6440341344 (−4.97450251574e−01, 2.98177731120e+00,
−6.06185355582e−02, 3.06225341296e−02)

12 1.4638781887 (−1.91345523973e−01, 1.13707535911e+00, 7.19728539102e−03,
2.00319879174e−02)

13 1.2629462369 (5.27114903375e−01, −4.53699320696e+00, 2.12661485766e−01,
−1.45016746772e−02)

14 2.7339401945 (1.55300153992e+00, −2.64703138256e+00, −3.90733403113e−03,
−4.97729160780e−02)

15 2.8391341334 (1.96486277754e+00, 6.95609002372e−01, −1.31187447456e−01,
−6.91977913949e−02)
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Table 23 (C3 class) Initial conditions for minimum-time transfer orbits for ε = 10N and θ0 =
π, x0 = (−0121842, 0.00, 0.00,−3.00096)
k t f p0
1 3.0079434320 (1.06644572264e+01, 1.35187551484e+00, 5.26512270100e−02,

4.29500793828e−01)

2 2.9375415112 (1.04434578826e+01, 1.38953138641e+00, 5.44744339982e−02,
4.18722639089e−01)

3 2.8630041962 (1.01618362339e+01, 1.45007088633e+00, 5.72390673417e−02,
4.06603688803e−01)

4 2.7830629302 (9.84764443081e+00, 1.47895907175e+00, 5.88472004949e−02,
3.91667351531e−01)

5 2.6972242903 (9.48496629685e+00, 1.54853782815e+00, 6.20765991896e−02,
3.75979183483e−01)
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12 1.7223793899 (−3.49402376257e−01, 1.84952575418e+00, 8.34028988787e−02,
−2.52900821308e−02)

13 3.1156574206 (−6.51510558872e+00, −3.08751946862e+00,
−1.18263364650e−01, −2.70782400660e−01)

14 3.2127569407 (−4.21028083233e+00, −3.19576818179e+00,
−1.20901762188e−01, −2.12539884711e−01)
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Fig. 71 For cut point no 1: (left) t f versus ε homotopic curve with highlight of the cut passage in
green; (right) analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right subplot)
θ0 versus ε, (bottom-left subplot) θ0 versus num. turns around the Earth, (bottom-right subplot) θ0
versus the number of times |(H1, H2)| passes close to zero. Red points are values corresponding
the each cut point
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Table 24 (C3 class) Initial conditions for minimum-time transfer orbits for ε = 10N and θ0 =
0, x0 = (0.0975368, 0.00, 0.00, 3.00096)
k t f p0
1 3.0160686346 (−8.07952473541e+00, 1.56009762355e−01, 1.63190503522e−03,

−2.68719969249e−01)

2 2.9478762607 (−7.96124497160e+00, 2.28947488502e−01, 4.44172318728e−03,
−2.66486754726e−01)

3 2.8748808644 (−7.72016520272e+00, 3.34226564842e−01, 8.34507374051e−03,
−2.58467672325e−01)

4 2.7981671236 (−7.55602926960e+00, 4.05394083101e−01, 1.10454479194e−02,
−2.54931109877e−01)

5 2.7148931246 (−7.27415717237e+00, 5.09903199832e−01, 1.49025953133e−02,
−2.46306617667e−01)

6 2.6265776367 (−7.02615679895e+00, 5.80035014991e−01, 1.74807801082e−02,
−2.40158650743e−01)

7 2.5288032793 (−6.66921179529e+00, 6.73203679187e−01, 2.08407300183e−02,
−2.29902094968e−01)

8 2.4235482061 (−6.25292923064e+00, 7.45932195898e−01, 2.33480462145e−02,
−2.18236701100e−01)

9 2.3034863018 (−5.73159256933e+00, 8.06189964121e−01, 2.52583831813e−02,
−2.03303437857e−01)

10 2.1710299861 (−4.91544276746e+00, 8.96489918177e−01, 2.80205574326e−02,
−1.78204644826e−01)

11 2.0111660933 (−3.92900285748e+00, 8.77250871764e−01, 2.63023408558e−02,
−1.47666820427e−01)

12 1.8264984515 (−1.00305568125e+00, 1.15297499904e+00, 3.43275408112e−02,
−5.02059871398e−02)

13 2.0431049217 (1.86578177364e+02, 4.08561828326e+00, 3.60755982581e−01,
6.60857596413e+00)

14 3.0540126835 (3.61881934098e+00, −2.81462056517e+00, −1.20190778166e−01,
4.54101687908e−02)

15 3.2018637194 (−1.96637660380e+00, −2.60107142593e+00,
−1.09312588413e−01, −1.72944354724e−01)
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Table 25 (C3 class) Initial conditions for minimum-time transfer orbits for ε = 10N and θ0 =
π/2, x0 = (−0.012153, 0.109689,−3.00096, 0.00)
k t f p0
1 3.0114201851 (−3.17790993078e−01, −9.99620628532e+00,

4.02877878386e−01, 1.23338642431e−02)

2 2.9428784342 (−2.66437255556e−01, −9.85807299220e+00,
3.98162529647e−01, 1.01525525586e−02)

3 2.8700856406 (−2.47561176375e−01, −9.73541452344e+00,
3.96250079704e−01, 9.34509289696e−03)

4 2.7926111380 (−1.84912105298e−01, −9.52892872608e+00,
3.88770128141e−01, 6.62912797585e−03)

5 2.7091438748 (−1.46456526906e−01, −9.34583623592e+00,
3.84664090025e−01, 4.97786212278e−03)

6 2.6194200750 (−7.15636845081e−02, −9.02376276247e+00,
3.72690032847e−01, 1.63487427495e−03)

7 2.5206527435 (−5.76199475645e−03, −8.72666992070e+00,
3.64151059255e−01, −1.23792031755e−03)

8 2.4128647384 (8.32099513855e−02, −8.18644238539e+00, 3.44124212000e−01,
−5.39328168163e−03)

9 2.2900952639 (1.87090924654e−01, −7.64565340599e+00, 3.25712424499e−01,
−1.00831811499e−02)

10 2.1522470577 (2.99246181934e−01, −6.59424327083e+00, 2.87877672276e−01,
−1.57184440223e−02)

11 1.9858762347 (4.53674686372e−01, −5.41187749151e+00, 2.43244220883e−01,
−2.32284106856e−02)

12 1.7880235904 (6.80299038636e−01, −2.46145430043e+00, 1.44255335142e−01,
−3.52558523439e−02)

13 2.7896443361 (−3.41374362314e+00, 9.32731850142e+01, −3.31755914190e+00,
2.28456530459e−01)

14 3.0074529459 (9.87115821527e−01, 1.15185661024e+01, −5.20294817745e−01,
−3.53915049620e−02)

15 3.1016075052 (2.46829014099e+00, 6.81961761072e+00, −3.51739669061e−01,
−9.88979615343e−02)
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Table 26 (C3 class) Initial conditions for minimum-time transfer orbits for ε = 10N and θ0 =
3π/2, x0 = (−0.012153,−1.096898, 3.000969, 0.00)
k t f p0
1 3.0477620262 (−1.65436243883e+00, 9.13015536385e+00, −3.15423464048e−01,

6.81362816051e−02)

2 2.9795368970 (−1.60623443630e+00, 8.83016269889e+00, −3.01446202255e−01,
6.66677453622e−02)

3 2.9073039428 (−1.54133345202e+00, 8.51559503544e+00, −2.86806843906e−01,
6.45849249114e−02)

4 2.8304040772 (−1.46607509242e+00, 8.17299095306e+00, −2.71226012966e−01,
6.21184798314e−02)

5 2.7481886105 (−1.39982960612e+00, 7.73048160814e+00, −2.51533856789e−01,
6.01327857674e−02)

6 2.6597101749 (−1.28312320054e+00, 7.34735121468e+00, −2.34755001038e−01,
5.60784042063e−02)

7 2.5633588116 (−1.20420297838e+00, 6.70973715294e+00, −2.07551473300e−01,
5.38271396019e−02)

8 2.4583262887 (−1.04355838469e+00, 6.24074714632e+00, −1.88118009827e−01,
4.81332584817e−02)

9 2.3404678233 (−9.30788833999e−01, 5.29153019869e+00,
−1.49557187330e−01, 4.49012589544e−02)

10 2.2091494228 (−7.23352672817e−01, 4.55685507376e+00,
−1.21226959607e−01, 3.76477925265e−02)

11 2.0542769577 (−5.48043592799e−01, 2.98526534387e+00,
−6.05924194202e−02, 3.25919877337e−02)

12 1.8739945514 (−2.41372435293e−01, 1.16542210106e+00, 6.40892432862e−03,
2.19566013991e−02)

13 1.6724924789 (4.78305672369e−01, −4.56845039900e+00, 2.15049807592e−01,
−1.26469413261e−02)

14 3.1147430656 (1.52316731297e+00, −2.69581657727e+00, −4.16727729788e−03,
−4.85564981134e−02)

15 3.2177755237 (1.94272857430e+00, 6.29139383819e−01, −1.31608874036e−01,
−6.83226668898e−02)
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Table 30 Cut Points for GEO to MO minimum-time transfer problem for C1

No t f ε (N) (x0, p0)

1 5.1488625 1.8710653
x0 = (−1.2183420e−01 1.3776662e−03 −3.7691130e−02 −3.0007330e+00)

p0 = (−2.4853749e+01 −2.5590439e+00 −1.1469955e−e−01 −7.7640343e−01)

5.1488623 1.8710653
x1 = (−6.4010619e−02 9.6657394e−02 −2.6444187e+00 −1.4187560e+00)

p1 = (−7.6598810e+00 6.5174405e+00 −3.8985884e−01 −5.6991497e−02)

2 5.9023179 1.6073723
x0 = (−8.6446318e−02 −8.0699240e−02 2.2078247e+00 −2.0325671e+00)

p0 = (−2.3664669e+01 −2.9201326e+01 8.2641553e−01 −8.7846091e−01)

5.9023450 1.6073723
x1 = (−1.0690133e−01 5.5268597e−02 −1.5120759e+00 −2.5921894e+00)

p1 = (−1.0303101e+01 1.6834274e+00 −3.1756083e−01 −2.7329434e−01)

3 6.6599800 1.4056522
x0 = (−1.8408681e−02 −1.0951133e−01 2.9960854e+00 −1.7114719e−01)

p0 = (−5.0074394e−01 −4.6582515e+01 1.5038084e+00 −1.6486206e−01)

6.6600036 1.4056522
x1 = (−1.2149790e−01 −8.6923162e−03 2.3781030e−01 −2.9915323e+00)

p1 = (−9.4498793e+00 −4.5941257e+00 −1.0821845e−01 −4.0563385e−01)

4 7.4356086 1.2469239
x0 = (4.1469228e−02 −9.5689713e−02 2.6179443e+00 1.4670334e+00)

p0 = (2.4346187e+01 −3.8413717e+01 1.3257393e+00 6.3983535e−01)

7.4356173 1.2469239
x1 = (−8.7964292e−02 −7.9274917e−02 2.1688571e+00 −2.0740969e+00)

p1 = (−3.6145240e+00 −9.4918222e+00 1.6199661e−01 −3.5458440e−01)

Results obtained from Fig. 52

Table 31 Cut Points for GEO to MO minimum-time transfer problem for C2

No t f ε (N) (x0, p0)

1 3.3752853 2.8226511
x0 = (−3.7663428e−02 1.0668216e−01 −2.9186830e+00 −6.9793164e−01)

p0 = (−6.6375288e+00 1.5464483e+01 −5.2361131e−01 −1.7763009e−02)

3.3752836 2.8226511
x1 = (6.1715222e−02 8.1088534e−02 −2.2184753e+00 2.0209371e+00)

p1 = (3.6609960e+00 8.9031244e+00 −1.9029376e−01 3.3598070e−01)

2 4.0676620 2.2832275
x0 = (−1.2136523e−01 1.0225081e−02 −2.7974471e−01 −2.9879026e+00)

p0 = (−4.1968548e+01 2.8323241e+00 −1.6608360e−01 −1.3456351e+00)

4.0676607 2.2832275
x1 = (3.8446702e−02 9.7321810e−02 −2.6625963e+00 1.3843411e+00)

p1 = (2.4323326e+00 1.1587609e+01 −3.9450109e−01 3.3641398e−01)

3 4.7758028 1.9114577
x0 = (−7.6851323e−02 −8.8577601e−02 2.4233663e+00 −1.7700607e+00)

p0 = (−4.7402787e+01 −6.3131982e+01 2.1643608e+00 −1.5337171e+00)

4.7757718 1.9114577
x1 = (−7.9147362e−03 1.0960795e−01 −2.9987287e+00 1.1595330e−01)

p1 = (−2.6027323e+00 1.3934522e+01 −6.2536775e−01 1.3900950e−01)

4 5.5026835 1.6412384
x0 = (2.1204286e−02 −1.0449477e−01 2.8588389e+00 9.1261133e−01)

p0 = (3.5025550e+01 −1.2059407e+02 4.0860053e+00 1.4312241e+00)

5.5027193 1.6412384
x1 = (−6.1645451e−02 9.7889539e−02 −2.6781286e+00 −1.3540481e+00)

p1 = (−1.0123795e+01 1.3145099e+01 −7.2436101e−01 −2.3911818e−01)

5a 6.2531152 1.4359703
x0 = (8.8714814e−02 −4.3099288e−02 1.1791396e+00 2.7596103e+00)

p0 = (1.6152834e+02 −7.4842600e+01 2.2694695e+00 5.8095787e+00)

6.2531294 1.4359703
x1 = (−1.0551390e−01 5.7581311e−02 −1.5753487e+00 −2.5542309e+00)

p1 = (−1.7636018e+01 7.2559327e+00 −5.5642890e−01 −6.8757051e−01)

(continued)
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Table 31 (continued)
No t f ε (N) (x0, p0)

5b 6.4271669 1.3811556
x0 = (−1.0866349e−01 5.2130500e−02 −1.4262217e+00 −2.6403997e+00)

p0 = (−2.2795619e+01 9.1266774e+00 −6.1238761e−01 −9.1810499e−01)

6.4255029 1.3811556
x1 = (−1.0722281e−01 5.4713762e−02 −1.4968963e+00 −2.6009845e+00)

p1 = (−2.1556926e+01 9.0788639e+00 −6.1268640e−01 −8.5326763e−01)

6 6.9610479 1.2748062
x0 = (9.3095263e−02 3.0897695e−02 −8.4532016e−01 2.8794536e+00)

p0 = (2.1996284e+02 5.7639512e+01 −2.4939350e+00 7.6317637e+00)

6.9602231 1.2748062
x1 = (−1.2181767e−01 2.3504855e−03 −6.4306181e−02 −3.0002806e+00)

p1 = (−2.0563120e+01 −2.6910797e+00 −1.3495182e−01 −9.5548578e−01)

7 7.6312547 1.1477254
x0 = (3.3347528e−02 9.9807647e−02 −2.7306055e+00 1.2448344e+00)

p0 = (1.3464477e+02 2.7341686e+02 −1.0034451e+01 4.2090529e+00)

7.6360553 1.1477254
x1 = (−1.0627936e−01 −5.6321337e−02 1.5408774e+00 −2.5751730e+00)

p1 = (−1.8271336e+01 −1.4562037e+01 4.5974795e−01 −9.9004366e−01)

8 8.3208073 1.0419705
x0 = (−4.5399318e−02 1.0453012e−01 −2.8598062e+00 −9.0957538e−01)

p0 = (−1.0240946e+02 3.5758771e+02 −1.2592360e+01 −4.4189365e+00)

8.3210727 1.0419705
x1 = (−6.0626095e−02 −9.8398290e−02 2.6920474e+00 −1.3261599e+00)

p1 = (−8.8941099e+00 −2.5008323e+01 1.0588586e+00 −6.4682426e−01)

Results obtained from Fig. 53
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Fig. 72 For cut point no 1, blue orbits correspond to the first cut value and red orbits to the second
cut value. (top-left) {XY } projection of the transfer trajectory, (top-center) {VxVy} projection of the
transfer trajectory, (top-right) t versus Jc (energy variation along the transfer trajectory), (bottom-
left) control along the trajectory, (bottom-center) H1 versus H2, (bottom-right) t versus |(H1, H2)|
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Fig. 73 For cut point no 1, (left) optimal solutions for t ∈ [−t f , 0] (XY projection and Jc variation),
(right) optimal solutions for t ∈ [0, 2t f ] (XY projection and Jc variation)
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Fig. 74 For cut point no 2: (left) t f versus ε homotopic curve with highlight of the cut passage in
green; (right) analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right subplot)
θ0 versus ε, (bottom-left subplot) θ0 versus num. turns around the Earth, (bottom-right subplot) θ0
versus the number of times |(H1, H2)| passes close to zero. Red points are values corresponding
the each cut point
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Fig. 75 For cut point no 2, blue orbits correspond to the first cut value and red orbits to the second
cut value (top-left) {XY } projection of the transfer trajectory, (top-center) {VxVy} projection of the
transfer trajectory, (top-right) t versus Jc (energy variation along the transfer trajectory), (bottom-
left) control along the trajectory, (bottom-center) H1 versus H2, (bottom-right) t versus |(H1, H2)|
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Fig. 76 For cut point no 2, (left) optimal solutions for t ∈ [−t f , 0] (XY projection and Jc variation),
(right) optimal solutions for t ∈ [0, 2t f ] (XY projection and Jc variation)
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Fig. 77 For cut point no 3: (left) t f versus ε homotopic curve with highlight of the cut passage in
green; (right) analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right subplot)
θ0 versus ε, (bottom-left subplot) θ0 versus num. turns around the Earth, (bottom-right subplot) θ0
versus the number of times |(H1, H2)| passes close to zero. Red points are values corresponding
the each cut point
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Fig. 78 For cut point no 3, blue orbits correspond to the first cut value and red orbits to the second
cut value (top-left) {XY } projection of the transfer trajectory, (top-center) {VxVy} projection of the
transfer trajectory, (top-right) t versus Jc (energy variation along the transfer trajectory), (bottom-
left) control along the trajectory, (bottom-center) H1 versus H2, (bottom-right) t versus |(H1, H2)|
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Fig. 79 For cut point no 3, (left) optimal solutions for t ∈ [−t f , 0] (XY projection and Jc variation),
(right) optimal solutions for t ∈ [0, 2t f ] (XY projection and Jc variation)
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Fig. 80 For cut point no 4: (left) t f versus ε homotopic curve with highlight of the cut passage in
green; (right) analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right subplot)
θ0 versus ε, (bottom-left subplot) θ0 versus num. turns around the Earth, (bottom-right subplot) θ0
versus the number of times |(H1, H2)| passes close to zero. Red points are values corresponding
the each cut point
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Fig. 81 For cut point no 4, blue orbits correspond to the first cut value and red orbits to the second
cut value (top-left) {XY } projection of the transfer trajectory, (top-center) {VxVy} projection of the
transfer trajectory, (top-right) t versus Jc (energy variation along the transfer trajectory), (bottom-
left) control along the trajectory, (bottom-center) H1 versus H2, (bottom-right) t versus |(H1, H2)|
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Fig. 82 For cut point no 4, (left) optimal solutions for t ∈ [−t f , 0] (XY projection and Jc variation),
(right) optimal solutions for t ∈ [0, 2t f ] (XY projection and Jc variation)
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Fig. 83 For cut point no 5: (left) t f versus ε homotopic curve with highlight of the cut passage in
green; (right) analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right subplot)
θ0 versus ε, (bottom-left subplot) θ0 versus num. turns around the Earth, (bottom-right subplot) θ0
versus the number of times |(H1, H2)| passes close to zero. Red points are values corresponding
the each cut point
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Fig. 84 For cut point no 5, blue orbits correspond to the first cut value and red orbits to the second
cut value (top-left) {XY } projection of the transfer trajectory, (top-center) {VxVy} projection of the
transfer trajectory, (top-right) t versus Jc (energy variation along the transfer trajectory), (bottom-
left) control along the trajectory, (bottom-center) H1 versus H2, (bottom-right) t versus |(H1, H2)|
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Fig. 85 For cut point no 5, (left) optimal solutions for t ∈ [−t f , 0] (XY projection and Jc variation),
(right) optimal solutions for t ∈ [0, 2t f ] (XY projection and Jc variation)
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Fig. 86 For cut point no 6: (left) t f versus ε homotopic curve with highlight of the cut passage in
green; (right) analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right subplot)
θ0 versus ε, (bottom-left subplot) θ0 versus num. turns around the Earth, (bottom-right subplot) θ0
versus the number of times |(H1, H2)| passes close to zero. Red points are values corresponding
the each cut point
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Fig. 87 For cut point no 6, blue orbits correspond to the first cut value and red orbits to the second
cut value (top-left) {XY } projection of the transfer trajectory, (top-center) {VxVy} projection of the
transfer trajectory, (top-right) t versus Jc (energy variation along the transfer trajectory), (bottom-
left) control along the trajectory, (bottom-center) H1 versus H2, (bottom-right) t versus |(H1, H2)|
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Fig. 88 For cut point no 6, (left) optimal solutions for t ∈ [−t f , 0] (XY projection and Jc variation),
(right) optimal solutions for t ∈ [0, 2t f ] (XY projection and Jc variation)
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Fig. 89 For cut point no 7: (left) t f versus ε homotopic curve with highlight of the cut passage in
green; (right) analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right subplot)
θ0 versus ε, (bottom-left subplot) θ0 versus num. turns around the Earth, (bottom-right subplot) θ0
versus the number of times |(H1, H2)| passes close to zero. Red points are values corresponding
the each cut point
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Fig. 90 For cut point no 7, blue orbits correspond to the first cut value and red orbits to the second
cut value (top-left) {XY } projection of the transfer trajectory, (top-center) {VxVy} projection of the
transfer trajectory, (top-right) t versus Jc (energy variation along the transfer trajectory), (bottom-
left) control along the trajectory, (bottom-center) H1 versus H2, (bottom-right) t versus |(H1, H2)|
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Fig. 91 For cut point no 7, (left) optimal solutions for t ∈ [−t f , 0] (XY projection and Jc variation),
(right) optimal solutions for t ∈ [0, 2t f ] (XY projection and Jc variation)

8 Summary of the Cut Points on the GEO to MO Transfer

In this Section we summarize the results for all the CUT points that we have found
for the GEO to MO transfer problem. We recall that we have two classes of transfer
trajectories, C1 and C2, and that in terms of transfer time, the solutions of type C2 are
always better than those of typeC1.Nevertheless, the behavior of the homotopic curve
with respect to ε for theC1 type of solutions presents a less complex structure that the
C2 type homotopic curve. In both cases we also find CUT points, where their initial
conditions are summarized in Tables30 and 31.We have done a similar analysis as the
one for the GEO to L1, and for each pair of cut points we have computed the transfer
trajectory, the energy variation along the transfer trajectory, Jc(t), the variation of
the control-law along the trajectory and the variation of H1,2. Moreover, we have
integrated the optimal solutions back and forward in time, i.e. for t ∈ [−t f , 2tt ],
where t f is the transfer time. Finally, for the solutions along the homotopic curve close
to cut point (i.e. t∗f ∈ [t f − 0.15 : t f + 0.15]) we have computed transfer trajectories
and some of their distinctive parameters, trying to characterize their passage. In the
plots that we will see, the number of turns around the Earth, and the number of times
that |(H1, H2)| comes close to zero (in particular |(H1, H2)| < 0.05).
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8.1 C1 Cut Points

In Fig. 92 we show for the C1 type of solutions, the homotopic curve t f versus ε

and the same curve plotting θ0 versus ε, where θ0 in the angle that parameterizes
the initial condition on the departure GEO orbit. In both plots we have highlighted
in green the solutions close to the CUT pair, which are the solutions that we have
analyzed. Moreover, Figs. 93, 94 and 95 summarize the results for the first cut point.
Similarly, Figs. 96, 97 and 98 for the second cut point, Figs. 99, 100 and 101 for the
third cut point, and finally Figs. 102, 103 and 104 for the fourth cut point.
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Fig. 93 C1 cut point no 1: (left) t f versus ε homotopic curve with highlight of the cut passage in
green; (right) analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right subplot)
θ0 versus ε, (bottom-left subplot) θ0 versus num. turns around the Earth, (bottom-right subplot) θ0
versus the number of times |(H1, H2)| passes close to zero. Red points are values corresponding
the each cut point
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Fig. 94 C1 cut point no 1, blue orbits correspond to the first cut value and red orbits to the second
cut value. (top-left) {XY } projection of the transfer trajectory, (top-center) {VxVy} projection of the
transfer trajectory, (top-right) t versus Jc (energy variation along the transfer trajectory), (bottom-
left) control along the trajectory, (bottom-center) H1 versus H2, (bottom-right) t versus |(H1, H2)|
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Fig. 95 C1 cut point no 1, (left) optimal solutions for t ∈ [−t f , 0] (XY projection and Jc variation),
(right) optimal solutions for t ∈ [0, 2t f ] (XY projection and Jc variation)
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Fig. 96 C1 cut point no 2: (left) t f versus ε homotopic curve with highlight of the cut passage in
green; (right) analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right subplot)
θ0 versus ε, (bottom-left subplot) θ0 versus num. turns around the Earth, (bottom-right subplot) θ0
versus the number of times |(H1, H2)| passes close to zero. Red points are values corresponding
the each cut point
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Fig. 97 C1 cut point no 2, blue orbits correspond to the first cut value and red orbits to the second
cut value. (top-left) {XY } projection of the transfer trajectory, (top-center) {VxVy} projection of the
transfer trajectory, (top-right) t versus Jc (energy variation along the transfer trajectory), (bottom-
left) control along the trajectory, (bottom-center) H1 versus H2, (bottom-right) t versus |(H1, H2)|
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Fig. 98 C1 cut point no 2, (left) optimal solutions for t ∈ [−t f , 0] (XY projection and Jc variation),
(right) optimal solutions for t ∈ [0, 2t f ] (XY projection and Jc variation)

4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

t
f

T m
ax

GEO to LMO  − C01 −

6.55 6.6 6.65 6.7 6.75 6.8
1.34

1.36

1.38

1.4

1.42

1.44

1.46

t
f

T m
ax

GEO to LMO − C01 − ( pass CUT 03 )

−42 −41 −40 −39 −38

0

0.2

0.4

0.6

0.8

1

θ
0

H
i F

lip
s

−42 −41 −40 −39 −38
1.34

1.36

1.38

1.4

1.42

1.44

1.46

1.48

θ
0

T m
ax

−42 −41 −40 −39 −38

6

6.2

6.4

6.6

6.8

7

θ
0

N
um

 T
ur

ns

Fig. 99 C1 cut point no 3: (left) t f versus ε homotopic curve with highlight of the cut passage in
green; (right) analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right subplot)
θ0 versus ε, (bottom-left subplot) θ0 versus num. turns around the Earth, (bottom-right subplot) θ0
versus the number of times |(H1, H2)| passes close to zero. Red points are values corresponding
the each cut point

8.2 C2 Cut Points

In Fig. 105 we show for the C2 type of solutions, the homotopic curve t f versus ε

and the same curve plotting θ0 versus ε, where θ0 in the angle that parameterizes
the initial condition on the departure GEO orbit. In both plots we have highlighted
in green the solutions close to the CUT pair, which are the solutions that we have
analyzed. Moreover, Figs. 106, 107 and 108 summarize the results for the first cut
point. Similarly, Figs. 109, 110 and 111 for the second cut point, Figs. 112, 113 and
114 for the third cut point, Figs. 115, 116 and 117 for the forth cut point, Figs. 118,
119 and 120 for the fifth cut point, Figs. 121, 122 and 123 for the sixth cut point,
Figs. 124, 125 and 126 for the seventh cut point, Figs. 127, 128 and 129 for the eighth
cut point, and finally Figs. 130, 131 and 132 for the ninth cut point.



On Local Optima in Minimum Time Control . . . 291

−0.2 0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

0.2

0.4

GEO to LMO − C01 − ( CUT 03 )

X

Y

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3
GEO to LMO − C01 − ( CUT 03 )

v
x

v y

0 1 2 3 4 5 6 7
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1
GEO to LMO − C01 − ( CUT 03 )

t
f

Jc

−0.2 0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

GEO to LMO − C01 − ( CUT 03 )

X

Y

−4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4
GEO to LMO − C01 − ( CUT 03 )

H
1

H
2

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
GEO to LMO − C01 − ( CUT 03 )

t
f

|H
12  +

 H
22 |

Fig. 100 C1 cut point no 3, blue orbits correspond to the first cut value and red orbits to the second
cut value. (top-left) {XY } projection of the transfer trajectory, (top-center) {VxVy} projection of the
transfer trajectory, (top-right) t versus Jc (energy variation along the transfer trajectory), (bottom-
left) control along the trajectory, (bottom-center) H1 versus H2, (bottom-right) t versus |(H1, H2)|
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Fig. 101 C1 cut pointno 3, (left) optimal solutions for t ∈ [−t f , 0] (XY projection and Jc variation),
(right) optimal solutions for t ∈ [0, 2t f ] (XY projection and Jc variation)
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Fig. 102 C1 cut point no 4: (left) t f versus ε homotopic curve with highlight of the cut passage in
green; (right) analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right subplot)
θ0 versus ε, (bottom-left subplot) θ0 versus num. turns around the Earth, (bottom-right subplot) θ0
versus the number of times |(H1, H2)| passes close to zero. Red points are values corresponding
the each cut point
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Fig. 103 C1 cut point no 4, blue orbits correspond to the first cut value and red orbits to the second
cut value. (top-left) {XY } projection of the transfer trajectory, (top-center) {VxVy} projection of the
transfer trajectory, (top-right) t versus Jc (energy variation along the transfer trajectory), (bottom-
left) control along the trajectory, (bottom-center) H1 versus H2, (bottom-right) t versus |(H1, H2)|
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Fig. 104 C1 cut pointno 4, (left) optimal solutions for t ∈ [−t f , 0] (XY projection and Jc variation),
(right) optimal solutions for t ∈ [0, 2t f ] (XY projection and Jc variation)
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Fig. 106 C2 cut point no 1: (left) t f versus ε homotopic curve with highlight of the cut passage in
green; (right) analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right subplot)
θ0 versus ε, (bottom-left subplot) θ0 versus num. turns around the Earth, (bottom-right subplot) θ0
versus the number of times |(H1, H2)| passes close to zero. Red points are values corresponding
the each cut point
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Fig. 107 C2 cut point no 1, blue orbits correspond to the first cut value and red orbits to the second
cut value. (top-left) {XY } projection of the transfer trajectory, (top-center) {VxVy} projection of the
transfer trajectory, (top-right) t versus Jc (energy variation along the transfer trajectory), (bottom-
left) control along the trajectory, (bottom-center) H1 versus H2, (bottom-right) t versus |(H1, H2)|
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Fig. 108 C2 cut pointno 1, (left) optimal solutions for t ∈ [−t f , 0] (XY projection and Jc variation),
(right) optimal solutions for t ∈ [0, 2t f ] (XY projection and Jc variation)
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Fig. 109 C2 cut point no 2: (left) t f versus ε homotopic curve with highlight of the cut passage in
green; (right) analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right subplot)
θ0 versus ε, (bottom-left subplot) θ0 versus num. turns around the Earth, (bottom-right subplot) θ0
versus the number of times |(H1, H2)| passes close to zero. Red points are values corresponding
the each cut point
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Fig. 110 C2 cut point no 2, blue orbits correspond to the first cut value and red orbits to the second
cut value. (top-left) {XY } projection of the transfer trajectory, (top-center) {VxVy} projection of the
transfer trajectory, (top-right) t versus Jc (energy variation along the transfer trajectory), (bottom-
left) control along the trajectory, (bottom-center) H1 versus H2, (bottom-right) t versus |(H1, H2)|
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Fig. 111 C2 cut pointno 2, (left) optimal solutions for t ∈ [−t f , 0] (XY projection and Jc variation),
(right) optimal solutions for t ∈ [0, 2t f ] (XY projection and Jc variation)
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Fig. 112 C2 cut point no 3: (left) t f versus ε homotopic curve with highlight of the cut passage in
green; (right) analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right subplot)
θ0 versus ε, (bottom-left subplot) θ0 versus num. turns around the Earth, (bottom-right subplot) θ0
versus the number of times |(H1, H2)| passes close to zero. Red points are values corresponding
the each cut point
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Fig. 113 C2 cut point no 3, blue orbits correspond to the first cut value and red orbits to the second
cut value. (top-left) {XY } projection of the transfer trajectory, (top-center) {VxVy} projection of the
transfer trajectory, (top-right) t versus Jc (energy variation along the transfer trajectory), (bottom-
left) control along the trajectory, (bottom-center) H1 versus H2, (bottom-right) t versus |(H1, H2)|
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Fig. 114 C2 cut pointno 3, (left) optimal solutions for t ∈ [−t f , 0] (XY projection and Jc variation),
(right) optimal solutions for t ∈ [0, 2t f ] (XY projection and Jc variation)
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Fig. 115 C2 cut point no 4: (left) t f versus ε homotopic curve with highlight of the cut passage in
green; (right) analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right subplot)
θ0 versus ε, (bottom-left subplot) θ0 versus num. turns around the Earth, (bottom-right subplot) θ0
versus the number of times |(H1, H2)| passes close to zero. Red points are values corresponding
the each cut point
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Fig. 116 C2 cut point no 4, blue orbits correspond to the first cut value and red orbits to the second
cut value. (top-left) {XY } projection of the transfer trajectory, (top-center) {VxVy} projection of the
transfer trajectory, (top-right) t versus Jc (energy variation along the transfer trajectory), (bottom-
left) control along the trajectory, (bottom-center) H1 versus H2, (bottom-right) t versus |(H1, H2)|
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Fig. 117 C2 cut pointno 4, (left) optimal solutions for t ∈ [−t f , 0] (XY projection and Jc variation),
(right) optimal solutions for t ∈ [0, 2t f ] (XY projection and Jc variation)
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Fig. 118 C2 cut point no 5(a): (left) t f versus ε homotopic curve with highlight of the cut passage
in green; (right) analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right subplot)
θ0 versus ε, (bottom-left subplot) θ0 versus num. turns around the Earth, (bottom-right subplot) θ0
versus the number of times |(H1, H2)| passes close to zero. Red points are values corresponding
the each cut point
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Fig. 119 C2 cut point no 5(a), blue orbits correspond to the first cut value and red orbits to the
second cut value (top-left) {XY } projection of the transfer trajectory, (top-center) {VxVy} projection
of the transfer trajectory, (top-right) t versus Jc (energy variation along the transfer trajectory),
(bottom-left) control along the trajectory, (bottom-center) H1 versus H2, (bottom-right) t versus
|(H1, H2)|
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Fig. 120 C2 cut point no 5(a), (left) optimal solutions for t ∈ [−t f , 0] (XY projection and Jc
variation), (right) optimal solutions for t ∈ [0, 2t f ] (XY projection and Jc variation)
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Fig. 121 C2 cut point no 5(b): (left) t f versus ε homotopic curve with highlight of the cut passage
in green; (right) analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right subplot)
θ0 versus ε, (bottom-left subplot) θ0 versus num. turns around the Earth, (bottom-right subplot) θ0
versus the number of times |(H1, H2)| passes close to zero. Red points are values corresponding
the each cut point
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Fig. 122 C2 cut point no 5(b), blue orbits correspond to the first cut value and red orbits to the
second cut value (top-left) {XY } projection of the transfer trajectory, (top-center) {VxVy} projection
of the transfer trajectory, (top-right) t versus Jc (energy variation along the transfer trajectory),
(bottom-left) control along the trajectory, (bottom-center) H1 versus H2, (bottom-right) t versus
|(H1, H2)|
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Fig. 123 C2 cut point no 5(b), (left) optimal solutions for t ∈ [−t f , 0] (XY projection and Jc
variation), (right) optimal solutions for t ∈ [0, 2t f ] (XY projection and Jc variation)
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Fig. 124 C2 cut point no 6: (left) t f versus ε homotopic curve with highlight of the cut passage in
green; (right) analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right subplot)
θ0 versus ε, (bottom-left subplot) θ0 versus num. turns around the Earth, (bottom-right subplot) θ0
versus the number of times |(H1, H2)| passes close to zero. Red points are values corresponding
the each cut point

−0.2 0 0.2 0.4 0.6 0.8 1
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

GEO to LMO − C02 − ( CUT 06 )

X

Y

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
GEO to LMO − C02 − ( CUT 06 )

v
x

v y

0 1 2 3 4 5 6 7 8
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5
GEO to LMO − C02 − ( CUT 06 )

t
f

Jc

−0.2 0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

0.2

0.4

GEO to LMO − C02 − ( CUT 06 )

X

Y

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8
GEO to LMO − C02 − ( CUT 06 )

H
1

H
2

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9
GEO to LMO − C02 − ( CUT 06 )

t
f

|H
12  +

 H
22 |

Fig. 125 C2 cut point no 6, blue orbits correspond to the first cut value and red orbits to the second
cut value. (top-left) {XY } projection of the transfer trajectory, (top-center) {VxVy} projection of the
transfer trajectory, (top-right) t versus Jc (energy variation along the transfer trajectory), (bottom-
left) control along the trajectory, (bottom-center) H1 versus H2, (bottom-right) t versus |(H1, H2)|
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Fig. 126 C2 cut pointno 6, (left) optimal solutions for t ∈ [−t f , 0] (XY projection and Jc variation),
(right) optimal solutions for t ∈ [0, 2t f ] (XY projection and Jc variation)
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Fig. 127 C2 cut point no 7: (left) t f verus ε homotopic curve with highlight of the cut passage in
green; (right) analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right subplot)
θ0 versus ε, (bottom-left subplot) θ0 versus num. turns around the Earth, (bottom-right subplot) θ0
versus the number of times |(H1, H2)| passes close to zero. Red points are values corresponding
the each cut point
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Fig. 128 C2 cut point no 7, blue orbits correspond to the first cut value and red orbits to the second
cut value. (top-left) {XY } projection of the transfer trajectory, (top-center) {VxVy} projection of the
transfer trajectory, (top-right) t versus Jc (energy variation along the transfer trajectory), (bottom-
left) control along the trajectory, (bottom-center) H1 versus H2, (bottom-right) t versus |(H1, H2)|
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Fig. 129 C2 cut pointno 7, (left) optimal solutions for t ∈ [−t f , 0] (XY projection and Jc variation),
(right) optimal solutions for t ∈ [0, 2t f ] (XY projection and Jc variation)
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Fig. 130 C2 cut point no 8: (left) t f versus ε homotopic curve with highlight of the cut passage in
green; (right) analysis of the cut passage: (top-left subplot) t f versus ε zoom, (top-right subplot)
θ0 versus ε, (bottom-left subplot) θ0 versus num. turns around the Earth, (bottom-right subplot) θ0
versus the number of times |(H1, H2)| passes close to zero. Red points are values corresponding
the each cut point
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Fig. 131 C2 cut point no 8, blue orbits correspond to the first cut value and red orbits to the second
cut value. (top-left) {XY } projection of the transfer trajectory, (top-center) {VxVy} projection of the
transfer trajectory, (top-right) t versus Jc (energy variation along the transfer trajectory), (bottom-
left) control along the trajectory, (bottom-center) H1 versus H2, (bottom-right) t versus |(H1, H2)|
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Fig. 132 C2 cut pointno 8, (left) optimal solutions for t ∈ [−t f , 0] (XY projection and Jc variation),
(right) optimal solutions for t ∈ [0, 2t f ] (XY projection and Jc variation)
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