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Summary. The functional determinant of elliptic di↵erential operators on the circle was introduced in [3].
In the present paper, optimisation of this determinant over essentially bounded functions is studied as an
optimal control problem on the special linear group of real matrices. In the one dimensional case, existence
and uniqueness of maximisers and minimisers is proved.

7.1 Statement of the Problem

Following [3] we consider the determinant of a di↵erential operator

A :=
pX

k=0

AkDk

defined on RN -valued functions, N a positive integer, where D = �id/dx is the complex valued
derivation operator for such functions (i2 = �1) and where the Ak : S1 ! M(N,R), 0  k  p, are
matrix-valued (square matrices of order N) functions defined on the circle.5 We are interested in
addressing optimisation issues for such determinants under suitable restrictions on the potentials
involved. For the rest of the paper, we identify S1 with R/Z and functions on S1 with one-periodic
functions. For Q 2 M(N,R) we use the Frobenius norm kQk = tr(QT Q)1/2 and recall it derives
from the inner product on M(N,R) given by

5 The fundamental reference for spectral problems on the circle S1 (geometrisation of the periodic boundary
conditions) is [3], more general than [4]. The latter reference, however, provides much more elementary
arguments enabling one to establish links with the discrete setting.
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hQ1, Q2i = tr(QT

1 Q2), Q1, Q2 in M(N,R). (7.1)

We will assume that

A = � IdN

d2

dx2
+ V (x), (7.2)

i.e., the maximal order of di↵erentiation p is equal to two, and the operator is in normal form with
A2 = IdN (the identity matrix of order N), A1 = 0 and A0 = V a Hill potential. Ray and Singer
[7] define the functional determinant of such an operator as

det A := e�⇣
0
A(0) (7.3)

where

⇣A(s) :=
X

�j 6=0

1

�s

j

the sum being taken over nonzero eigenvalues of A. The function ⇣A is well defined for s with a large
enough real part (depending on the eigenvalues asymptotics), and has a meromorphic extension to
the plane that is regular at s = 0 [6, 8]. While (7.3) clearly equals the product of eigenvalues
when there are only finitely many of them, the expression provides a regularisation of the otherwise
divergent product. It is proven in [3] that

det A = (�1)N det(Id2N �R(A)) (7.4)

with R(A) the monodromy operator. More precisely, R(A) is equal to the fundamental matrix at
time 1 of the linear time-varying system on M(2N,R)

ß
Ṙ(x) = AV (x)R(x),
R(0) = Id2N ,

(7.5)

where one sets

AQ :=

ï
0 IdN

Q 0

ò
, for every Q 2 M(N,R).

Remark 1. In [3], the potential V appears as �V in (7.5) and we have changed notations in order
to stick with previous optimisation literature [1].

Since its trace is zero, the matrix AV belongs to the lie algebra sl(2N,R) and (7.5) defines a
dynamics on the special linear group SL(2N,R), a Lie group of dimension 4N2 � 1. This dynamics
is bilinear in R and V . We are now in position to properly define the optimisation problems discussed
in the present paper.

For every positive M , the set VM of admissible Hill potentials is given by the measurable
functions V so that

VM = {V : [0, 1] ! M(N,R) | ess sup
x2[0,1]

kV (x)k  M2}, (7.6)

and we say that a potential V satisfies an L1-constraint if it belongs to some VM .

Remark 2. Note that VM is convex and invariant by transposition and conjugation by orthogonal
matrices, i.e. VU(·) = UT (·)V (·)U(·) belongs to VM if and only V does, for any measurable SO(N)-
valued U(·) defined on [0, 1]. One could have defined equivalently VM with potentials V : R !
M(N,R) periodic of period 1 and satisfying the same L1 bound. In that case, VM is clearly
invariant by translation of x0 2 R, i.e. Vx0(·) = V (· + x0) belongs to VM if and only V does.
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Remark 3. For q 2 [1, 1), one could replace the L1 constraint by the integral condition

Z 1

0
kV (x)kq dx  M2q

which is referred to as an Lq-constraint.

The cost function associated to a potential V is from now on denoted C (V ) and is given by

C (V ) = (�1)N det
�
Id2N �R(1)

�
, (7.7)

where R is defined in (7.5). We will study the following optimisation questions: for every M > 0,

Max � Det(M) : max
V 2VM

C (V ) subject to (7.5), (7.8)

Min � Det(M) : min
V 2VM

C (V ) subject to (7.5). (7.9)

To derive common statements for both optimisation problems, we use C" to denote "C where
" = ±1 and in that way Max-Det becomes the minimisation of C� while Min-Det is simply the
minimisation of C+. That is we study, for a given M > 0,

Ext � Det"(M) : min
V 2VM

C"(V ) subject to (7.5). (7.10)

This problem is a Mayer optimal control problem with state R in SL(2N,R), potential V (control)
valued in a Euclidean ball of M(N,R), and bilinear dynamics. Control problems on Lie groups were
intensively studied by Ivan Kupka and his collaborators [2], and were foundational for what has
ever since emerged as Geometric control theory.

We begin our analysis in Section 7.2 by stating the necessary condition satisfied by optimis-
ers (existence is clear). The problem can be formulated as an optimal control problem over the
set of matrices with a matrix valued control, so the Pontryagin maximum principle provides the
appropriate information. We also obtain some additional properties of optimisers Section 7.3. In
Section 7.4 we focus on the one-dimensional case. We prove existence and uniqueness of maximisers
and minimisers for the determinant over a bounded set in L1(S1).

7.2 Optimality Conditions

In this section, we will derive the equations verified by the minimisers of Ext � Det" as well as
their first properties. From now on, M is an arbitrary positive number and " 2 {�1, 1}. First of
all, since VM is non empty and, for any R 2 M(2N,R), the set {AV | V 2 M(N,R), kV k  M2}
is compact and convex, then Ext � Det"(M) admits minimisers according to Filippov theorem.
According to the Pontryagin maximum principle (PMP), a solution R of Ext � Det"(M) with
minimising potential V is necessarily the projection of an extremal, i.e., an integral curve � =
(R, P ) 2 M(2N,R)2 of a Hamiltonian vector field satisfying certain additional conditions. We
hereby present a definition of extremal adapted to our setting. The fact that this is equivalent to
the standard definition of normal extremal is the subject of Proposition 1 given below.

Definition 1. A curve � : [0, T ] ! M(2N,R)2 is called extremal with respect to the control V 2 VM

if:
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(i) Letting � = (R, P ), it satisfies

Ṙ(x) = AV (x)R(x), (7.11)

Ṗ (x) = �A T

V (x)P (x). (7.12)

(ii) It holds that R(0) = Id2N and the following transversality condition holds true6

P (1) = (�1)N" Com
�
Id2N �R(1)

�
. (7.13)

(iii) Assume moreover that there exists h 2 R such that a.e. on [0, 1]

h = H
�
R(x), P (x), V (x)

�
= max

kWkM2
H
�
R(x), P (x), W

�
, (7.14)

where H is the Hamiltonian function defined on M(2N,R)2 ⇥ M(N,R) by

H
�
R, P, W

�
= hP, AW Ri = hA T

W
P, Ri. (7.15)

such an extremal is called strong extremal.

Remark 4. Note that every potential V admits a unique extremal (which is possibly strong).

We then get the following.

Proposition 1. Let R : [0, T ] ! M(2N,R) be an optimal trajectory of Ext � Det"(M) with
minimising potential V . Then R is the projection on M(2N,R) of a unique strong extremal
� = (R, P ) : [0, T ] ! M(2N,R)2.

Proof. Let V be a minimising potential of Ext � Det"(M) and R the associated trajectory by
(7.5). Pontryagin maximum principle implies that there exists a nontrivial pair (p0, P ) where the
cost multiplier p0 is a nonpositive real number and the covector P : [0, 1] ! M(2N,R) is a Lipschitz
function so that

1. (R(x), P (x)) 2 M(2N,R)2 satisfy on [0, 1] the adjoint equations:

Ṙ = rP H, (7.16)

Ṗ = �rRH; (7.17)

2. we have the maximality condition given by (7.14);
3. the following transversality condition holds true: P (1) = p0rC"(V ).

In addition, since H does not depend on time, its value in (7.14) does not depend on time and is
denoted by the constant real number h. As

rP H = AW R, rRH = A T

W
P, r det(Id2N �R) = � Com(Id2N �R),

the items of Proposition 1 follow at once, except the facts that p0 can be taken equal to �1 and
� is unique. To establish the first fact, it is enough to show that p0 cannot be null. To show that,
we argue by contradiction and, in that case, it follows that P (1) = 0. Since (7.19) is linear in P ,

6 We denote Com(M) the comatrix of a square matrix M .
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one gets that P is identically equal to zero on [0, 1]. This contradicts the non triviality of the pair
(p0, P ) and hence p0 6= 0. Regarding the uniqueness of �, note first that, given M > 0, trajectories
of (7.5) are in one to one correspondence with potentials in VM , since to each such trajectory, there
is a unique potential V 2 VM necessarily defined as the lower left N ⇥ N block of AV = ṘR�1

(recall that R is absolutely continuous). By Item 3., P (1) is determined by R(1) and hence P is
computed from (7.17). ⇤

To take advantage of the maximisation condition (7.14), after defining q = PRT , we rewrite
Proposition 1 only using q and we deduce at once that

Proposition 2. Assume that a trajectory R of Ext � Det"(M) with potential V is the projection
of an extremal trajectory � = (R, P ). Define

q = PRT =

ï
Z1  
' Z2

ò
, (7.18)

where the various blocs are N ⇥ N matrices. Then the dynamics of q is given, a.e. on [0, 1], by7

q̇(x) =
î
q(x), A T

V (x)

ó
, q(1) = (�1)N" Com

�
Id2N �R(1)

�
RT (1), (7.19)

which yields, for a.e. x 2 [0, 1],

Ż1 =  � V T', (7.20)

'̇ = Z2 � Z1, (7.21)

 ̇ = Z1V
T � V T Z2, (7.22)

Ż2 = 'V T �  . (7.23)

The Hamiltonian function H defined in (7.15) is equal to

H
�
R, P, W

�
= hq, A T

W
i = tr( ) + h', W i. (7.24)

Moreover, it holds

qT (x) = R(x)qT (1)R�1(x), for every x 2 [0, 1], (7.25)

'̈ = �2 + V T'+ 'V T for a.e. x 2 [0, 1], (7.26)

and in particular q(·) is periodic of period one.

Assume moreover � = (R, P ) is a strong extremal. If '(x) 6= 0, then V (x) = M2 '(x)
k'(x)k and, for

every x 2 [0, 1], it holds

h = tr( ) + M2k'(x)k, (7.27)

tr('̈) = �2h + 4M2k'(x)k. (7.28)

Proof. Most the above is immediate except (7.25). The latter follows from the fact that, for every
x 2 [0, 1],

qT (x) = R(x)R�1(1)qT (1)R(1)R�1(x).

The above equation then yields (7.25) after noticing that R(1) and qT (1) commute. ⇤

From now on, we indi↵erently call extremal either the pair (R, P ) or the pair (R, q).

7 We denote [Q1, Q2] = Q1Q2 �Q2Q1 the commutator of matrices.
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Remark 5. In the light of Item (iii) of the above proposition, one can see that the potential V is
not (immediately) defined at a zero of '. In the sequel, the latter function ' is refereed to as the
switching function and we single out a particular instance of zero of ', namely that of switching
time defining such a point x⇤ 2 (0, 1) for which '(x⇤) = 0 and there exist two sequences (xn)n2N
and (yn)n2N of two by two distinct points, both converging to x⇤ such that h'(xn),'(yn)i < 0 for
n 2 N. Clearly, a zero of ' in (0, 1) which is not a zero of '̇ is a switching time.

Remark 6. At every R 2 SL(2N,R), the tangent space is

TR SL(2N,R) = {rR | r 2 M(2N,R) such that tr(r) = 0}. (7.29)

Using now the inner product introduced in (7.1), one can identify the cotangent space T ⇤
R

SL(2N,R)
as

T ⇤
R

SL(2N,R) = {q(R�1)T | q 2 M(2N,R) such that tr(q) = 0}. (7.30)

We next notice that the flow associated with (7.19) is isospectral (cf. for instance [5]), in particular
the trace of q is constant on [0, 1] equal to tr(q(1)). Define indeed

q̃(x) = q(x) � tr(q(1)

2N
Id2N , P̃ (x) = q̃(x)

�
RT (x)

��1
, for x 2 [0, 1].

Clearly the curve �̃ = (R, P̃ ) takes values in T ⇤ SL(2N,R) and is an integral curve of the Hamil-
tonian vector field ~H associated with H. Finally, when applying the PMP to R, we claim that
�̃ turns out to be the required extremal with R as projection onto SL(2N,R): the dynamics of

�̃ has been described just previously, i.e., ˙̃� = ~H(�̃), the maximality condition is exactly (7.14)
and the tranversality condition (7.13) now says that P (1) � p0rC"(V ) belongs to the normal cone
at T ⇤

R(1) SL(2N,R), where the gradient is projected on T ⇤
R(1) SL(2N,R). Since that normal cone is

equal to R(RT (1))�1 and since one easily shows that p0 = �1, one gets the claim regarding �̃.

7.3 Invariance and Symmetries

We begin by providing the following property regarding translated potentials ensuring that the
problem is well posed for controls defined on S1 ' R/
mathbbZ. In particular, the uniqueness results of Section 7.4 are stated for controls in L1(S1).

Lemma 1. Let R be a trajectory of Ext � Det"(M) associated with potential V and corresponding
extremal (R, q). For x0 2 R, consider the potential Vx0 translated from V according to Remark 2.
Then Vx0 has same cost as V with corresponding extremal (Rx0 , qx0) and one gets that

qx0(x) = q(x + x0), 'x0(x) = '(x + x0), 8x 2 R. (7.31)

where ' ('x0 , respectively) denotes the switching function associated with V (Vx0 , respectively).

Proof. It is immediate to derive that the trajectory Rx0 of (7.5) associated with Vx0 is given by

Rx0(x) = R(x + x0)R(x0)
�1, 8x 2 R, (7.32)

and, by periodicity of V , it follows that



7 Optimisation of functional determinants on the circle 161

Rx0(1) = R(x0)R(1)R(x0)
�1. (7.33)

Using the above equation, one gets that

C"(Vx0) = (�1)N" det(Id2N �Rx0(1)) = C"(V ),

and hence has same cost as V . Let �x0 = (Rx0 , Px0) be the unique extremal associated with Rx0 .
Then, from (7.25), it holds

qT

x0
(x) = Rx0(x)

�
Rx0(1)

��1
qT

x0
(1)Rx0(1)

�
Rx0(x)

��1
, 8x 2 [0, 1],

and, from (7.19), one has

qx0(1) = (�1)N" Com
�
Id2N �Rx0(1)

�
RT

x0
(1)

= (�1)N" Com
⇣

Id2N �R(x0)R(1)R(x0)
�1

⌘
RT

x0
(1)

= (�1)N"
�
R(x0)

T
��1

Com
�
Id2N �R(1)

�
R(x0)

T R(x0)
�1

=
�
R(x0)

T
��1

q(1)R(x0)
T .

Using the above equation, (7.32) and (7.33), one gets (7.31). ⇤

We then prove that there always exists potentials V with negative costs, implying that minimal
values for Ext � Det"(M) are always negative, which in particular, exclude the zero potential from
optimality.

Lemma 2. The cost C"(0) associated with the zero potential is equal to zero. For every N ⇥ N
diagonal matrix D = diag("1d2

1, · · · , "Nd2
N

), where "2
i

= 1 and di > 0 for 1  i  N , let C"(D) be
the cost associated with the constant potential equal to D. Then

C"(D) = (�2)N"⇧N

i=1

�
1 � c"i(di)

�
. (7.34)

Moreover, for every M > 0, D 2 VM if
P

N

i=1 d2
i

 M2 and then C"(D) < 0 if one chooses "1" = �1,
"i = 1 for 2  i  N and d1 not a multiple of 2⇡ if "1 = �1.

Proof. One clearly has that the trajectory R0 of (7.5) associated with the zero potential is equal to

R0(x) =

ï
IdN x IdN

0 IdN

ò
for x 2 [0, 1].

The conclusion follows at once. Using (7.43), one easily deduces the value resolvent matrix RD

associated with D at x = 1,

RD(1) =

ñ
diag(c"1(d1), · · · , c"N (dN )) diag(

s"1 (d1)
d1

, · · · ,
s"N

(dN )
dN

)
diag("1d1s"1(d1), · · · , "NdNs"N (dN )) diag(c"1(d1), · · · , c"N (dN ))

ô
. (7.35)

An elementary computation yields (7.34) and the lemma follows. ⇤

We now derive basic facts on optimal trajectories.
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Lemma 3. Assume that R is an optimal trajectory associated with a minimising cost V and let h
be the constant value of the Hamiltonian defined in (7.14). Then the following facts hold true.

(a) The cost C"(V ) is negative and hence Id2N �R(1) is invertible. Moreover, the switching function
' is of class C2, the matrix q = RPT defined in (7.18) is periodic of period one, it holds that

qT (1) = C"(V )
�
Id2N �R(1)

��1
R(1) and qT (x) = R(x)qT (1)R�1(x) (7.36)

for every x 2 [0, 1], and the following relation holds true

h = 2M2

Z 1

0
k'(x)k dx. (7.37)

(b) If h = 0 then there exists an invertible Z⇤ 2 M(N,R) such that

q ⌘
ï
Z⇤ 0
0 Z⇤

ò
, (7.38)

and (�1)N" is negative.
(c) If h > 0, then ' has a finite number of zeroes in [0, 1] at which either '̇ does not vanish or '̈ is

well defined and does not vanish.

Proof. From (7.26) and the expression of V at points where ' does not vanish, one deduces that
' is of class C2 on [0, 1]. The one periodicity of q is an immediate consequence of Lemma 2. In
that case, one can simplify (7.19) and (7.25) to get (7.36). The latter equation implies that R(1)
and qT (1) commute, which implies by using (7.36) that q(0) = q(1). Since q is solution of a Cauchy
problem (the ODE q̇ =

⇥
q, A T

V

⇤
together with an initial condition), it follows that q is periodic of

period one. Finally, integrating (7.28) between x = 0 and x = 1 and using the periodicity of tr('̇),
one gets (7.37). Assume h = 0. From (7.37), it follows that ' ⌘ 0 and then (7.26) implies that
 ⌘ 0 as well. The rest of the dynamics of q clearly yields that q is constant on [0, 1], verifying
(7.38). By using the latter fact after taking the determinant in (7.36) it follows that

(det Z⇤)
2 = (�1)N"

⇥
det

�
Id2N �R(1)

�⇤2N�1
= C"(V )2N�1,

and the last part of Item (b) follows. We provide next an argument for Item (c). Arguing by
contradiction, it would follow that there exists a sequence (xk)k2N of two by two distinct times in
[0, 1] so that limk!1 xk = x̄ and '(xk) = 0 for k � 0. Since ' is of class C1, one has that '(x̄) = 0
by continuity of ' and then

0 = lim
k!1

'(xk) � '(x̄)

xk � x̄
= '̇(x̄).

Since V is bounded, one deduces from (7.26) that '̈ is twice di↵erentiable at x = x̄. Moreover, '̈(x̄)
is not zero since, from (7.26), it holds

tr('̈(x̄)) = �2h < 0.

By a Taylor expansion at order two, one obtains that there exists an open interval I centered at
x̄ so that '(x) = 0 for x 2 I only if x = x̄. That contradicts the existence of the sequence (xk)k2N.⇤
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We end the section by providing preliminary symmetry properties for a minimising potential.
For that purpose we define the following matrices of M(2N,R):

J = AId2N i.e. J =

ï
0 IdN

IdN 0

ò
, A = A� Id2N i.e. A =

ï
0 IdN

� IdN 0

ò
,

U =

ï
U 0
0 U

ò
, for every U 2 SO(N), BQ = A T

QT , for every Q 2 M(N,R).

Note that J2 = AT A = Id2N .

Proposition 3. Let M > 0, V 2 VM and R the trajectory of (7.5) associated with V . The following
items are equivalent:

(1.) V is a minimising potential for Ext � Det"(M) along (7.5);
(2.) for every U 2 SO(N), VU = U T V U is a minimising potential for Ext � Det"(M) along (7.5)

with U T RU as associated trajectory;
(3.) V is a minimising potential for Ext � Det"(M) along trajectories of each of the following four

dynamical systems

ß
Ṡ(x) = BV (x)S(x),
S(0) = IdN ,

ß
Ṡ(x) = �BV (x)S(x),
S(0) = IdN ,

ß
Ṡ(x) = S(x)BV T (x),
S(0) = IdN ,

ß
Ṡ(x) = �S(x)AV (x),
S(0) = IdN ,

with JRJ , AT RA, RT and R�1 as associated optimal trajectories respectively and same value
of the cost;

(4.) V T is a minimising potential for Ext � Det"(M) along (7.5) with associated trajectory
AT (RT )�1A.

Proof. Showing the several items is immediate once one notices that

JAQJ = BQ, AT AQA = �BQ, for every Q 2 MN (R).

As for the equality of the costs, we just check the following

det(Id2N �R�1(1)) = det
⇣
(R(1) � Id2N )R�1(1)

⌘
= det(Id2N �R(1)).

⇤

7.4 One-Dimensional Case

From now on N = 1, M is still a positive number and

VM = {V : [0, 1] ! R | V measurable and ess sup
x2[0,1]

|V (x)|  M2}. (7.39)

From Item (iii) of Proposition 2, it holds that V (x) 2 {�M2, M2} as soon as '(x) 6= 0 and this
motivates the following definition.
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Definition 2. Let R be a trajectory of (7.5) associated to some V 2 VM . A bang arc � : I !
M(2,R) is a piece of R defined on some non empty subinterval I ⇢ [0, 1] such that V = ⌫M2 is
constant on I, with ⌫ 2 {�1, 1}. A trajectory R of (7.5) is said to be bang if it is made of a unique
bang arc and bang-bang if it is the concatenation of bang arcs.

We first examine the Max-Det problem. In dimension N = 1, the cost to maximise is

CV = � det(I2 � R(1)),

= �(1 � tr R(1) + det R(1)),

= tr R(1) � 2

since the monodromy R(1) belongs to SL(2,R). Maximising CV is so equivalent to maximising the
trace of the monodromy

tr R(1) = z(1) + y0(1),

where z and y satisfy �w00 + V (x)w = 0 with respective initial conditions (z(0), z0(0)) = (1, 0) and
(y(0), y0(0)) = (0, 1).

Proposition 4. Let V1 and V2 be two potentials in L1
loc(R+), V1 � |V2| a.e., and let y1 and y2

satisfy �y00
i

+ Vi(x)yi = 0, i = 1, 2. If y1(0) � |y2(0)| and y0
1(0) � |y0

2(0)|, then y1(x) � |y2(x)| and
y0
1(x) � |y0

2(x)| for all x � 0.

Proof. (i) First assume V1 and V2 constant, V1 ⌘ A and V2 ⌘ B with A and B two reals such that
A � |B|. One has

y1(x) = y1(0) cosh(↵x) + xy0
1(0) sinhc(↵x)

where ↵ =
p

A, and where we denote

sinhc(x) =

ß
sinh(x)/x if x 6= 0,
1 if x = 0.

If B is nonnegative, let � :=
p

B  ↵; one has

|y2(x)| = |y2(0) cosh(�x) + xy0
2(0) sinhc(�x)|

 |y2(0)| cosh(�x) + x|y0
2(0)| sinhc(�x)

 y1(0) cosh(↵x) + xy0
1(0) sinhc(↵x) = y1(x)

for x � 0 since both cosh and sinhc are nondecreasing functions on R+ (and �  ↵). Similarly, for
x � 0,

|y0
2(x)| = |�y2(0) sinh(�x) + y0

2(0) cosh(�x)|
 ↵y1(0) sinh(↵x) + y0

1(0) cosh(↵x) = y0
1(x).

If B is negative, let � :=
p

�B  ↵; one has (denoting sinc(x) = sin(x)/x if x 6= 0, sinc(0) = 1)

|y2(x)| = |y2(0) cos(�x) + xy0
2(0) sinc(�x)|

 |y2(0)| cosh(�x) + x|y0
2(0)| sinhc(�x)

 y1(x)
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for x � 0 since | cos |  cosh and | sinc |  sinhc on R+. Similarly, for x � 0,

|y0
2(x)| = | � �y2(0) sin(�x) + y0

2(0) cos(�x)|
 ↵y1(0) sinh(↵x) + y0

1(0) cosh(↵x).

(ii) Take now some positive x, and assume V1 and V2 are piecewise constant on [0, x]; there exists
a common subdivision 0 = x0 < x1 < ... < xN = x, N � 1, such that on every [xi, xi+1[ both V1

and V2 are constant, with V1 � |V2|. A simple recurrence using step (i) allows to conclude that
y1(x) � |y2(x)| and y0

1(x) � |y0
2(x)|.

(iii) Consider eventually V1 and V2 locally integrable on R+, and fix x > 0. There exist two sequences
(V1,n)n, (V2,n)n of piecewise constant functions converging in L1(0, x) to V1 and V2, respectively.
These sequences can be chosen such that V1,n � |V2,n|, n 2 N. Then according to point (ii), for all
n 2 N, y1,n(x) � |y2,n(x)| and y0

1,n
(x) � |y0

2,n
(x)|, where yi,n denotes the solution associated with

Vi,n and fixed initial conditions (yi(0), y0
i
(0)), i = 1, 2. Since, for any given initial condition (y0, y0

0),
the mapping V 7! (y(x), y0(x)) (where y is the solution of �y00 + V y = 0, y(0) = y0, y0(0) = y0

0)
is continuous from L1(0, x) to R2 (see, e.g., Proposition 7 in [1]), passing to the limit one obtains
that y1(x) � |y2(x)| and y0

1(x) � |y0
2(x)|. As x is arbitrary, the desired conclusion holds. ⇤

Corollary 1. For V in L1(0, 1), let y and z denote the solutions of

�y00 + V (x)y = 0, y(0) = 0, y0(0) = 1,

�z00 + V (x)z = 0, z(0) = 1, z0(0) = 0.

Then, for any positive bound M , the constant potential V ⌘ M2 is the unique function maximising
both y(1), y0(1), z(1) and z0(1) over essentially bounded potentials such that kV k1  M2.

Theorem 1. The unique solution of the Max-Det(M) problem in the periodic case is the constant
potential equal to M2.

Proof. It is clear from the previous corollary that the constant potential V ⌘ M2 maximises
z(1) + y0(1) among essentially bounded potentials such that kV k1  M2. Let V be a measurable
function satisfying the same bound and such that V is strictly inferior to M2 on a positive measure
subset of [0, 1]; a direct estimation allows to prove that the associated values of both z(1) and
y0(1) (hence of their sum) are strictly smaller than the values obtained for the constant potential
V ⌘ M2. ⇤

We eventually handle Min-Det. In particular, we immediately derive the following result after
Lemmas 3 and 2.

Lemma 4. Assume that R is an optimal trajectory associated with a potential V minimising C1.
Then the following cases may occur.

(i) If h = 0, then V is equal to the constant potential V0 ⌘ �M2 and ' never vanishes on on [0, 1].
In that case, the minimal cost is equal to C1(V0) = �2

�
1 � c�(M)

�
;

(ii) if h 6= 0, then ' has a finite number of zeroes in [0, 1] and V (x) = M2sgn('(x)) outside a finite
set made of the zeroes of '.
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Hence, either R is the bang trajectory R0 associated with V0 or it is a bang-bang trajectory with a
finite number of bang arcs.

Proof. From Lemma 2, we know that the minimal value of C1 is negative, and then, Item (a) of
Lemma 3 only leaves the possibility of ' never vanishing on [0, 1]. Hence V is constant equal M or
�M . Since C1(M) > 0, Item (i) follows at once. Item (ii) is essentially a rewriting of Item (b) of
Lemma 3 together with Item (iii) of Proposition 2. ⇤

In the one-dimensional case, we can actually give a more elementary proof that minimising potentials
are bang-bang with finitely many switchings using the structure of sl(2,R). Our minimisation
problem is a Mayer problem with linear cost, tr R(1) ! min, and bilinear dynamics

Ṙ(x) = F0R(x) + V (x)F1R(x)

with a single input control such that, a.e., |V (x)|  M2, and matrices (linear vector fields)

F0 =

ï
0 1
0 0

ò
, F1 =

ï
0 0
1 0

ò
.

Together with their commutator8

F01 := [F0, F1] =

ï
1 0
0 �1

ò
,

these matrices form an sl2-triple of the dimension three Lie algebra. In particular, one has

F001 = [F0, F01] = �2F0, F101 = [F1, F01] = 2F1. (7.40)

Denoting Hi := hP, FiRi, for i = 0, 1, the Hamiltonian lifts of F0 and F1, the Hamiltonian is
H = H0 + V H1. To analyse the structure of the set of zeroes of H1 along an extremal, one can
compute (with the same notation as before)

Ḣ1 = H01, Ḣ01 = H001 + V H101.

Because of (7.40), Ḧ1 = 2(V H1 �H0) so H1 is C 2 (since V is bounded, V H1 vanishes whenever H1

does) and there are two cases at a switching time: either H01 is not zero, or H01 is zero and H001

is not (P would otherwise vanish, which is forbidden, since F0, F1 and F01 form a basis of the Lie
algebra). In both cases, the switching time must be isolated.

We focus now on strong extremals associated with h 6= 0, and introduce the following notations: if
⌫2 = 1, we use c⌫(t) (respectively s⌫(t)) to denote cosh(t) if ⌫ = 1 and cos(t) if ⌫ = �1 (respectively
sinh(t) if ⌫ = 1 and sin(t) if ⌫ = �1). With these conventions, one also has for every x 2 R that

c2
⌫
(x) � ⌫s2

⌫
(x) = 1, ċ⌫(x) = ⌫s⌫(x), ṡ⌫(x) = c⌫(x), (7.41)

c⌫(2x) = 1 + 2⌫s2
⌫
(x), s⌫(2x) = 2⌫s⌫(x)c⌫(x). (7.42)

As a consequence, if d is a positive real number, the solution of the linear second order equation
ÿ = ⌫dy is given by

y(t) = c⌫(dt)y(0) +
1

d
s⌫(dt)ẏ(0), t 2 R. (7.43)

We have the following two intermediate results.

8 Note that we use the matrix commutator whose sign is opposite to the Lie bracket of the associated
linear vector fields.
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Lemma 5. Let (R, q) be a strong extremal projecting on an optimal trajectory R which is associated
with a potential V minimising C1 with corresponding h 6= 0. Assume furthermore that

1. V is not identically equal to �M2;
2. x0 < x1 are two consecutive zeroes of ' in [0, 1], i.e., |'| > 0 on (x0, x1).

Set T := x1 � x0 > 0 and ⌫ = sgn(') on (x0, x1). Then both c⌫(MT ) and s⌫(MT ) are non zero
and the following holds:

'(x) =
h

M2c⌫(MT )
s⌫(M(x � x0))s⌫(M(x1 � x)), for x 2 [x0, x1]. (7.44)

In particular,

'̇(x0) = �'̇(x1) = h
s⌫(MT )

c⌫(MT )
6= 0. (7.45)

Proof. In the case N = 1 and using the notations of the lemma, one can rewrite (7.26) as

'̈ = 4⌫M2('� ⌫h

2M2
) for x 2 [x0, x1]. (7.46)

Integrating (7.46) yields that

'(x) =
⌫h

2M2

�
1 � c⌫(2M(x � x0))

�
+ Bs⌫(2M(x � x0)), (7.47)

'̇(x) = 2M2Bc⌫(2M(x � x0)) � hs⌫(2M(x � x0)), (7.48)

where B is a constant satisfying

� ⌫h

2M2
(1 � c⌫(2MT )) = Bs⌫(2MT ). (7.49)

From (7.48), one deduces that

'̇(x0) = 2M2B, '̇(x1) = 2M2Bc⌫(2MT ) � hs⌫(2MT ). (7.50)

We prove next that s⌫(MT ) 6= 0. Arguing by contradiction, it would first imply that ⌫ = �1 and
then V = �M2, c⌫(2MT ) = 1, s⌫(2MT ) = 0 and, from (7.50), that '̇(x0) = '̇(x1) = 2M2B.
If B 6= 0, then sgn(B)'̇ is positive in a right neighborhood of x0 while it is negative in a left
neighborhood of x1, implying that ' must vanish inside (x0, x1). This contradicts Item 2., and
therefore one deduces that B = 0 and then '̈(x0) = '̈(x1) = �2h, yielding that h > 0 and x0 and
x1 are not switching times. We claim that every zero of ' is not a switching time and that V ⌘ �M2.
Indeed, recall that a zero of ' is isolated and there are a finite number of them. Consider then x2

distinct from x0 and x1. Assume that it is consecutive to x1, i.e. |'| > 0 on (x1, x2). Reproducing
the reasoning done on [x0, x1] with x1 (respectively x2) replacing x0 (respectively x1), we conclude
from (7.50) that the corresponding B is equal to zero and from (7.47) that c⌫0(2M(x2 � x1)) = 1,
i.e., ⌫0 = �1 and s⌫0(M(x2 � x1)) = 0. Being back to the previous situation, one deduces that
'̇(x2) = 0. Proceeding in that way step by step, one gets the claim. This contradicts Item 1. and
finally one has proved that s⌫(MT ) 6= 0. From (7.49) and (7.42), one gets that

B =
h

2M2

c⌫(MT )

s⌫(MT )
,
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and direct computations finally yield (7.44) and (7.46). ⇤

To state our subsequent results, one needs to define, for every positive real number M the
function FM : [0, 1] ! R+ by

FM (x) = x +
⇡ � arctan

�
tanh(Mx)

�

M
· (7.51)

The basic facts on this function are the following:

FM (0) =
⇡

M
, FM (1) = 1 +

⇡ � arctan
�
tanh(M)

�

M
, F 0

M
(x) =

2 tanh2(Mx)

1 + tanh2(Mx)
, (7.52)

for all x 2 [0, 1]. Hence FM is a C1, strictly increasing bijection from [0, 1] to [ ⇡

M
, FM (1)] and

FM (1) > 1. Our second intermediate result goes as follows.

Lemma 6. Let (R, q) be a strong extremal projecting on an optimal trajectory R which is associated
with a potential V minimising C1 with corresponding h 6= 0. Assume furthermore that R is not a
bang trajectory. Then, up to a translation, V is periodic of period T1 +T2 so that V = M2 on [0, T1]
and V = �M2 on [T1, T1 + T2] where T1, T2 2 (0, 1) so that they satisfy

T2 =
⇡ � arctan

�
tanh(MT1)

�

M
, (7.53)

and there exists a positive integer l such that

FM (T1) = 1/l. (7.54)

Proof. Notice that R must have at least two distinct bang arcs and then at least two switching points.
Moreover, all the zeroes of ' must be switching times according to (7.45). Thanks to Lemma 1,
we can assume, up to translating the potential V , that 0 is a switching time and ' > 0 in a right
neighborhood of zero (since both signs are taken on [0, 1]). Since '̇(0) 6= 0, it must be positive and
(7.45) yields that both h and ⌫ are positive. We first claim that x = 1 must be a switching time.
For otherwise, '(1) 6= 0 and hence V has a constant sign in a left neighborhood of 1. If V = M2

there, then for a > 0 small enough one has that '�a(a) = '(0) = 0 and '̇�a(a) = '̇(0) 6= 0, i.e.,
a is a switching time for V�a. This is in contradiction with the fact that V�a = M in an open
neighborhood of a. If now V = �M2 in a left neighborhood of 1, let xr < 1 be the largest zero of
' in [0, 1]. It turns out that Vxr changes sign at x = 1 � xr but this is in contradiction with the
fact that 'xr (1 � xr) = '(1) 6= 0. We have proved the claim. Now we show that the last bang must
correspond to V = �M2. Indeed if it were not the case, then Va = M2 in an open neighborhood of
some a > 0 small enough with 'a(a) = 0, which is not possible. It means that R is the concatenation
of an even number of bang arcs, �i, 1  i  2l, where on the �2j�1’s, 1  j  l, one has V = M2

and on the �2j ’s, 1  j  l, one has V = �M2. Let Ti > 0 be the duration of each bang arc �i, for
1  i  2l, and clearly

2lX

i=1

Ti = 1. (7.55)

We next prove that T2 = F (T1). Indeed, consider (7.45) written for (x0, x1) = (0, T1) and then
(x0, x1) = (T1, T1 + T2). One deduces that
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h tanh(MT1) = '̇(0) = �'̇(T1), h tan(MT2) = '̇(T1) = �'̇(T1 + T2). (7.56)

It follows at once that
tanh(MT1) = � tan(MT2) 2 (0, 1).

It follows that MT2 � k⇡ 2 ( 3⇡

4 ,⇡) for some non negative integer k. Then k = 0 otherwise, using
(7.44), ' would have another zero in (T1, T1 + T2), which is not possible. One deduces (7.53). We
finally prove that

T2j�1 = T1, T2j = T2, for 1  j  l. (7.57)

We only provide an argument for T3 = T1 since the other equalities are deduced in an identical
manner. For that purpose, consider (7.45) written for (x0, x1) = (T1+T2, T1+T2+T3). One deduces
that

h tanh(MT3) = '̇(T1 + T2) = �'̇(T1 + T2 + T3).

Using (7.56), one gets that

tanh(MT3) =
'̇(T1 + T2)

h
= � tan(MT2) = tanh(MT1),

yielding that T1 = T3 and V is (T1 +T2)-periodic. One deduces (7.54) from (7.55), which concludes
the proof of Lemma 6. ⇤

We are able to state the proposition providing a complete solution to Min-Det in the case
N = 1.

Theorem 2. For every positive M , the optimal control problem Min-Det(M) admits a unique
minimising potential Vmin in L1(S1) defined as follows.

(a) If M 2 (0,⇡], Vmin = V0 ⌘ �M2 and the minimal value for Min-Det(M) is equal to C1(V0) =
�2

�
1 � c�(M)

�
;

(b) If M > ⇡, Vmin is the potential V1 equal to M2 on [0, t1] and �M2 on [t1, 1], with FM (t1) = 1
and the minimal value for Min-Det(M) is equal to C1(V1) = �2

�
1 � c�(M(1 � t1))c+(t1)

�
.

Proof. If M  ⇡, then FM (x) > 1 for every x 2 (0, 1] and one deduces from (7.54) that there is no
T1 2 (0, 1) satisfying the properties required for the existence of a an optimal trajectory R which
is not a bang trajectory. Therefore, the only candidate left as minimising potential by Lemma 4 is
V = V0, i.e. Item (a) holds true. Assume now that M > ⇡. Define the positive integer L := E(M

⇡
)

(where E(x) stands for the integer part of the real x), and the 2L times

tl = F�1
M

(1/l), sl = 1/l � tl, 1  l  L. (7.58)

According to Lemma 6, there exists a bang-bang trajectory Rl with 2l bang arcs and associated
with the periodic potential Vl of period 1/l so that Vl = M2 on [0, tl] and Vl = �M2 on [tl, tl + sl].
Recall that R0 is the trajectory of (7.5) associated with V0. Then, one gets from Lemmas 4 and
6 that a minimising potential Vmin must be equal to Vl for some integer 0  l  L. In order to
conclude, one is left with the computation of the costs C1(Vl), for positive integers 1  l  L. A
lengthy but straightforward computation yields that

Rl(1/l) =

ñ
c�(Msl)

s�(Msl)
M

�Ms�(Msl) c�(Msl)

ôñ
c+(Mtl)

s+(Mtl)
M

Ms+(Mtl) c+(Mtl)

ô
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=
h

c�(Msl)c+(Mtl) + s�(Msl)s+(Mtl)
c�(Msl)s+(Mtl)+s�(Msl)c+(Mtl)

M
M(s�(Msl)c+(Mtl) + c�(Msl)s+(Mtl)) c�(Msl)c+(Mtl) � s�(Msl)s+(Mtl)

i
,

(7.59)

and one has that det(Rl(1/l)) = 1 and

↵l = � tr(Rl(1/l))

2
= �c�(Msl)c+(Mtl), 1  l  L. (7.60)

We use rl,
1
rl

in C to denote the eigenvalues of Rl(1/l). Since Vl is 1/l-periodic, one gets that

Rl(1) = Rl

l
(1/l) and hence

C1(Vl) = � det
�
Id2 �Rl

l
(1/l)) = (�2)(1 �

rl

l
+ r�l

l

2
), 1  l  L. (7.61)

Recall that Msl 2 ( 3⇡

4 ,⇡) and hence, it holds, for 1  l  L that

�c�(Msl) = �c�
⇣
⇡ � arctan

�
tanh(Mtl)

�⌘
= c�

⇣
arctan

�
tanh(Mtl)

�⌘

=
1»

1 + tanh2(Mtl)
=

c+(Mtl)»
c2
+(Mtl) + s2

+(MT1)
,

and then

↵l =
c2
+(Mtl)»

2c2
+(Mtl) � 1

> 1. (7.62)

Let ⇠l > 0 such that ↵l = c+(⇠l). Since rl and 1
rl

are the roots of the degree two polynomial

X2 + 2c+(⇠l)X + 1, one gets that rl = �e⇠l and finally it holds

C1(Vl) = (�2)
⇣
1 � (�1)lc+(l⇠l)

⌘
.

For even l’s, the cost is non negative, implying that Vl cannot be minimising. For odd l’s, the cost is
smaller than �4 and then smaller than C1(V0). It remains to show that C1(Vl) reaches its minimal
value for l = 1. For that, it is enough to prove that the mapping G : l 7! l⇠l is strictly decreasing
for l 2 [1, L]. Computing, one gets

G0(l) = Mtl
⇣ ⇠l

Mtl
� c+(Mtl)

s+(Mtl)

FM (Mtl)

tl

⌘
, l 2 [1, L].

Since FM (Mtl) > tl, one would have that G0(l) < 0 if one shows that ⇠l < Mtl. In turn, that
last inequality is itself equivalent ↵l < c+(Mtl), inequality which does hold true by (7.62). This
concludes the proof of Theorem 2. ⇤
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