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Optimal control of slow-fast
mechanical systems

Jean-Baptiste Caillau, Lamberto Dell’Elce,
Jean-Baptiste Pomet and Jérémy Rouot

Abstract We consider the minimum time control of dynamical systems with
slow and fast state variables. With applications to perturbations of integrable
systems in mind, we focus on the case of problems with one or more fast
angles, together with a small drift on the slow part modelling a so-called
secular evolution of the slow variables. According to Pontrjagin maximum
principle, minimizing trajectories are projections on the state space of Hamil-
tonian curves. In the case of a single fast angle, it turns out that, provided
the drift on the slow part of the original system is small enough, time min-
imizing trajectories can be approximated by geodesics of a suitable metric.
As an application to space mechanics, the effect of the J2 term in the Earth
potential on the control of a spacecraft is considered. In ongoing work, we
also address the more involved question of systems having two fast angles.
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Introduction

We consider the following slow-fast control system on an n-dimensional
manifold M:

dI
dt

= #F0(I, j, #) + #
m

Â
i=1

uiFi(I, j, #), |u| =
q

u2
1 + · · · + u2

m  1, (1)

dj

dt
= w(I) + #G0(I, j, #) + #

m

Â
i=1

uiGi(I, j, #), w(I) > 0, (2)

with I 2 M, j 2 S1, u 2 Rm, and fixed extremities I0, I f , and free phases j0,
j f . All the data is periodic with respect to the single fast angle j, and w is
assumed to be positive on M. Extensions are possible to the case of several
phases but resonances must then be taken into account.

In the first section, we focus on systems with a single fast angle. The
Hamiltonian system provided by applying Pontrjagin maximum principle
is averaged after properly identifying the slow variables. The averaged sys-
tem turns out to be associated with a metric approximation of the original
problem. We apply the method to space mechanics, and show how the J2
term in the Earth potential is responsible for the asymmetry of the metric.
In the second section, we give a preliminary analysis of multiphase aver-
aging for minimum time control problems. The case of two fast angles is
considered on a simple example. A crucial step is to define a suitable near-
identity transformation of the initial state and costate. This work is related
with other methods applicable to slow-fast control systems. (See, e.g., the
recent papers [1–3, 6].)

1 Metric approximation in the case of a single fast phase

1.1 Averaging the extremal flow

According to Pontrjagin maximum principle, time minimizing curves are
projections onto the base space M ⇥ S1 of integral curves (extremals) of the
maximized Hamiltonian below:

H(I, j, pI , pj, #) := pjw(I) + #K(I, j, pI , pj, #),

K := H0 +

s
m

Â
i=1

H2
i ,
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Hi(I, j, pI , pj, #) := pI Fi(I, j, #) + pjGi(I, j, #), i = 0, . . . ,m.

There are two types of extremals: abnormal ones that live on the level set
{H = 0}, and normal ones that evolve on nonzero levels of the Hamiltonian.
One defines the averaged Hamiltonian K as

K := H0 + K0, H0 := hpI , F0i,

K0(I, pI) :=
1

2p

Z 2p

0

s
m

Â
i=1

H2
i (I, j, pI , pj = 0, # = 0)dj. (3)

It is smooth on the open set W equal to the complement of Sc where

S := {(I, pI , j) 2 T⇤M ⇥ S1
| (8i = 1,m) : hpI , Fi(I, j, # = 0)i = 0},

S := v(S) v : T⇤M ⇥ S1
! T⇤M.

One also defines the open submanifold M0 := P(W) of M. We assume that
M0 is connex. Under the assumption

(A1) rank{∂jFi(I, j, # = 0)/∂jj, i = 1, . . . ,m, j � 0} = n, (I, j) 2 M ⇥ S1,

one is able to express some properties of the averaged Hamiltonian in terms
of Finsler metric. (We refer the reader, e.g., to [5] for an introduction to Finsler
geometry.)

Proposition 1. The symmetric part K0 : (W ⇢)T⇤M ! R of the tensor K is posi-
tive definite and 1-homogenous. It so defines a symmetric Finsler co-norm.

We assume moreover that

(A2) K0(I, F⇤

0(I)) < 1, I 2 M,

where F⇤

0 is the inverse Legendre transform of F0. Under this new assump-
tion, one has

Proposition 2. The tensor K = H0 + K0 is positive definite and defines an asym-
metric Finsler co-norm.

The geodesics are the integral curves of the Hamiltonian K restricted to the
level set {K = 1},

dI
dt

=
∂K
∂pI

,
dpI
dt

= �
∂K
∂I

,

I(0) = I0, I(tf ) = I f , K(I0, pI(0)) = 1,

and tf = d(I0, I f ) for minimizing ones. The convergence properties of the
original system towards this metric when # ! 0 are studied in [4].
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1.2 Application to space mechanics

We consider the two-body potential case,

q̈ = �µ
q

|q|3
+

u
M

, |u|  Tmax.

Thanks to the super-integrability of the �1/|q| potential, the minimum time
control system is slow-fast with only angle (the longitude of the evolving
body) if one restricts to the case of transfers between elliptic orbits (µ is the
gravitational constant). In the non-coplanar situation, we have to analyze a
dimension five symmetric Finsler metric. In order to account for the Earth
non-oblateness, we add to the dynamics a small drift F0 on the slow vari-
ables. In the standard equinoctial orbit elements, I = (a, e,w,W, i), the J2 term
of order 1/|q|3 of the Earth potential derives from the additional potential
(re being the equatorial radius)

R0 =
µ J2 re

2

|q|3

✓
1
2

�
3
4

sin2 i +
3
4

sin2 i cos2(w + j)

◆

where j is the true anomaly. As a result, the system now has two small
parameters (depending on the initial condition). One is due to the J2 effect,
the other to the control:

#0 =
3J2r2

e
2a2

0
, #1 =

a2
0 Tmax

µM
·

Here, a0 is the initial semi-major axis, Tmax the maximum level of thrust, and
M the spacecraft mass. We make a reduction to a single small parameter as
follows: Defining # := #0 + #1 and l := #0/(#0 + #1), one has

dI
dt

= #0F0(I, j) + #1

m

Â
i=1

uiFi(I, j),

= #

 
lF0(I, j) + (1 � l)

m

Â
i=1

uiFi(I, j)

!
.

There are two regimes depending on whether the J2 effect is small against
the control (#0 ⌧ #1 and l ! 0) or not (#0 � #1 and l ! 1). The critical ratio
on l can be explicitly computed in metric terms.

Proposition 3. In the average system of the two-body potential including the J2
effect, K = lH0 + (1 � l)K0 is a metric tensor if and only if l < lc(I) with
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Fig. 1 Value function l 7! tf (l), td ! 0 (averaged system). On this example, a = 30 Mm,
e = 0.5, w = W = 0, i = 51 degrees (strong inclination), and lc ' 0.4239. The value function
is portrayed for td = 1e � 2, 1e � 3, 1e � 4, 1e � 5.

lc(I) =
1

1 + K0(I, F⇤

0(I))
·

The relevance of this critical ratio for the qualitative analysis of the original
system is illustrated by the numerical simulations displayed in Figures 2 to
4. For a given initial condition I0 on the slow variables, we let the drift F0
alone act: We integrate the flow of F0 during a short positive duration td,
then compute the trajectory of the averaged system to go from this point
I(td) back to I0. For l < lc(I0), the tensor K is a metric one, and this trajec-
tory is a geodesic. As td tends to zero, the time tf to come back from I(td)
tends to zero when l < lc(I0). For l � lc(I0), finiteness of this time indicates
that global properties of the system still allows to control it although the met-
ric character of the approximation does not hold anymore. (See Figure 2.)
The behaviour of tf measures the loss in performance as l approaches the
critical ratio. This critical value depends on the initial condition and gives
an asymptotic estimate of whether the thrust dominates the J2 effect or not.
Beyond the critical value, the system is still controllable, but there is a drastic
change in performance. As the original system is approximated by the aver-
age one, this behaviour is very precisely reproduced on the value function
of the original system for small enough #. (See Figures 3 to 4.)
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Cas quelconque. Superposition des courbes � ! � f pour le système moyenné et
le système non moyenné avec � = 10�3 et �d 2 {1e � 4,1e � 5}. L’extrémale non
moyennée est choisie telle que son temps final est proche du temps moyenné.

Fig. 2 Value function l 7! tf (l), td ! 0 (original system, # = 1e � 3). On this example,
a = 30 Mm, e = 0.5, w = W = 0, i = 51 degrees (strong inclination), and lc ' 0.4239. The be-
haviour of the value function for the original system matches very precisely the behaviour
of the averaged one. (See also Figure 4 for a even lower value of #.)Finsler asymétrique - E�et J2
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Cas quelconque. Superposition des courbes � ! � f pour le système moyenné et
le système non moyenné avec � = 10�4 et �d 2 {1e � 4,1e � 5}. L’extrémale non
moyennée est choisie telle que son temps final est proche du temps moyenné.

Fig. 3 Value function l 7! tf (l), td ! 0 (original system, # = 1e � 4). On this example,
a = 30 Mm, e = 0.5, w = W = 0, i = 51 degrees (strong inclination), and lc ' 0.4239. The be-
haviour of the value function for the original system matches very precisely the behaviour
of the averaged one.
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2 Averaging control systems with two fast angles

2.1 A simple example

In order to illustrate the our preliminary analysis of multiphase averaging
for control systems, we consider an elementary dynamical system consisting
of a scalar slow variable, I, and two fast variables, z and y. The optimal
control problem is

minp
u2

1+u2
21

t f subject to :

d I
d t

= # [cosz + cos (z � y)u1 + u2] ,
dz

d t
= I,

dy

d t
= 1,

I(0) = I0, I(t f ) = I f .

(4)

We note that the frequency of y is constant. If one of the two frequencies is
non-vanishing on the ambient manifold M, any problem with two frequen-
cies can be recast into this form by means of a change of the time variable,
as emphasized in [8]. The Hamiltonian associated to Problem (4) is

H = Ipz + py + #


pI cosz + |pI |

q
1 + cos2 (z � y)

�
. (5)

The maximizing control is

uopt
1 =

pI
|pI |

cos (z � y)p
1 + cos2 (z � y)

, uopt
2 =

pI
|pI |

1p
1 + cos2 (z � y)

,

revealing that the sign of pI determines the direction of the control vector,
which imposes a secular drift to the slow variable. Numerical values used
in all simulations are # = 10�3 and I0 =

p
2/2. Applying averaging theory

to the extremal flow of this problem is questionable because the structure of
this vector field differs from the one of conventional fast-oscillating systems.
As in the case of one fast angle, the equation of motion of pI includes the
term pj∂w/∂I that may be of order larger than #. Hence, adjoints of slow
variables are not necessary slow themselves. We justify the application of
averaging theory to System (14) by showing that, as in the case of a single
fast phase discussed in the previous section, adjoints of fast variables remain
#-small for any extremal trajectory with free phases.

Consider the canonical change of variables
�

I, pI , j, pj
 

!
�

J, pJ ,y, py
 

such that
J = I, y = W(I) j, (6)
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where the matrix-valued function, W : M ! R2⇥2 is defined as

W :=
1

kw(I)k


w1(I) w2(I)

�w2(I) w1(I)

�
. (7)

Symplectic constraints yield the transformation of the adjoints

pI = pJ + py
∂ W
∂ J

WT y, pj = py W(J), (8)

so that the transformed Hamiltonian is

eH = ||w(J)||py1 + # K
✓

J, pJ + py
∂ W
∂ J

WT y, WT y, py W
◆

| {z }
:= eK(J,pJ ,y,py)

. (9)

Boundary conditions on the adjoints of fast variables require that pj(0) = 0.
Evaluating the Hamiltonian at the initial time and normalizing the initial
adjoints according to

��pI0
�� = 1, one sets

#h := eH(t = 0) = # K
⇣

I0, pI0, WT (I0) y0, 0
⌘

| {z }
O(1)

. (10)

Hence, py1 can be evaluated at any time by solving the implicit function

py1 = #
h � eK

�
J, pJ ,y, py

�

||w(J)||
⇡

h � eK
�

J, pJ ,y,0
�

||w(J)||
(11)

Equation (11) indicates that py1 = O(#) when evaluated on a candidate op-
timal trajectory. As a consequence, pJ has an #-slow dynamics, i.e.

d pJ
d t

= �
∂ kwk

∂ J
py1

| {z }
O(#)

� #
∂ eK
∂ J

= O(#), (12)

which justifies the averaging of the extremal flow. As before, we denote by
K the averaged Hamiltonian

K :=
1

4p2

Z

T2
K (I, pI , j,0) dj. (13)

Here, pj = 0 because the averaging is carried out by considering the limit of
the function as # approaches zero. Averaging the extremal flow yields
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d I
d t

= #
∂ K
∂ pI

,
d pI
d t

= �#
∂ K
∂ I

� pj
∂ w

∂ I
,

d j

d t
= #

∂ K
∂ pj

+ w
�

I
�

,
d pj

d t
= 0.

(14)

2.2 Near-identity transformation of the initial state and
costate

Changing the initial conditions of averaged trajectories allows one to reduce
the drift between I(t) and I(t). Qualitatively, one defines a transformation
that shifts the initial point of the averaged trajectory to the middle of the
short-period oscillations of I(t). The improvement obtained with this ex-
pedient is possibly negligible when compared to the estimate provided by
Neishtadt theorem for systems with two fast angles [8], which considers the
same initial conditions for the two trajectories. Nonetheless, the transforma-
tion of the initial variables plays a key role for the optimal control problem.
(See [7] for a detailed discussion.) Figure 4 shows that pI and pI exhibit a
steady derive that largely exceeds the expected small drift when the orig-
inal and averaged systems are integrated with the same initial conditions.
In addition, trajectories of the original system strongly depend on the initial
angles. We show in the sequel that transforming the adjoints of fast variables
is sufficient to drastically reduce the drift of pI .

The trigger at the origin of the drift of pI is the wrong assessment of the
averaged value of pj, as shown in the bottom of Figure 4. This error is of
order # but it induces a steady drift of pI of the same order of magnitude,

d pI
d t

= �pj
∂ w

∂ I| {z }
#�small error

�#
∂ K
∂ I

. (15)

In turn, an #-small error on pj induces a steady drift of pI that is comparable
with its slow motion. Transforming the initial adjoints of fast variables is
sufficient to greatly mitigate this problem. More precisely, initial conditions
of the averaged and of the original initial value problem are mostly the same,
i.e.

I(0) = I(0) = I0, pI(0) = pI(0) = pI0, j(0) = j0, (16)

except for the adjoints of fast variables, which are such that

pj(0) = pj0 and pj(0) = pj0 + npj

�
I0, pI0, j0, pj0

�
, (17)
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Fig. 4 Numerical integration of the simple example. Trajectories of the original and aver-
aged system emanate from the same point of the phase space. Initial adjoints are pI(0) = 1
and py(0) = pz(0) = 0.

where, assuming that I0 is in a non-resonant zone, npj is given by

npj = �i Â
0<|k|N

eik·j

k · w
�

I
�

�

∂ K
∂ j

�(k)
. (18)

As a result, pj oscillates with zero mean about pj, and the drift between
pI(t) and pI(t) is drastically reduced.

Besides, changing pj is mandatory to have consistent trajectories of the
averaged and original systems. Transforming the initial value of slow vari-
ables and their adjoints is less important, but it can further reduce the drift
between these trajectories. Reconstructed trajectories (dash-dotted lines) of I
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and pj well overlap with their original counterpart, see Figure 5. Neverthe-
less, the reconstruction of pI is wrong (in the very-specific case of the sim-
ple example, npI = 0). Again, the term pj∂w/∂I in the dynamics of pI is re-
sponsible for this error. In fact, if short-period variations of pj are neglected,
the Fourier expansion of the right-hand side is carried out by introducing #-
small errors in the evaluation of the #-slow dynamics. The transformation of
pI should be carried out by including npj in the Fourier expansion, namely

npI = �i Â
0<|k|N

eik·j

k · w
�

I
�

�

⇣
pj + npj

⌘ ∂ w

∂ I
�

∂ K
∂ I

�(k)
. (19)

Ongoing work is concerned with the extension of this analysis to resonant
zones. When resonances of rather low order are crossed, one has to patch to-
gether resonant and non-resonant normal forms. Detecting properly where
to patch these approximations will be the subject of further studies.
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Fig. 5 Reconstruction of short-period variations using an appropriate transformation of
the initial state and costate.


